

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA E TECNOLOGIA DE MATERIAIS

Faculdade de Engenharia Faculdade de Física Faculdade de Química

SÍNTESE E CARACTERIZAÇÃO DE DISPERSÕES AQUOSAS DE POLIURETANO

VITÓRIA MARIANA SILVA DE OLIVEIRA

QUÍMICA INDUSTRIAL

DISSERTAÇÃO PARA A OBTENÇÃO DO TÍTULO DE MESTRE EM ENGENHARIA E TECNOLOGIA DE MATERIAIS

> Porto Alegre Março, 2008

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA E TECNOLOGIA DE MATERIAIS

Faculdade de Engenharia Faculdade de Física Faculdade de Química

SÍNTESE E CARACTERIZAÇÃO DE DISPERSÕES AQUOSAS DE POLIURETANO

VITÓRIA MARIANA SILVA DE OLIVEIRA

Química Industrial

ORIENTADOR: PROF^a. DR^a. ROSANE ANGÉLICA LIGABUE CO-ORIENTADOR: PROF^a. DR^a. SANDRA MARA EINLOFT

Dissertação realizada no Programa de Pós-Graduação em Engenharia e Tecnologia de Materiais (PGETEMA) da Pontifícia Universidade Católica do Rio Grande do Sul, como parte dos requisitos para a obtenção do título de Mestre em Engenharia e Tecnologia de Materiais.

Trabalho vinculado ao Projeto Desenvolvimento de Tecnologias Não-Poluentes

Porto Alegre Março, 2008

BANCA EXAMINADORA

SÍNTESE E CARACTERIZAÇÃO DE DISPERSÕES **AQUOSAS DE POLIURETANO**

CANDIDATA: VITÓRIA MARIANA SILVA DE OLIVEIRA

Esta dissertação foi julgada para obtenção do título de MESTRE EM ENGENHARIA E TECNOLOGIA DE MATERIAIS e aprovada em sua forma final pelo Programa de Pós - Graduação em Engenharia da Pontifícia Universidade Católica do Rio Grande do Sul.

DRA. ROSANE ANGÉLICA LIGABUE- ORIENTADORA - PUCRS

Sandre fieldt

DRA. SANDRA MARA OLIVEIRA EINLOFT - CO-ORIENTADORA -PUCRS

BANCA EXAMINADORA

SNachtigerel DRA. SÔNIA MARLI BOHRZ NACHTIGALL - UFRGS

DRA, ELEANT MARTA DA COSTA - PUCRS

Não sei o que posso parecer para o mundo, mas pessoalmente vime simplesmente сото um menino que brinca, junto ao mar, e que, de vez em quando, se diverte quando encontra um seixo mais polido do que os outros ou uma concha mais bela do que as outras, enquanto o grande oceano da verdade se mantém diante de mim, completamente desconhecido. Isaac Newton, em 1727.

DEDICATÓRIA

Dedico esta dissertação ao meu pai Jorge, que sempre gostou de ciência e passou essa paixão para mim. Não tendo a oportunidade de estudar formalmente, pode agora realizar-se comigo. Incentivou-me, me incentiva e está sempre atualizado, por isso passamos horas divagando sobre as coisas do universo. É um grande amigo.

AGRADECIMENTOS

Em primeiro lugar quero agradecer meu pai Jorge e minha mãe Nize por tudo, pela compreensão, pelo suporte e apoio incomensuráveis. Aos meus irmãos Gabriel e Ísis, que são a alegria do meu viver, à minha avó Erica que, com certeza, me ajudou muito com suas orações, ao meu namorado Fabiano por ter me agüentado este tempo todo e, que mesmo nos momentos mais desgastantes, conseguia me fazer rir e a todos aqueles que estão à minha volta e aturaram o meu mau humor nestes últimos tempos. Muito obrigada!

Um agradecimento especial à professora Rosane Ligabue, que mesmo com tantos compromissos e responsabilidades, sempre arrumou um tempinho para me atender e, quando eu estava perdida, sempre depois de nossas conversas eu conseguia tomar um rumo, além de ter me ensinado muito além do trabalho, a estar sempre disposta a ajudar os outros. Muito obrigada.

Às professoras Sandra Einloft e Eleani da Costa, que batalharam para eu poder continuar com a bolsa e terminar o mestrado e à professora Jeane por ser quem ela é.

Quero agradecer também a minha amiga Tati, que encarou essa batalha junto comigo o tempo todo e sempre sabia o que tinha que entregar e quando.

Ao pessoal do LOR, que são uma família para mim: a Vanusca, a Vivi, a Natacha, a Deise, a Paula, a Manu, a Thaís, a Tassi, o Léo, o Rafael, o Carlos e principalmente a Renata, que pegou legal o trabalho agora no final, enquanto eu estava escrevendo. Muito obrigada!

Aos colegas do PGETEMA, principalmente o Marcelo, o Arthur, o Cauê, a Tati, a Jaque e a Ritinha.

Finalmente, agradeço também, a todos os funcionários da PUCRS, que de forma ou de outra, também ajudaram no desenvolvimento deste trabalho, principalmente o Marcus e o Beto do almoxarifado, o vidreiro Nélson, as meninas da Secretaria da Química, Neiva, Nilza e Luciana, da Secretaria do PGETEMA, Nádia e Cláudia e as meninas da limpeza, Nair e Nara. Eu dei bastante trabalho a todos e sou muito grata por isso.

Muito obrigada!

SUMÁRIO

BANCA EXAMINADORA	3
DEDICATÓRIA	5
AGRADECIMENTOS	6
SUMÁRIO	7
LISTA DE FIGURAS	10
LISTA DE TABELAS	13
LISTA DE QUADROS	14
LISTA DE ABREVIATURAS E SÍMBOLOS	15
RESUMO	17
ABSTRACT	18
1. INTRODUÇÃO	19
2. OBJETIVOS	22
2.1. Objetivos Específicos	22
3. REVISÃO BIBLIOGRÁFICA	23
3.1. Introdução	23
3.2. Isocianatos	25
3.2.1. Reatividade de Isocianatos	27
3.3. Polióis	30
3.4. Extensores de cadeia	33
3.5. Cadeia do poliuretano	34
3.5.1. Morfologia	35
3.5.2. Efeito dos segmentos rígidos	36
3.5.3. Efeito dos segmentos flexíveis	37
3.6. Dispersões aquosas de poliuretano	39
3.7. Síntese de dispersões poliuretano	40
3.7.1. Processo do pré-polímero	41
3.7.1. Processo do pré-polímero3.7.2. Processo da acetona	41 42

3.8.1. Segmentos rígidos e flexíveis	42
3.8.2. Razão NCO/OH	44
3.8.3. Conteúdo iônico	46
3.8.4. Grau de extensão de cadeia	49
3.9. Propriedades reológicas, viscosidade e tamanho de partícula	50
3.9.1. Propriedades reológicas	50
3.9.2. Viscosidade e tamanho de partícula	52
4. MATERIAIS E MÉTODOS	. 55
4.1. Síntese de dispersões PU	56
4.1.1. Síntese de dispersão PU pelo processo do pré-polímero	57
4.1.1.1. Etapa da dispersão e extensão de cadeia	59
4.1.2. Síntese de dispersão PU pelo processo da acetona	59
4.1.3. Retirada dos solventes orgânicos	60
4.2. Técnicas de caracterização	60
4.2.1. Teor de sólidos (% de não-voláteis, % NV)	60
4.2.2. Medidas de pH	60
4.2.3. Preparação dos filmes	60
4.2.4. Espectroscopia vibracional no infravermelho (IV)	61
4.2.5. Cromatografia de permeação em gel (GPC)	61
4.2.6. Viscosidade Brookfield	61
4.2.7. Análise de tamanho de partícula médio e de distribuição de tamanho d	le
partícula	61
4.2.8. Análise reológica	62
5. RESULTADOS E DISCUSSÃO	. 63
5.1. Caracterização geral das DPUs sintetizadas: infravermelho e reologia	63
5.2. Análise dos efeitos dos parâmetros reacionais sobre as propriedades d	las
DPUs	69
5.2.1. Efeito da natureza dos polióis	69
5.2.1.1. DPUs sintetizadas com TMXDI	69
5.2.1.2. DPUs sintetizadas com IPDI	73
5.3. DPUs sintetizadas com TMXDI e o poliol poliéster A	75
5.3.1. Teor de sólidos	76
5.3.2. Razão NCO/OH	77

5.3.3. Tipo e conteúdo de emulsificante interno	78
5.3.4. Grau de neutralização	79
5.3.5. Grau de extensão de cadeia	79
5.3.6. Processo	79
5.4. Tamanho de partícula e distribuição de tamanho de partícula	81
5.4.1. DPUs sintetizadas com TMXDI	81
5.4.2. DPUs sintetizadas com IPDI	84
5.4.3. DPUs sintetizadas com TMXDI e o poliol poliéster linear A	86
5.4.4. Processo	88
5.5. Resultados da caracterização do aspecto do filme	91
6. CONCLUSÕES	92
7. REFERÊNCIAS BIBLIOGRÁFICAS	96
APÊNDICES	104
ANEXO	109

LISTA DE FIGURAS

Figura 3.1. Ligação uretano24
Figura 3.2. Formação de um poliuretano24
Figura 3.3. Esquema das reações típicas de isocianatos com diferentes reagentes ¹¹ .26
Figura 3.4. Formação de biureto poliisocianato trifuncional ³¹ 27
Figura 3.5. Mecanismo da reação entre um álcool e um isocianato ³²
Figura 3.6. Estruturas de alguns polióis utilizados na síntese de PUs
Figura 3.7. Poliéster linear derivado de poliadipato de EG
Figura 3.8. Estrutura de alguns extensores de cadeia
Figura 3.9. Representação esquemática de PUs segmentados ¹⁹
Figura 3.10. Esquema das estruturas de domínios ³
Figura 3.11. Efeito da tensão aplicada na estrutura de PU segmentado linear. a) Segmento flexível, b) Segmento rígido, c) segmento flexível cristalizado pelo esforço ³
Figura 3.12. Diagrama esquemático das micelas formadas por (a) poliuretanos catiônicos e (b) poliuretanos aniônicos em água ¹¹ 40
Figura 3.13. Estrutura molecular do DMPA41
Figura 3.14. Estrutura da cadeia do PU obtido através do processo do pré-polímero Adaptação de 14
Figura 3.15. Representação da cadeia de um PU segmentado. a) segmentos flexíveis e b) segmentos rígidos ³ 43
Figura 3.16. Curvas tensão-deformação de filmes obtidos de dispersões aquosas de PU ²³ 45
Figura 2.17. Temperatura de transição vítros (Ta) de filmos de DDLIs em função de

Figura 3.17. Temperatura de transição vítrea (*Tg*) de filmes de DPUs em função da razão molar NCO/OH durante as ligações transversais para umidades

relativas selecionadas. ♦, 32% de umidade relativa; ∎, 52% de umidade relativa; ●, 75% de umidade relativa⁴......46

- Figura 3.19. Distribuição do tamanho de partícula (a) em número e (b) em volume de DPU contendo 5% de DMPA. +++ medida 1; +++ medida 2.¹⁰......49
- Figura 3.20. Efeito da extensão de cadeia no tamanho de partícula e na viscosidade da DPU. Pré-neutralização, 100%; DMPA, 3% em massa⁹......50
- Figura 3.21. Viscosidade em função da taxa de cisalhamento para sistemas com comportamento (a) Newtoniano, (b) pseudoplástico e (c) dilatante. Também inclui regiões típicas de taxa de cisalhamento dependendo da manipulação do material para revestimento (Partes I – III)²⁹......51
- Figura 3.22. Efeito da concentração do polímero no tamanho de partícula e na viscosidade de DPU. Tamanho de partícula; Viscosidade⁹......54
- Figura 4.1. Sistema reacional utilizado nas sínteses de resinas PU......57
- Figura 4.2. Esquema da síntese de DPU......58
- Figura 4.3. Sistema empregado para a dispersão da resina PU em água......59

- Figura 5.3. Espectro de IV para DPUs sintetizadas com diferentes razões NCO/OH.67
- Figura 5.4. Gráfico de tensão de cisalhamento e viscosidade em função da taxa de cisalhamento (comportamento reológico) da DPU sintetizada com o poliol poliéster linear A e o diisocianato TMXDI......68
- Figura 5.5. Massas molares ponderais médias (M_w) das DPUs 1, 7, 8 e 9......71
- Figura 5.7. Massas molares ponderais médias (Mw) das DPUs 1, 4 e 5, sintetizadas com TMXDI e das DPUs 11, 12, 13 e 14, sintetizadas com IPDI. Em

todas as DPUs utilizou-se hidrazina como extensor de cadeia, com exceção da DPU 11, onde a etilenodiamina foi utilizada......74

Figura 5.8. Efeito da razão NCO/OH no tamanho de partícula das DPUs77
Figura 5.9. Gráfico de distribuição de tamanho de partícula da DPU 182
Figura 5.10. Gráfico de distribuição de tamanho de partícula da DPU 2
Figura 5.11. Gráfico de distribuição do tamanho de partícula da DPU 3
Figura 5.12. Gráfico de distribuição do tamanho de partícula da DPU 4
Figura 5.13. Gráfico de distribuição de tamanho de partícula da DPU 1185
Figura 5.14. Gráfico de distribuição de tamanho de partícula da DPU 1285
Figura 5.15. Gráfico de distribuição de tamanho de partícula da DPU 1486
Figura 5.16. Gráfico de distribuição de tamanho de partícula da DPU 15
Figura 5.17. Gráfico de distribuição de tamanho de partícula da DPU 1687
Figura 5.18. Gráfico de distribuição de tamanho de partícula da DPU 1788
Figura 5.19. Repetição do gráfico de distribuição de tamanho de partícula da DPU1.89
Figura 5.20. Gráfico de distribuição de tamanho de partícula da DPU 24
Figura 5.21. Gráfico de distribuição de tamanho de partícula da DPU 2590
Figura 5.22. Fotografias do filme da DPU 1. A única diferença entre as fotografias é o ângulo em que as mesmas foram fotografadas

LISTA DE TABELAS

Tabela 1.1.	Mercado mundial de PU (%) em 2001 e previsão para 201020
Tabela 4.1.	Reagentes e outros materiais utilizados na síntese e na caracterização de DPUs
Tabela 4.2.	Estrutura de alguns polióis e dos diisocianatos utilizados na síntese de DPUs
Tabela 5.1.	Atribuição das bandas no espectro de IV para a DPU sintetizada a partir do poliol poliéster linear A e do diisocianato TMXDI64
Tabela 5.2.	Atribuição das bandas no espectro de IV para a DPU sintetizada a partir do poliol poliéster linear A e do diisocianato IPDI
Tabela 5.3.	Resultados das sínteses realizadas com TMXDI e diferentes polióis70
Tabela 5.4.	Resultados das sínteses realizadas com IPDI e diferentes polióis73
Tabela 5.5.	Resultados das sínteses realizadas com TMXDI e o poliol poliéster linear A (MM=1000g/mol)
Tabela 5.6.	Resultados das sínteses realizadas com TMXDI e o poliol poliéster linear A (MM = 1000g/mol) pelo processo do pré-polímero e pelo processo da acetona, com razão NCO/OH = 1,7

LISTA DE QUADROS

Quadro 3.1. Principa	s diisocianatos	utilizados na sí	ntese de PU	29

LISTA DE ABREVIATURAS E SÍMBOLOS

- ATR Attenuated total reflectance (refletância total atenuada)
- BDO 1,4-butanodiol
- COV(s) Composto(s) orgânico(s) volátil(eis)
- DBTDL Dibutil dilaurato de estanho
- DEG Dietileno glicol
- DETA Dietileno diamina
- DMBA Ácido dimetilol butanóico
- DMPA Ácido 2,2-bis-(hidroximetil) propiônico
- DPU(s) Dispersão(ões) aquosa(s) de poliuretano(s)
- EDA Etileno diamina
- EG Etileno glicol
- FT-IR Fourrier transform infrared (infravermelho por transformada de Fourrier)
- Func. Funcionalidade
- GPC Gel permeation chromatography (cromatografia de permeação em gel)
- HDA 1,6-hexametileno diamina
- HDI Hexametileno diisocianato
- HDO 1,6-hexanodiol
- HMDI 4,4-diciclohexilmetano diisocianato
- HPLC *High performance liquid chromatography* (cromatografia líquida de alta eficiência)
- HTPB Hydroxyl-terminated polybutadiene (polibutadieno líquido hidroxilado)
- HZ Hidrato de hidrazina ou hidrazina
- IOH Índice de hidroxila
- IP Índice de polidispersão
- IPDI Isoforona diisocianato
- IV Espectroscopia vibracional no infravermelho
- MDI Difenil metano diisocianato
- MEK Meti etil cetona
- MM Massa molar
- *M_n* Massa molar numérica média
- mL Mililitros (medida de volume)

- mg KOH/g
- - g/mol
 - g/mol

M_w	Massa	molar	ponderal	média
-------	-------	-------	----------	-------

- N₂ Gás nitrogênio
- NaOH Hidróxido de sódio
- NMP *N*-metilpirrolidona
- NV Não-voláteis (teor de sólidos)
- PCL Policaprolactona
- PEG Polietileno glicol
- PEPO Poliól poliéster
- PG Polietileno glicol
- pH Potencial de hidrogênio iônico
- PPG Polipropileno glicol
- PTMG Politetrametileno glicol
- PU(s) Poliuretano(s)
- PUD(s) Aqueous polyurethane dispersions (dispersões aquosas de poliuretano)

g/mol

٥С

٥С

mPa.s

- PVC Policloreto de vinila
- T. P. Tamanho de partícula
- TDI Tolueno diisocianato
- TEA Trietilamina
- *T_g* Temperatura de transição vítrea
- THF Tetrahidrofurano
- *T_m* Temperatura de fusão
- TMXDI Meta-tetrametilxileno diisocianato
- δ_{as} Deformação assimétrica
- δ_s Deformação simétrica
- η Viscosidade
- vas Estiramento assimétrico
- v_s Estiramento simétrico
- ω Deformação fora do plano

RESUMO

OLIVEIRA, Vitória M. S. Síntese e caracterização de dispersões aquosas de poliuretano. Porto Alegre. 2008. Dissertação. Programa de Pós-Graduação em Engenharia e Tecnologia de Materiais, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL.

Dispersões aquosas de poliuretano (DPUs) têm sido utilizadas na área de revestimentos, adesivos, selantes, entre outras. Na preparação desses sistemas existem diversas variáveis, tais como: a natureza dos reagentes de partida, a razão NCO/OH, a concentração de grupos iônicos, os graus de neutralização e extensão de cadeia e o tipo de processo de síntese que podem modificar características como massa molar (MM), viscosidade (η) e tamanho de partícula. Este trabalho apresenta a síntese e a caracterização de DPUs utilizando-se dois diisocianatos: tetrametilxileno diisocianato (TMXDI) e isoforona diisocianato (IPDI) além de diferentes polióis. As DPUs foram sintetizadas pelo processo do pré-polímero e da acetona e caracterizadas por espectroscopia vibracional no infravermelho (IV), cromatografia de permeação em gel (GPC), tamanho de partícula e viscosidade Brookfield. O espectro de infravermelho deste material apresentou uma banda intensa em torno de 1730 cm⁻¹ e duas bandas, de intensidade variável, em torno de 1246 cm⁻¹ e 1180 cm⁻¹ características do grupo uretano (NH-COO). O filme polimérico das DPUs sintetizadas possuem massa molar ponderal média em torno de 20000-100000 g/mol. A viscosidade obtida das DPUs possui valores entre 8-100000 mPa.s enquanto o tamanho de partícula médio está entre 61-430 nm.

Palavras-Chaves: dispersão aquosa, poliuretano, TMXDI, IPDI, poliol.

ABSTRACT

OLIVEIRA, Vitória M. S. **Synthesis and characterization of polyurethane aqueous dispersions.** Porto Alegre. 2008. Dissertation. Pos-Graduation Program in Materials Engineering and Technology, PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL.

Aqueous polyurethane dispersions (PUDs) have been used in the area of coatings, adhesives, sealants, among others. In the preparation these systems there are several variables, such as: the nature of raw materials, the NCO/OH rate, the ionic groups contents, the degrees of neutralization and chain extension and the type of process that can change features such as molar mass (MM), viscosity (η) and particle size. This work presents the synthesis and characterization of PUDs using two diisocyanates: tetramethylxylene diisocyanate (TMXDI) and isophorone diisocyanate (IPDI) besides different polyols. The PUDs were synthesized through the processes of pre-polymer and of acetone and were characterized by infrared spectroscopy (IR), by gel permeation chromatography (GPC), by particle size and Brookfield viscosity. The infrared spectrum of this material presented an intense band around 1730 cm⁻¹ and two bands of variable intensity, around 1246 cm⁻¹ and 1180 cm⁻¹ characteristics of the urethane group (NH-COO). The films of PUDs synthesized present average molecular weight around 20000-100000 g/mol. The viscosity of PUDs has value around 8-100000 mPa.s while the average particle size is at 61–430 nm.

Key-words: aqueous dispersions, polyurethane, TMXDI, IPDI, polyol

1. INTRODUÇÃO

No século XX houve uma explosão tecnológica surpreendente. Nunca, em toda a história da humanidade, o mundo se viu diante de tanto desenvolvimento em tão curto espaço de tempo.

Os materiais poliméricos foram uma destas novas tecnologias que vieram nos beneficiar. O poliuretano (PU) é um destes materiais de grande aplicação. O PU é um material polimérico único com uma grande variação das propriedades físicas e químicas e pode ser usado em vários campos, como espumas, revestimentos, adesivos e elastômeros termoplásticos^{1,2}.

Os poliuretanos (PUs) ocupam cerca de 5 % do mercado de plásticos mais vendidos em 2002, comprovando ser um dos produtos mais versáteis empregados pela indústria. Os maiores centros consumidores são a América do Norte, Europa e o Continente Asiático³. A versatilidade das propriedades desses polímeros é devida a grande variedade de monômeros que podem ser utilizados em sua síntese, bem como a rota sintética escolhida. A morfologia de PU pode ser cuidadosamente controlada com a seleção apropriada de materiais de partida e de sua formulação⁴. Sendo assim, a síntese, a caracterização e a investigação de sua estrutura e propriedades tem sido alvo de estudos científicos e tecnológicos há cerca de 70 anos, seja para a melhoria dos processos conhecidos ou no desenvolvimento de novos materiais^{5,6}.

Em função da combinação de diferentes matérias-primas como polióis, isocianatos, aditivos, etc., diversas aplicações foram desenvolvidas para atender os segmentos de mercado (Tabela 1.1)³. Entre as diversas aplicações, as espumas,

revestimentos, adesivos e selantes ocupam lugar de destaque no mercado mundial (Tabela 1.1).

Produto / Aplicação	2001	2010
Colchões e estofados	32	26
Calçados	6	6
Elastômeros & RIM	6	7
Espumas moldadas	15	17
Revestimentos, Adesivos e Selantes	18	19
Construção	17	24
Equipamentos (isolamento térmico)	6	5

Tabela 1.1. Mercado mundial de PU (%) em 2001 e previsão para 2010.

Geralmente, PUs são preparados por métodos que utilizam solventes orgânicos. Os efeitos destes no ambiente são destrutivos e causam uma grande variedade de problemas de qualidade do ar, o que tem levado ao desenvolvimento de técnicas alternativas, como sistemas PUs base água, que é o tema de interesse desta dissertação. Como os PUs não são solúveis em água é necessário inserir em sua cadeia polimérica grupos hidrofílicos que agem como emulsificantes internos⁷⁻¹².

Apesar da pesquisa de sistemas aquosos de PU (DPUs) não ser tão recente, publicações sobre o assunto ainda são restritas, devido às peculiaridades e dificuldades da síntese^{12,13}.

Um dos usos das DPUs é como adesivos e revestimentos para uma ampla gama de substratos em diversas áreas industriais, como a têxtil, automotiva, e coureiro¹³. O conhecimento das propriedades das DPUs, como viscosidade, por exemplo, é muito importante na aplicação desses materiais.

Recentemente, a preocupação com o meio ambiente e novas regulamentações, que possui uma legislação ambiental mais restritiva com relação à emissão de compostos orgânicos voláteis (COVs) (Directiva 99;13; Comunidade Européia, 1999), têm levado ao desenvolvimento de novos produtos com baixa

quantidade ou isentos de solventes orgânicos, além de alto nível de qualidade e performance^{9,11}.

A presente dissertação originou-se da necessidade de ampliar o conhecimento do processo de síntese de DPUs e o estudo de suas propriedades. Este estudo avalia como os parâmetros reacionais influenciam características como viscosidade (η), massa molar (MM) e tamanho de partícula desse material. Para isso, foi realizada a síntese de vários sistemas, variando-se matéria-prima, razão entre os componentes, grau de neutralização, grau de extensão de cadeia, tipo de extensor de cadeia e concentração do polímero (teor de sólidos) e a caracterização desses sistemas.

2. OBJETIVOS

Estudar as propriedades de dispersões aquosas de poliuretano (DPUs) sintetizadas utilizando dois processos diferentes, com variação de condições reacionais.

2.1. Objetivos Específicos

A partir da síntese de DPU pretende-se:

 Avaliar o efeito de alguns parâmetros reacionais, tais como natureza e massa molar do poliol, razão NCO/OH, concentração de grupos iônicos, entre outros, na viscosidade, massa molar e tamanho de partícula da dispersão de poliuretano obtida;

 Avaliar o efeito do método de síntese (método do pré-polímero ou da acetona) sobre as características como massa molar, viscosidade e tamanho de partícula;

 Avaliar o comportamento de viscosidade de algumas dispersões sintetizadas.

3. REVISÃO BIBLIOGRÁFICA

3.1. Introdução

Otto Bayer e colaboradores pela Ferbenindustri na Alemanha, em 1937 foram os primeiros a descobrir PUs em resposta ao desafio competitivo do trabalho de Carothers em poliamidas ou nylons para a E. I. Dupont. A produção em escala industrial de PU iniciou em 1940, mas o crescimento do mercado foi seriamente impactado pela II Guerra Mundial. A visível melhoria nas propriedades elastoméricas de PU esperaram até 1952, quando poliisocianato, especialmente tolueno diisocianato (TDI), tornou-se disponível comercialmente. Entre 1952 – 1954, Bayer desenvolveu diferentes sistemas poliéster-poliisocianato¹¹.

Os PUs são produzidos pela reação de policondensação de um isocianato (di ou polifuncional) com um poliol (polímeros de diversas funções com grupos hidroxila terminais) e outros reagentes como: agentes de cura ou extensores de cadeia, contendo dois ou mais grupos reativos; catalisadores; agentes de expansão; surfactantes; cargas; etc³.

O PU é um material polimérico único com uma grande variedade de propriedades físicas e químicas e constitui uma classe de polímeros muito versátil, pois através de técnicas sintéticas adequadas pode-se obter ampla variedade de materiais para as mais diversas aplicações, como espumas, revestimentos, elastômeros e resinas^{1,3,14-17}. É um material notável por sua alta performance devido a excelente resistência química, a solventes, à abrasão e à hidrólise, além de possuir resistência também ao ataque de fungos, bem como proeminente dureza e tenacidade combinada com flexibilidade à baixa temperatura^{7,18}.

Poliuretanos são polímeros nos quais a estrutura da cadeia principal é composta de segmentos aromáticos ou alifáticos unidos por grupos uretanos polares (Figura 3.1).

Figura 3.1. Ligação uretano.

Onde R₁ é um radical alifático, aromático ou alicíclico derivado do monômero isocianato e R₂ é um grupo mais complexo derivado do componente poliol (poliéter, poliéster, etc.)¹⁹. A ligação uretana (–NH–COO–) é um resultado da reação entre um grupo isocianato (–NCO) do diisocianato e um grupo hidroxila (–OH) do poliol. Se um excesso estequiométrico de diisocianato é utilizado, o resultado são cadeias curtas diuretano que são terminadas em –NCO e o produto é chamado de prépolímero com terminação NCO²⁰. Assim sendo, poliuretanos são geralmente formados pela reação de policondensação de diisocianatos e polióis bi- ou multifuncionais com grupos hidroxilas terminais (Figura 3.2), tais como poliéteres ou poliésteres e dióis de baixa massa molar ou diaminas^{16,19}.

Figura 3.2. Formação de um poliuretano.

Outros polímeros contendo grupos hidroxilas terminais como politioéteres, poliaminoéteres, poliacetais, policarbonatos, polímeros naturais, polissiloxanos e polibutadieno líquido também podem ser empregados, além de outros componentes como extensores de cadeia. A reação básica entre um diisocianato e um poliol produz um polímero poliuretano com a liberação de calor^{21,22}.

A possibilidade da presença de componentes multifuncionais, como por exemplo triisocianatos obtidos do processo de trimerização de monômeros

isocianatos ou o uso de polióis ramificados com mais de duas hidroxilas terminais fornecem poliuretanos tridimensionais com ligações cruzadas¹⁹.

Outro segmento das pesquisas em sistemas de poliuretano está voltado para o desenvolvimento de tecnologias mais limpas, em função da contínua redução nos custos e o controle nas emissões de compostos orgânicos voláteis (COVs), estão aumentando o uso de polímeros base-água, motivando o desenvolvimento de poliuretanos dispersos em água^{9,23}. Sistemas poliméricos obtidos a partir de dispersões aquosas têm tido intensa participação no mercado nos últimos anos e têm sido largamente utilizados em revestimentos, adesivos e tintas por serem menos tóxicos e agressivos ao meio ambiente, pois substituem totalmente ou parcialmente o solvente orgânico por água, além de possuir excelente elasticidade, flexibilidade e resistência ao desgaste e ainda redução dos custos de produção^{4,15,21,24-29}.

O estudo apresentado nesta dissertação refere-se à síntese de dispersões aquosas de poliuretano. Com o objetivo de abordar os temas mais relevantes ao assunto, é apresentada a seguir uma revisão dos fundamentos teóricos deste tema que foram objetivo de estudo deste trabalho.

3.2. Isocianatos

Isocianatos são derivados do ácido isociânico, HN=C=O, no qual grupos alquila ou arila, bem como outros substratos, estão diretamente ligados ao grupo NCO via átomo de nitrogênio³⁰. Isocianatos são líquidos ou sólidos altamente reativos e criam vários produtos quimicamente diferentes quando combinados com substâncias funcionais –OH e –NH. As reações típicas ocorrem sob condições mais brandas, mas para formar uma rede de PU de alta massa molar é necessária a formação de ligações cruzadas^{11,30,31}.

Em relação as diferentes categorias de compostos que reagem com o grupo isocianato pode-se relacionar em ordem de reatividade: aminas alifáticas primárias > aminas aromáticas primárias > álcoois primários > água > álcoois secundários >

álcoois terciários > álcoois aromáticos > ácidos carboxílicos > uréia > uretano > $amida^{32}$.

A Figura 3.3 apresenta um esquema dos produtos principais e secundários que são formados em diferentes quantidades quando diisocianato reage.

Figura 3.3. Esquema das reações típicas de isocianatos com diferentes reagentes¹¹.

Os isocianatos reagem com compostos hidroxilados para formar uretanos (a) e com aminas para formar grupamentos uréia (b). Para álcoois primários e secundários, a reação não catalisada ocorre rapidamente entre 50 – 100 °C, álcoois terciários e fenóis reagem mais lentamente. Tipicamente aminas alifáticas primárias e secundárias e aminas aromáticas primárias reagem rapidamente com isocianato, entre 0 – 25 °C, formando uréia. Similarmente, água reage com isocianato e inicialmente ocorre a formação de um ácido carbâmico instável, o qual se decompõe e produz uma amina (c). Amina é um reagente nucleofílico e posteriormente reage com um isocianato para produzir ligações de uréia (d). A viabilidade de um par de elétrons livre no átomo de nitrogênio do grupo uréia torna seus centros nucleofílicos, os quais podem reagir pela colisão com moléculas de isocianato produzindo biureto (e). Similarmente, isocianatos reagem com uretanos e produzem alofanatos (f), ou seja, na presença de excesso de isocianato, biuretos e alofanatos também podem ser formados. A autocondensação resulta em anéis uretadiona (dímero, g), isocianurato (trímero, h) ou carbodiimida (j). Quando isocianatos reagem com ácidos carboxílicos, os anidridos misturados quebram e formam grupos amida (i)^{11,20,31}. Diferentes reações secundárias ocorrem em menor extensão que as reações primárias e podem também ser identificadas na Figura 3.3³¹.

Reações levando a formação de alofanatos e biuretos são influenciadas pelas condições da reação como temperatura, nível de umidade e tipo de isocianato utilizado. Por exemplo, com três moléculas de diisocianato e uma de água, é produzido um biureto poliisocianato trifuncional³¹, como pode ser visto na Figura 3.4.

$$3 \text{ OCN} - R - \text{NCO} + H_2O \longrightarrow \text{ OCN} - R - \text{NCO}$$

 $3 \text{ OCN} - R - \text{NCO} + H_2O \longrightarrow \text{ OCN} - R - \text{NCO}$

Figura 3.4. Formação de biureto poliisocianato trifuncional³¹.

O conhecimento do processo de poliadição de diisocianatos à polióis é indispensável para controlar mudanças na reatividade dos componentes através da seleção de catalisadores adequados, agentes auxiliares, condições de polimerização e condições de processamento¹⁹.

3.2.1. Reatividade de Isocianatos

A reatividade do grupo isocianato, –N=C=O, é muito alta devido à presença de duas ligações duplas acumuladas. No primeiro estágio da reação, o centro nucleofílico do reagente hidroxilado é adicionado ao átomo de carbono eletrofílico no

grupo carbonila do isocianato, e o próton é simultaneamente transferido para o átomo de nitrogênio¹⁹, como mostra a Figura 3.5.

$$R_{1}-N=C=O + H-O-R_{2} \rightleftharpoons R_{1}-N=C-O^{\ominus} \longleftrightarrow R_{1}-N-C=O \rightleftharpoons R_{1}-NH-C=O$$
$$H-O^{\oplus}-R_{2} H-O-R_{2} O-R_{2}$$

Figura 3.5. Mecanismo da reação entre um álcool e um isocianato³².

No caso de reagentes di- ou poli-funcionais ocorre a poliadição, que é um processo de crescimento de cadeia com estágios individuais irreversíveis¹⁹.

Grupos receptores de elétrons ligados ao grupamento NCO aumentam sua reatividade e os doadores a reduzem, por isso isocianatos aromáticos são mais reativos do que os alifáticos³².

Os isocianatos comumente usados na manufatura de PUs estão indicados no Quadro 3.1.

Geralmente, diisocianatos alifáticos, como o isoforona diisocianato (IPDI), o 4,4-diciclohexilmetano diisocianato (HMDI), são preferidos comercialmente por causa de sua mais baixa reatividade com água do que isocianatos aromáticos, como difenil metano diisocianato (MDI) e o tolueno diisocianato (TDI)⁸. Quando MDI é utilizado como agente formador de ligações cruzadas, essa ligação ocorre através de reação do isocianato com o hidrogênio do uretano. Isto produz uma estrutura com ligações cruzadas, mas também ocorre um aumento no conteúdo de ligações aromáticas³³.

Os isocianatos alifáticos apresentam maior custo e, como já mencionado, são menos reativos que os aromáticos, pois neles não existe o efeito ativador do anel aromático sobre o grupo NCO³². Dentre os mais utilizados estão o 1,6-hexametileno diisocianato (HDI), o IPDI, o HMDI e o *meta*-tetrametilxileno diisocianato (TMXDI). O diisocianato TMXDI não é considerado diisocianato aromático, pois os grupos NCO não estão diretamente conjugados ao anel aromático. O impedimento estérico dos grupos dimetilas diminui a reatividade e reduz as ligações de hidrogênio^{3,34,35}.

Nome comercial / Nome IUPAC	Fórmula Molecular	Fórmula Estrutural
1,6-hexametileno diisocianato (HDI) / 1,6-diisocianato hexano	$C_8H_{12}O_2N_2$	OCN-(CH ₂) ₆ NCO
4,4-diciclohexilmetano diisocianato (HMDI) / 1,1-metileno-bis(4-isocianato ciclohexano)	$C_{15}H_{22}O_2N_2$	OCN-CH2-CH2-CH3
Isoforona diisocianato (IPDI) / 5-isocianato- 1-(metilisocianato)-1,3,3-trimetil ciclohexano	$C_{12}H_{18}O_2N_2$	H ₃ C CH ₃ NCO
<i>meta</i> -tetrametilxileno diisocianato (TMXDI) / bis(isocianato-1-metil-1-etil)-1,3-benzeno	C ₁₄ H ₁₆ O ₂ N ₂	H ₃ C CH ₃ H ₃ C NCO
2,4-tolueno diisocianato (TDI) / 2,4-diisocianato de 1-metil-benzeno	$C_9H_6O_2N_2$	CH ₃ NCO
2,6-tolueno diisocianato (TDI) / 2,6-diisocianato de 1-metil-benzeno	$C_9H_6O_2N_2$	OCN CH3 NCO
4,4-difenil metano diisocianato (MDI) / 1,1-metileno bis(4-isocianato benzeno)	$C_{15}H_{10}O_2N_2$	
2,4-difenil metano diisocianato (MDI) / 1-isocianato-2-(4-isocianato fenil) metilbenzeno	$C_{15}H_{10}O_2N_2 \\$	
2,2-difenil metano diisocianato (MDI) / 1,1-metileno bis(2-isocianato benzeno)	$C_{15}H_{10}O_2N_2$	

Quadro 3.1. Principais diisocianatos utilizados na síntese de PU.

O TMXDI é um diisocianato terciário e devido ao impedimento estérico dos grupos NCO ligados ao átomo de carbono possui baixa reatividade, notavelmente com a água, o que possibilita seu emprego em sistemas reativos dispersos em água; e inibe as reações de formação de grupos alofanato, biureto e isocianurato³ (Figura 3.3). Porém, este isocianato possui uma limitada resistência térmica, pois sua decomposição inicia próximo de 190 °C¹⁰. Substituintes volumosos próximos do sítio de reação diminuem a velocidade de reação. Assim, os grupos NCO do IPDI que são ligados a átomos de carbono primário e secundário possuem reatividades diferentes³.

Na síntese de polímeros, os isocianatos aromáticos conferem ao produto final a desvantagem de absorver radiação ultravioleta, que produz alteração de cor ou descoloração. Estas características são críticas na área de revestimentos, uma vez que a radiação pode não somente afetar a superfície, mas penetrar nos materiais, afetando outras propriedades, causando rachaduras e descascamentos. Ao contrário de diisocianatos alifáticos, que são usados em materiais que requerem estabilidade à luz solar, como por exemplo, na área de revestimentos^{30,32,33,36}.

Diisocianatos alifáticos são mais comumente utilizados em aplicações onde a performance em longo prazo de isocianatos aromáticos não é aceitável³⁰.

3.3. Polióis

As propriedades do poliuretano também dependem da estrutura molecular do loilog utilizado na sua síntese. influenciando em propriedades como flexibilidade/dureza e características de Polióis de processamento. alta funcionalidade promovem a formação de ligações cruzadas, o que confere aos materiais finais propriedades como rigidez, dureza, e resistência química. Polióis alifáticos acrílicos conferem aos materiais boa estabilidade à luz, enquanto grupos aromáticos apresentam desvantagem neste sentido, porém boa resistência química. Assim a escolha do poliol a ser utilizado é igualmente relevante à escolha do diisocianato³².

O componente poliol de PUs pode ser um poliéter polifuncional, como por exemplo, polietileno glicol (PEG), polipropileno glicol (PPG), politetrametileno glicol (PTMG), um poliol poliéster (PEPO), um poliol acrílico, óleo de mamona, ou uma mistura destes. Uma grande variedade de polímeros ramificados ou com ligações cruzadas pode ser formada dependendo da funcionalidade do reagente hidroxilado, ou seja, o conteúdo de hidroxila por molécula do poliol. Os polióis mais simples são glicóis como o etileno glicol, 1,4-butanodiol (BDO) e 1,6-hexanodiol (HDO)¹¹. Outros tipos de polióis, tais como policarbonatos, policaprolactonas e poliaminas podem ser usados na síntese de uretanos, quando se requerem propriedades específicas características destes materiais reagentes³². A Figura 3.6 apresenta estruturas de alguns polióis utilizados na síntese de PUs. Dependendo do campo de aplicação,

polióis poliésteres ou polióis poliéteres têm sido geralmente utilizados como segmento flexível em dispersões aquosas de PU³⁷.

Figura 3.6. Estruturas de alguns polióis utilizados na síntese de PUs.

Das ligações presentes em poli(éster uretanos), a mais suscetível à hidrólise é a ligação éster que converte a ácido carboxílico e álcool, o que leva a uma significante redução da massa molar média e, conseqüentemente, defasagem das propriedades mecânicas. Grupos éteres resistem a hidrólise muito melhor que grupos ésteres, o que faz com que poli(éter uretano) seja mais estável em ambiente aquoso^{19,37-40}. Este fato foi verificado também por Brown et al., que constataram que a viscosidade intrínseca dos segmentos rígidos de poliéteres uretanos não mudou em ambiente úmido ou seco. Poliésteres poliuretano não diminuem sua viscosidade intrínseca quando colocado sob vácuo, mas em ar úmido ou sob vapor de água reduz a viscosidade intrínseca na mesma proporção⁴⁰.

Para elastômeros PU, polióis poliésteres lineares de massa molar 2000 g/mol são preferidos. Polióis poliésteres ramificados, formulados de glicóis mais funcionalizados, são usados em espumas e revestimentos. Já os Poli(caprolactona dióis) são usados na manufatura de elastômeros termoplásticos poliuretanos com aumento da estabilidade hidrolítica⁴¹. Caprolactonas trifuncionais fornecem tenacidade, dureza, resistência química/solventes, e resistência à umidade à DPU^{32,34,41}.

Poliésteres alifáticos saturados como poliadipatos de etileno glicol (EG) (Figura 3.7), dietileno glicol (DEG) ou propileno glicol (PG) são usualmente utilizados como poliésteres lineares no processo de produção de elastômeros poliuretanos¹⁹.

$$H - O - CH_2 - CH_2 - O - CO - (CH_2)_4 - CO - O - CH_2 - CH_2 - OH_2 - OH_2 - CH_2 - OH_2 - OH_2$$

Figura 3.7. Poliéster linear derivado de poliadipato de EG.

As características dos polióis poliésteres também dependem da escolha dos materiais precursores, da massa molar, da temperatura de transição vítrea (T_g) e da funcionalidade. Devido à polaridade do grupo carbonila, os poliésteres apresentam forças intermoleculares mais intensas, sendo assim conferem aos produtos finais propriedades como resistência à ruptura e ao impacto, resistência a solventes e estabilidade à luz. No entanto, os poliésteres apresentam como desvantagem pequena estabilidade hidrolítica e degradação frente à álcalis⁴².

Visto que cada vez mais é dada atenção à necessidade de biodegradabilidade de poliuretanos, dióis de policaprolactona (Figura 3.6) tem ganhado popularidade como material de partida na manufatura de alguns polímeros¹⁹. Polióis deste tipo conferem viscosidade menor que oligoésteres

derivados de ácidos dicarboxílicos e glicóis. Eles são mais caros que os poliésteres tradicionais, mas produzem poliuretanos com propriedades mecânicas melhores¹⁹. Apresentam vantagens significantes sobre outros polióis poliésteres e poliéteres para a preparação de elastômeros uretanos e adesivos. Conferem ao PU excelente adesão a uma ampla variedade de substratos, além de produzir PUs com as seguintes características: boa resiliência, excelente estabilidade hidrolítica, resistência à abrasão, pouca cor, flexibilidade à baixa temperatura e força adesiva a alta temperatura⁴³.

Recentemente tem-se dado atenção a mais um tipo de poliol poliéster aplicável na produção de PU, os policarbonatos alifáticos (Figura 3.6), que são obtidos de carbonatos alquilenos cíclicos¹⁹. Esses polióis são adequados quando se requer dureza do filme, resistência à água e intempéries e boa performance mecânica, em geral⁴⁴.

A grande flexibilidade na seleção de reagentes possibilita a obtenção de poliuretanos com características físicas e químicas diversificadas. Há, ainda, a possibilidade de produzir polímeros lineares ou reticulados, contendo não só ligações uretanas, que são a base de sua classificação, mas também outros tipos de ligações, provenientes de extensores de cadeia responsáveis pelo aumento do peso molar do poliuretano¹³.

3.4. Extensores de cadeia

Extensores de cadeia são utilizados para aumentar a massa molar de polímeros. Os comuns usados na produção de PU são dióis ou diaminas. São usados para aumentar o conteúdo uretano no polímero final no caso do 1,4-butanodiol ou aumentar a massa molar do polímero no caso das aminas. A molécula de um extensor de cadeia pode ser relativamente curta ou longa, aromática ou alifática, hidrofílica ou hidrofóbica, de acordo com as propriedades que sejam requeridas. Devido à baixa massa molar e sua reatividade com isocianatos, os extensores de cadeia influem diretamente nas propriedades finais do polímero, como características de processamento, viscosidade e reologia³².

Os dióis aplicados como extensores de cadeia são os mais utilizados para a produção de elastômeros PU. Este grupo compreende etileno glicol (EG), dietileno glicol (DEG), 1,4-butanodiol (BDO) e 1,6-hexanodiol (HDO). Por outro lado, diaminas, como 1,2-etilenodiamina (EDA), conferem tenacidade com elongação ao DPU, o hidrato de hidrazina (HZ) confere maciez, o dietileno diamina (DETA) fornece dureza e resistência química e à solvente e o 1,6-hexametilenodiamina (HDA) pode também ser usado como extensor de cadeia, mas nesse caso, as cadeias uretanas são extendidas através de grupos uréia. Aminas alifáticas são freqüentemente usadas para extender cadeias de PUs iônicas^{19,34}. A estrutura de alguns extensores de cadeia pode ser visualizada na Figura 3.8.

Figura 3.8. Estrutura de alguns extensores de cadeia.

Os trabalhos de Nanda e Wicks⁹ e de Yen, Tsai e Hong²⁸ verificaram que um maior conteúdo de extensor de cadeia leva a um maior tamanho de partícula, o que diminui a viscosidade da dispersão^{9,28}.

Em um processo típico de síntese de DPU, o processo do pré-polímero, geralmente, a extensão de cadeia é feita depois da dispersão do pré-polímero PU em água, pois de outro modo o pré-polímero de alta viscosidade resultante não poderia ser disperso. Portanto, PUs com grupos isocianatos terminais são dispersos em água e subseqüentemente reagem com diaminas ou compostos dihidroxilados. Neste método, a extensão de cadeia é limitada a certas porcentagens, pois a alta extensão de cadeia leva a uma rede com alta massa molar resultando em instabilidade da dispersão⁸.

3.5. Cadeia do poliuretano

As propriedades mecânicas de PUs, quando comparadas com as de outros elatômeros, são atribuídas predominantemente como um resultado de uma morfologia de duas fases: os segmentos rígidos e segmentos flexíveis. Considera-se

que estes polímeros são copolímeros em bloco segmentados, arranjados alternadamente^{19,20,23,25,29,45,46}.

A estrutura de PUs segmentados pode ser representada esquematicamente, como mostra a Figura 3.9:

Figura 3.9. Representação esquemática de PUs segmentados¹⁹.

As propriedades de DPUs são geralmente determinadas pela interação entre os segmentos rígidos e flexíveis. Sabe-se que variáveis composicionais e condições de processo afetam o grau de separação de fase, a mistura das fases, a organização dos domínios rígidos e as subseqüentes propriedades. Nas últimas décadas, pesquisadores têm variado sistematicamente a composição química, a estrutura e a massa molar dos componentes dos segmentos rígidos e flexíveis para modificar as propriedades do poliuretano, bem como para conhecer a relação estrutura-propriedade deste material^{10,11,16,17,19,20,23,25,45,47}.

3.5.1. Morfologia

Tipicamente os segmentos flexíveis são compostos de um polímero flexível (geralmente poliol polieter ou poliéster)^{20,46}, com uma T_g bem abaixo da temperatura ambiente, conferindo características elastoméricas ao polímero^{17,23}. Os segmentos rígidos são geralmente formados pela reação de um isocianato com um diol de cadeia curta (extensor de cadeia), e tem uma estrutura rígida e cristalina (geralmente uretanos aromáticos)^{17,46,48}. Em geral, os segmentos flexíveis, relativamente não polares e de baixo ponto de fusão, são incompatíveis com os

segmentos rígidos, polares e de alto ponto de fusão. Como conseqüência desta incompatibilidade ocorre uma separação de fases (segregação) sendo formadas microfases unidas por ligações covalentes^{3,17,49}. Esta segregação das fases será maior, quanto menor for a polaridade dos segmentos flexíveis. Assim a segregação será maior nos PUs de hidrocarbonetos, seguida dos PUs de poliéter e menor nos PUs de poliéster. A matriz de PU consiste de segmentos flexíveis enovelados e de segmentos rígidos agrupados e fixados por interações físicas (Figura 3.10)³.

Figura 3.10. Esquema das estruturas de domínios³.

Essa separação de microfase resultante leva a uma aglomeração dos segmentos com uma morfologia que é afetada pela composição, pela massa molar dos segmentos, pela história térmica e efeito do solvente^{3,50,51}.

3.5.2. Efeito dos segmentos rígidos

As interações entre as cadeias, principalmente as ligações hidrogênio entre os segmentos rígidos contribuem para as excelentes propriedades dos PUs. As propriedades termo-mecânicas dos PUs lineares segmentados são substancialmente diferentes das apresentadas pelos produtos com ligações cruzadas. Com a aplicação de forças mecânicas, podem ocorrer mudanças na orientação e mobilidade das estruturas dentro dos domínios dos segmentos rígidos, dependendo da temperatura. Neste processo, as ligações de hidrogênio iniciais são rompidas e outras, energeticamente mais favoráveis, são formadas. Ocorre então, uma mudança na estrutura do PU na direção da tensão aplicada (Figura 3.11)³. Como conseqüência, a tensão é mais bem distribuída e como resultado, a resistência do material é aumentada. Este efeito contribui para o aumento da tensão de ruptura, alongamento, resistência ao rasgo e deformações permanentes³.
Representações Esquemáticas das Estruturas de PU Segmentado Linear

I - Estrutura relaxada

II - Estrutura estirada a 200% III - Estrutura estirada a 500%

Figura 3.11. Efeito da tensão aplicada na estrutura de PU segmentado linear. a) Segmento flexível, b) Segmento rígido, c) segmento flexível cristalizado pelo esforço³

A faixa de fusão dos domínios dos segmentos rígidos determina a estabilidade térmica dos PUs lineares segmentados e a característica de termoplástico. Com o aumento do tamanho do segmento rígido a faixa de fusão também aumenta e com o uso de diferentes extensores de cadeia a faixa de fusão pode ser intencionalmente modificada. Com o aumento do teor de segmentos rígidos o PU mostra um aumento na dureza e no módulo de Young. Níveis acima de 60 % em peso levam a uma mudança no comportamento do PU que passa de elastomérico para um plástico quebradiço de alto módulo³.

3.5.3. Efeito dos segmentos flexíveis

A composição química e a distribuição de massa molar do bloco flexível incorporado influenciam as propriedades macroscópicas resultantes do polímero. Os efeitos dos segmentos flexíveis na separação de fases são também importantes na determinação da morfologia e das propriedades do copolímero⁵¹.

A mobilidade das cadeias macromoleculares depende da natureza química e do tamanho dos segmentos flexíveis. Para a obtenção de boas propriedades elastoméricas, especialmente resistência ao impacto, o segmento flexível deve ser amorfo e possuir uma temperatura de transição vítrea suficientemente baixa. Em produtos contendo grandes teores de segmento rígido (>50 %), a mobilidade do segmento flexível é bastante reduzida. Como resultado, a flexibilidade a frio é afetada. A tensão de ruptura, o módulo a 300 % e o rasgo são bastante afetados pelo ponto de fusão (T_m) do segmento flexível. O aumento do comprimento das cadeias dos segmentos flexíveis e o decréscimo do teor de segmentos rígidos, bem como a linearidade das cadeias do PU, favorecem a cristalização da fase flexível³.

Como mencionado, a deformação e as propriedades térmicas dos PUs são fortemente afetadas pela massa molar dos segmentos flexíveis. Adicionalmente, variando a estrutura química do segmento flexível altera-se sua solubilidade e assim a compatibilidade entre o segmento flexível e o segmento rígido em polímeros PU. Da mesma forma, aumentando a massa molar do segmento flexível com uma funcionalidade constante (i.e. aumentando a massa molar por grupo funcional ou massa equivalente) resulta em um maior grau de separação de fase devido ao aumento na incompatibilidade entre os segmentos⁵¹. Outros trabalhos mostram que aumentando a funcionalidade do segmento flexível aumenta significativamente a resistência mecânica do PU e reduz o grau total de separação de fase desenvolvido nesses materiais^{11,51}.

O aumento da T_g do PU quando comparada com a T_g do poliol puro, o qual possui menos segmentos rígidos, em parte é devida à diminuição da mobilidade dos segmentos flexíveis por causa de sua conexão com os grupos rígidos. A penetração de unidades de segmentos rígidos isolados na fase dos segmentos flexíveis também contribui para o efeito na T_g^{36} .

As tentativas mais importantes do estudo de sistemas de polímeros em bloco (segmentados) têm centrado no problema termodinâmico de predizer a separação das microfases e a morfologia resultante⁴⁸.

3.6. Dispersões aquosas de poliuretano

Uma dispersão aquosa de poliuretano (DPU) é um sistema coloidal binário no qual as partículas do PU são dispersas em uma fase aquosa contínua. O tamanho de partícula tende a ficar entre 20 – 200 nm, e as partículas têm alta energia superficial, resultando numa elevada tendência para formação do filme depois da evaporação da água. A estabilidade coloidal (tempo de prateleira) do DPU é influenciada pela sua distribuição do tamanho de partícula. Basicamente, PUs são hidrofóbicos e o grau de hidrofilicidade é um dos fatores chaves determinantes da distribuição do tamanho de partículas devem ter um tamanho relativamente regular para formar uma DPU estável^{7,11,52}.

O polímero PU pode ser disperso em água com a ajuda de um colóide protetor, um emulsificante externo ou pela modificação estrutural. Os primeiros dois métodos sofrem algumas desvantagens, porque requerem uma elevada força de cisalhamento para dispersar o polímero, que resulta em partículas grosseiras e em baixa estabilidade da dispersão. Por outro lado, por modificação estrutural, isto é, modificando a cadeia hidrofóbica pela inserção de grupos hidrofílicos, que são chamados de emulsificantes internos^{7,10,11,27}, tem-se vantagem sobre os outros métodos:

• O PU modificado pode ser disperso sob circunstâncias mais brandas;

• Dispersões com tamanho de partícula menor são obtidas e a estabilidade da dispersão é consequentemente aumentada;

Os filmes formados por essa dispersão apresentam maior resistência a solventes e à água.

Os grupos iônicos presentes no PU fornecem a habilidade de dispersar PUs em água, normalmente produzindo dispersões estáveis. Em água, o efeito estabilizador dos sítios iônicos é devido à formação de diminutas esferas que contém um núcleo de segmentos agregados hidrofóbicos e uma camada fronteiriça carregando os grupos iônicos. O resultado é um surpreendente hidrosol ou dispersão aquosa¹⁰.

Dependendo do tipo de emulsificante interno incorporado, as dispersões podem ser classificadas como aniônicas, catiônicas (Figura 3.12) ou não-iônicas^{7-9,11,27,53}. As dispersões aniônicas predominam comercialmente e o emulsificante utilizado é um diol com um grupo iônico (carboxilado, sulfonado, ou sal de amônio quaternário)¹¹. Esses grupos hidrofílicos são neutralizados formando sais⁵³.

Figura 3.12. Diagrama esquemático das micelas formadas por (a) poliuretanos catiônicos e (b) poliuretanos aniônicos em água¹¹.

Estudos recentes demonstraram que as propriedades de poliuretanos iônicos são influenciadas pela quantidade de grupos iônicos, a razão molar dos segmentos rígidos e flexíveis, natureza e massa molar do macroglicol, o tipo de extensor de cadeia, o grau de neutralização dos grupos iônicos ou a natureza dos contra-íons, entre outros fatores, desde determinar a interação dos segmentos rígidos e flexíveis, bem como, as interações entre grupos iônicos^{9,10,20}. A influência destes parâmetros na dispersão PU será discutida posteriormente.

3.7. Síntese de dispersões poliuretano

Vários processos foram desenvolvidos para a síntese de dispersões poliuretano. Os mais importantes são o processo do pré-polímero e o processo da acetona. As principais diferenças entre estes dois métodos são as etapas de extensão de cadeia e de dispersão^{9,11}.

3.7.1. Processo do pré-polímero

Neste processo, um polímero de massa molar média (pré-polímero) é sintetizado pela reação de um poliol com um excesso molar de diisocianato. Na mistura da reação é adicionado um emulsificante interno, geralmente o ácido 2,2-bis-(hidroximetil) propiônico (DMPA)^{9,19,54} (Figura 3.13), o ácido dimetilol butanóico (DMBA) também é utilizado.

Figura 3.13. Estrutura molecular do DMPA.

Normalmente, uma pequena quantidade de solvente orgânico (até 15 % em massa; ex. *N*-metilpirrolidona (NMP)), é usado para diminuir a viscosidade do meio e solubilizar o emulsificante interno. Os grupos carboxílicos (COOH) são então neutralizados com trietilamina (TEA), hidróxido de sódio (NaOH) ou sal de amônio quaternário (NH₄⁺R⁻). A etapa final é a dispersão do pré-polímero em água seguida de extensão de cadeia^{9,19}.

Neste método os grupos NCO restantes reagem criando segmentos rígidos uniformes contendo uma unidade do extensor e duas unidades de isocianato. Isto resulta em blocos rígidos de tamanho pequeno e uniforme (Figura 3.14). Esta regularidade molecular confere aos materiais propriedades melhoradas, tais como resistência ao corte e resistência à ruptura³³.

Figura 3.14. Estrutura da cadeia do PU obtido através do processo do pré-polímero Adaptação de 14.

3.7.2. Processo da acetona

Depois do processo do pré-polímero, o processo da acetona é o mais utilizado para a síntese de dispersões poliuretano. Inicialmente, o pré-polímero é preparado da mesma maneira que no método do pré-polímero, no entanto, acetona é adicionada no lugar da NMP e em uma quantidade relativamente maior. A cadeia do pré-polímero é extendida com um diol ou uma diamina, os grupos iônicos são neutralizados e a solução do pré-polímero é disperso por adição lenta de água. Sendo completada a dispersão, a acetona é retirada e um produto contendo muito pouco ou nenhum COV é obtido⁹.

Nos dois processos de síntese de dispersões aquosas de poliuretano apresentados, o teor de NCO final, geralmente, é controlado pelo método *n*-dibutilamina^{7,47,54-56}.

3.8. Influência dos parâmetros reacionais nas propriedades de DPUs

3.8.1. Segmentos rígidos e flexíveis

Nos elastômeros de PU a estabilidade térmica dimensional é dependente da natureza dos segmentos rígidos, pois o seu ponto de fusão é maior que o do flexível. As diferentes temperaturas de fusão influenciam a temperatura de distorção

térmica e o tamanho dos cristais depende da concentração dos segmentos rígidos. Nos segmentos rígidos feitos com dióis alifáticos há dependência entre o número de grupos metilênicos da cadeia do diol e as propriedades do elastômero de PU. Esta propriedade de *zig-zag* é resultado de diferenças de empacotamento das cadeias alterando a capacidade de ligações hidrogênio. O uso de extensores de cadeia, possuindo número par de átomos de carbono, resulta em propriedades superiores.

As propriedades como elasticidade, comportamento em baixas temperaturas, tensão de ruptura, etc, bem como as propriedades químicas são determinadas principalmente pelos segmentos flexíveis amorfos do elastômero de PU. A estabilidade química é função da estabilidade das matérias-primas empregadas. Por esta razão, elastômeros de PU feitos com poliol poliéster, cuja cadeia pode ser hidrolisada, têm menor resistência à hidrólise. Segmentos flexíveis hidrófobos, à base de polibutadieno líquido hidroxilado, dotam o PU de excepcional resistência química e à hidrólise³.

Um PU preparado com um poliol linear de cadeia longa como o poli(adipato de 1,4-butano diol), um diisocianato (MDI) e um extensor de cadeia (1,4-butano diol) apresenta a estrutura representada na Figura 3.15. Os segmentos flexíveis apresentam-se normalmente enovelados e se alternam com as estruturas dos segmentos rígidos³.

A razão entre os segmentos rígidos e flexíveis é definida como uma razão entre a massa do diisocianato e a massa do poliol na formulação de partida²⁰. Quando a massa molar numérica média (M_n) do segmento flexível é aumentada, a tensão interna e o módulo de Young aumentam, isso é devido à cristalização do segmento flexível²⁴.

Figura 3.15. Representação da cadeia de um PU segmentado. a) segmentos flexíveis e b) segmentos rígidos³.

Os segmentos rígidos no pré-polímero apresentam um papel importante na determinação da viscosidade da dispersão. Dispersões baseadas em IPDI exibem pronunciados desvios do comportamento de fluidos Newtonianos, nestes últimos a viscosidade não varia com a taxa de cisalhamento. O emaranhamento das cadeias e as ligações de hidrogênio entre o uretano e as ligações uréia podem ser mais rapidamente formados em pré-polímeros baseados em IPDI devido à flexibilidade das cadeias^{53,57}.

Geralmente, a tensão interna e o módulo de Young aumentam com o aumento no conteúdo de segmento rígido e com a densidade de ligações cruzadas enquanto que a elongação até ruptura aumenta com o conteúdo do segmento flexível. Como a dureza e a resistência dos filmes são dominadas pelo segmento rígido, o aumento no conteúdo do segmento rígido fornece maior força intermolecular e mistura de fases (interação entre segmentos rígidos e flexíveis)^{7,23,24}.

3.8.2. Razão NCO/OH

Com excesso de isocianato, as ligações hidrogênio entre os segmentos rígidos são suplementadas com ligações cruzadas alofanato e ou biureto. Com o aumento da densidade de ligações cruzadas, os elastômeros de PU geralmente mostram decréscimo na resistência ao rasgo, flexão e alongamento na ruptura, e aumento da resistência a solventes, hidrólise, e deformação permanente³.

Por outro lado, os trabalhos de Delpech e Coutinho²³ mostraram que um aumento da razão NCO/OH leva a uma diminuição do comprimento do segmento flexível, o que resulta em um aumento no valor do módulo de elasticidade e conseqüentemente na resistência mecânica do material devido ao aumento no grau de interação intercadeias via ligação de hidrogênio, o que leva a formação de filmes mais rígidos. Por outro lado, a elongação até o rompimento diminui quando a razão NCO/OH aumenta e o comprimento do segmento flexível diminui²³. Este comportamento é mostrado na Figura 3.16²³.

Figura 3.16. Curvas tensão-deformação de filmes obtidos de dispersões aquosas de PU²³.

A massa molar numérica média (M_n) e, conseqüentemente, a viscosidade Brookfield diminui com o aumento da razão NCO/OH. Quando o pré-polímero contém mais segmentos flexíveis de poliol de baixa massa molar, a massa molar numérica média diminui e a viscosidade aumenta devido ao menor conteúdo de segmentos flexíveis. Segmentos flexíveis longos tornam as cadeias uretanas mais flexíveis, por isso, a viscosidade do uretano é diminuída²⁰.

O trabalho de Li e Sun²⁴ constatou que o tamanho de partícula diminui quando a razão NCO/OH é menor que 1,5. No entanto, quando a razão NCO/OH é aumentada para 1,7, um tamanho de partícula maior é obtido e quando esta razão é maior que 1,7 é observado que o tamanho de partícula diminui rapidamente, o que leva a uma maior viscosidade²⁴.

Otts e Urban⁴ estudaram a influência da razão NCO/OH sob diferentes graus de umidade na morfologia de filmes de DPUs e constataram que um aumento na razão NCO/OH resulta em uma maior T_g para uma dada umidade, como fica evidente na Figura 3.17, presumivelmente devido a uma maior extensão de ligações cruzadas e ligações de hidrogênio dos grupos uretano/uréia. Também constataram que não há evidência de transições térmicas múltiplas, indicando uma menor separação de fases. Durante esses estudos, foi observado que, quando razões NCO/OH maiores foram empregadas, filmes visivelmente opacos foram produzidos⁴.

Figura 3.17. Temperatura de transição vítrea (*Tg*) de filmes de DPUs em função da razão molar NCO/OH durante as ligações transversais para umidades relativas selecionadas. ◆, 32% de umidade relativa; ■, 52% de umidade relativa; ●, 75% de umidade relativa⁴.

Este grupo observou também que com o aumento da razão NCO/OH, características de superfície maiores e mais irregulares estão presentes, a escala total de características morfológicas estruturais é também maior para espécies em que as ligações cruzadas ocorreram com 82 % de umidade relativa⁴.

O efeito da razão NCO/OH é também observado por infravermelho (IV), onde com uma razão NCO/OH maior há um aumento das concentrações de uréia e uretano, relativo às bandas 1647 e 1560 cm⁻¹. Como os grupos funcionais uréia e uretano são produtos de reações de ligações cruzadas, razões NCO/OH maiores levam a maior conteúdo de uretano⁴.

3.8.3. Conteúdo iônico

O emulsificante interno (grupo iônico) mais citado na literatura é o ácido 2,2- bis-(hidroximetil) propiônico (DMPA), cuja fórmula estrutural já foi mostrada na Figura 3.13^{1,7-13,54,58-64}.

O conteúdo iônico é o principal fator para controlar o tamanho de partícula da dispersão. Na presença de DPUs estes grupos são tipicamente sais iônicos, por exemplo, ânions carboxilatos [$-COO^{-}HN^{+}(C_{2}H_{5})_{3}$]. O tamanho de partícula diminui com o aumento na concentração de DMPA assim como a área superficial global da fase dispersada aumenta para acomodar os grupos adicionais de sal na interface⁹.

Concorrentemente há um aumento no número de partículas e um aumento na viscosidade apesar da quantidade de polímero em si não ter mudado. A quantidade relativa de água associada com a superfície iônica da partícula aumenta, aumentando consequentemente o volume efetivo das partículas. Para concentrações de DMPA acima de 5 % não há diminuição adicional no tamanho de partícula, talvez devido à inabilidade do sistema para acomodar eficazmente grupos adicionais na estrutura⁹. Este fenômeno pode ser visualizado na figura 3.18, que mostra o efeito do conteúdo de DMPA no tamanho de partícula e na viscosidade de DPUs.

Figura 3.18. Efeito da concentração de DMPA no tamanho de partícula e na viscosidade da DPU⁹.

Estudos recentes têm mostrado que o aumento no conteúdo iônico produz um decréscimo no tamanho de partícula do DPU e um aumento na dureza, na T_g e na tensão interna, bem como uma diminuição na massa molar e elongação até ruptura^{8-10,24,28}. O aumento da tensão interna pode ser atribuído às forças de Coulomb geradas pela ionização interativa entre as cadeias macromoleculares, devido ao aumento do conteúdo iônico²⁴

Geralmente, o tamanho de partícula médio da dispersão aumenta com a diminuição do conteúdo iônico. Quando o tamanho de partícula aumenta, a viscosidade da dispersão diminui devido ao menor volume total efetivo da dispersão. No entanto, as DPUs são estabilizadas pela formação de dupla camada elétrica.

Quando o conteúdo iônico diminui, a espessura da dupla camada elétrica diminui e a expansão da partícula em água também diminui. Essa coletividade reduz o volume hidrodinâmico efetivo da partícula e por isso a viscosidade da dispersão diminui⁷.

Subramani et al.⁸ estudaram polióis de massas molares diferentes e constataram que a viscosidade de dispersões preparadas com o poliol politetrametileno glicol (PTMG) de massa molar 2000 g/mol (PTMG 2000) foram menores que aquelas com PTMG de massa molar 1000 g/mol (PTMG 1000). Na DPU sintetizada com PTMG 2000 o conteúdo de DMPA é menor do que aquele para a DPU sintetizada com PTMG 1000, isto leva a uma diminuição no conteúdo iônico total, como conseqüência o tamanho de partícula aumenta, levando a uma diminuição da viscosidade, porque o volume efetivo da partícula diminui⁸.

O conteúdo iônico afeta a viscosidade da dispersão em dois caminhos. Devido ao menor conteúdo iônico o tamanho de partícula da dispersão aumenta, e então, a viscosidade da dispersão diminui devido à diminuição no volume efetivo da partícula dispersa. Quando o conteúdo iônico é baixo a repulsão entre os grupos iônicos diminui levando a menor viscosidade⁸.

Pérez-Limiñana et al.¹⁰ mostraram que para uma DPU contendo 5 % em peso de DMPA a distribuição do tamanho de partícula em número é estreita, a maioria das partículas são pequenas (entre 85–92 nm) como mostra a Figura 3.19(a). Contudo, existe ma pequena fração com partículas em tamanho maiores como mostra a distribuição de tamanho de partícula em volume (Figura 3.19(b))¹⁰.

Estudos recentes constataram que no processo do pré-polímero, um mínimo de 4 % em massa de DMPA é necessário para uma dispersão estável, porém quando se utiliza o processo da acetona, uma dispersão estável pode ser conseguida com somente 2 % em massa de DMPA. A maior concentração de DMPA requerida para o processo do pré-polímero poderia ser devido à (1) uma diminuição na atividade superficial dos grupos carboxilatos na superfície das partículas de PU causada pela NMP ou (2) uma diminuição na estabilidade das partículas resultante de uma baixa massa molar do pré-polímero⁹.

Figura 3.19. Distribuição do tamanho de partícula (a) em número e (b) em volume de DPU contendo 5% de DMPA. ++++ medida 1; ++++- medida 2.¹⁰

3.8.4. Grau de extensão de cadeia

A característica elastomérica do polímero é maior quando não estão presentes na cadeia, grupos uréia, i.e., quando o extensor de cadeia é um glicol e não uma diamina²³.

Nanda e Wicks⁹ mostraram que o tamanho de partícula diminui com um aumento na viscosidade quando se reduz a extensão de cadeia de 90 % para 0 % (Figura 3.20).

A explicação mais provável ao fato da maior viscosidade do polímero é o aumento do estresse da interface durante a inversão de fase. Sendo viscosidade da fase dispersa (fase do polímero) muito superior que a viscosidade da fase contínua (acetona mais água) resulta em menor deformação de fase com aumento na massa molar e então partículas maiores⁹.

Figura 3.20. Efeito da extensão de cadeia no tamanho de partícula e na viscosidade da DPU. Préneutralização, 100%; DMPA, 3% em massa⁹.

No processo do pré-polímero o tamanho de partícula e a viscosidade permanecem aproximadamente constantes com o aumento no grau de extensão de cadeia. Isso é devido à adição do pré-polímero na água seguida de extensão de cadeia depois da dispersão. Então, a etapa de extensão de cadeia não afeta a formação das partículas⁹.

3.9. Propriedades reológicas, viscosidade e tamanho de partícula

3.9.1. Propriedades reológicas

A reologia descreve a deformação de um corpo sob a influência de tensões. O comportamento de fluxo, ou reologia é importante para entender o processamento de um material^{29,57,59,60}.

Três tipos de comportamento de fluxo de fluidos são mostrados em uma curva de viscosidade (Figura 3.21), são eles:

• Comportamento Newtoniano: a viscosidade não varia com a taxa de cisalhamento (a).

 Comportamento Pseudoplástico: a viscosidade diminui com a taxa de cisalhamento, porém a altas taxas apresenta comportamento de fluido Newtoniano (b).

• Comportamento de Líquido Dilatante: a viscosidade aumenta com a taxa de cisalhamento, porém a altas taxas apresenta comportamento de fluido Newtoniano (c)⁵⁷.

Revestimentos de DPU precisam ter altas viscosidades na região de baixa taxa de cisalhamento para evitar a precipitação e instabilidade durante o armazenamento e transporte (parte I). Por outro lado, eles precisam ter baixas viscosidades na região de taxa de cisalhamento que corresponde a aplicação (parte III). Esse comportamento é chamado de pseudoplástico. Zonas de taxa de cisalhamento típicas (partes I – III) são mostradas na Figura 3.21²⁹.

Considerando a viscoelasticidade, as formulações com resina flexível possuem viscosidade e módulo elástico maior que aquelas contendo resinas rígidas, o que pode ser associado à dureza da resina. Considerando acabamento para couros, a dureza da resina aumenta a resistência em testes de fricção, mas diminui a viscosidade e a viscoelasticidade da formulação, bem como os valores de adesão do filme final^{61,63}.

As propriedades de fluxo de DPUs são governadas por forças interpartículas termodinâmica e hidrodinâmica. As forças termodinâmicas aparecem primariamente da carga da partícula e de emaranhamento e caudas do polímero²⁷.

Esses sistemas são compostos de partículas flexíveis às quais o tamanho é uma função da força iônica e da concentração da dispersão. As partículas de PU se deformam e se orientam na direção do cisalhamento. Em dispersões diluídas, partículas PU deformam e se alinham na direção de cisalhamento a uma taxa de cisalhamento de 10 s^{-1 27}.

Flickinger et al.²⁷ investigaram DPUs, que contém partículas altamente carregadas sugerindo que interações repulsivas sejam importantes. Adicionalmente, essas partículas deformam sob cisalhamento. Como o sistema aumenta a força iônica, a partícula diminui, tornando-se menos deformável e ultimamente tornam-se atrativas e agregadas. O número de cargas por partícula pode ser estimado por conversão de mols de grupos de ácidos carboxílicos por grama de PU com a massa molar²⁷.

O tamanho de partícula diminui e as partículas são mais resistentes a deformação induzida pelo cisalhamento com o aumento da força iônica e, a uma força iônica muito baixa, a viscosidade reduzida passa através de um mínimo com o aumento da concentração²⁷.

3.9.2. Viscosidade e tamanho de partícula

Nas dispersões PU, tamanho de partícula e viscosidade são parâmetros importantes. Por exemplo, em muitos revestimentos de superfícies, se prefere partículas relativamente grandes para facilitar a secagem rápida e partículas relativamente pequenas são preferidas quando se requer profunda penetração no substrato. Uma gama adequada de viscosidade é necessária para evitar que escorra (no caso de baixa viscosidade) e dificuldades práticas de aplicação (alta viscosidade)⁸.

Geralmente, há uma ampla e heterogênea distribuição de tamanho de partículas (alta polidispersão) em termos de volume e isso pode ser atribuído à viscosidade excessiva do pré-polímero durante a etapa de dispersão na manufatura do DPU, fazendo a dispersão do pré-polímero mais difícil e produzindo partículas elongadas¹⁰.

O tamanho de partícula de DPUs depende de muitos fatores, como o tipo de isocianato, polióis, DMPA (hidrofilicidade) e varia com seu conteúdo e grau de neutralização. O tamanho de partícula aumenta com o aumento da massa molar do pré-polímero, o que é geralmente devido ao aumento na viscosidade do pré-polímero (formação de partículas grosseiras). Para mesmo conteúdo de sólidos, a viscosidade da dispersão poderia ser menor com o aumento no tamanho de partícula devido ao menor volume total efetivo das partículas. Geralmente, o tamanho de partícula diminui com o aumento no conteúdo iônico e na massa molar do poliol⁸.

Sabe-se que a viscosidade de DPUs é altamente sensível ao tamanho de partícula e a distribuição do tamanho de partícula. Tamanho de partícula menor usualmente confere uma maior viscosidade, o que não é vantajoso para DPUs com alto teor de sólidos. O tamanho de partícula e a distribuição de tamanho de partícula diminuem quando a massa molar numérica média (M_n) do segmento flexível aumenta. Isso é atribuído ao aumento na flexibilidade da cadeia. A flexibilidade da cadeia afeta a redução do tamanho de partícula, pois partículas flexíveis são mais deformáveis em um campo de cisalhamento, então, na etapa da dispersão, a fase dispersa pode ser mais facilmente quebrada em partículas menores. Com isso, concluí-se que grupos iônicos e o comprimento do segmento flexível são parâmetros muito importantes na determinação do tamanho de partícula e, como conseqüência, da viscosidade²⁴.

Sabe-se que a concentração do polímero (teor de sólidos) tem grande influência na viscosidade de DPUs. Quanto maior o teor de sólidos do DPU, maior sua viscosidade. Este comportamento foi verificado por Nanda et al.⁹ que obtiveram como resultado o gráfico mostrado na Figura 3.22⁹.

Figura 3.22. Efeito da concentração do polímero no tamanho de partícula e na viscosidade de DPU.
Tamanho de partícula; ■ Viscosidade⁹.

Na formação da dispersão utilizando o processo do pré-polímero, os autores acima citados observaram que há uma dependência do tamanho de partícula e do teor de sólidos da DPU. Maior teor de sólidos resulta em tamanho de partícula maior com uma distribuição de tamanho de partícula maior. Um estudo similar foi feito utilizando o processo da acetona para uma DPU baseada em poliol poliéster e IPDI. Em contraste ao processo do pré-polímero, o tamanho de partícula permanece praticamente constante com a concentração do polímero (teor de sólidos) que foi variada de 24 a 44 % (Figura 3.22)⁹. Porém nota-se uma elevação brusca na viscosidade quando se varia o teor de sólidos de 40 a 44 %.

4. MATERIAIS E MÉTODOS

As reações de síntese das dispersões aquosas de PU foram realizadas no Laboratório de Organometálicos e Resinas na Faculdade de Química – PUCRS.

A Tabela 4.1 apresenta os reagentes utilizados na síntese de DPUs bem como os materiais utilizados para sua análise e caracterização. Todos os reagentes foram utilizados sem prévia purificação.

Produto	Origem	Pureza	Observações			
Acetona	Merck	99,8%				
Ácido dimetilol propiônico (DMPA)	Rudnik	-	Func. 2			
Ácido dimetilol butanóico (DMBA)	Rudnik	-	Func. 2			
Dibutil dilaurato de estanho (DBTDL)	Miracema-Nuodex Ind.	-				
Dietileno glicol (DEG)	Vetec	-	MM = 106g/mol; Func. 2			
Etilenodiamina	Vetec	98,0%				
Hidrazina	Vetec	24,0%				
Isoforona diisocianato (IPDI)	Bayer	99,5%	Func. 2			
Metil etil cetona (MEK)	Quimex	99,9%				
Metilpirrolidona (NMP)	Vetec	99,9%				
Poliol policaprolactona A	Dow Chemical	99,9%	MM = 530g/mol; Func. 2			
Poliol policaprolactona B	Dow Chemical	99,9%	MM = 1250g/mol; Func. 2			
Poliol policarbonato A	Perstorp	-	MM = 1000g/mol; Func. 2			
Poliol policarbonato B	Perstorp	-	MM = 1000g/mol; Func. 2			
Poliol policarbonato C	Perstorp	-	MM = 1000g/mol; Func. 2			
Poliol policarbonato D	Perstorp	-	MM = 2000g/mol; Func. 2			
Poliol poliéster linear A	Degussa	-	MM = 1000g/mol; Func. 2			
Poliol poliéster linear B	King	-	MM = 500g/mol; Func. 2			
Poliol poliéster linear C	Sintetizado	-	MM = 2760g/mol; Func. 2,5			
Poliol poliéster ramificado	Uniquema	-	MM = 2000g/mol; Func. 2			
Poliol poliéter A	Duksung Co	-	MM = 1000g/mol; Func. 2			
Poliol poliéter B	Duksung Co	-	MM = 2000g/mol; Func. 2			
Tetrahidrofurano (grau HPLC)	J. T. Baker	100,0%				
Tetrametileno diisocianato (TMXDI)	Cytec	98,1%	Func. 2			

Tabela 4.1. Reagentes e outros materiais utilizados na síntese e na caracterização de DPUs.

Obs.: Os polióis de mesma natureza diferem entre si pelas ramificações.

As estruturas de alguns polióis e dos diisocianatos utilizados na síntese das dispersões poliuretano são apresentadas na Tabela 4.2^{34,42,65-67}.

Poliol	Estrutura	MM (g/mol)	IOH (mg KOH/g)	Func.
Policaprolactona A	$H \left[\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	530	212	2
Policarbonato A	$HO-CH_2-O-C=O-CH_2-O-CH_2-O-C=O-CH_2-OH$	1000	100 – 130	2
Poliol poliéster linear A	$HO - (CH_2)_6 - O - C - (CH_2)_4 - C - O - (CH_2)_6 - O - O - O - (CH_2)_6 - O - O - O - O - O - O - O - O - O - $	1000	97 – 117	2
Poliéter A	$HO - CH_2 - CH_2 - O - CH_2 $	1000	112	2
Diisocianato	Estrutura	MM (g/mol)	Conteúdo NCO (%)	Func.
IPDI	OCN CH ₂ NCO CH ₃ CH ₃	222	37,5	2
TMXDI	H ₃ C CH ₃ H ₃ C NCO	244,3	34,2	2

Tabela 4.2. Estrutura de alguns polióis e dos diisocianatos utilizados na síntese de DPUs.

MM: massa molar; IOH: índice de hidroxila

4.1. Síntese de dispersões PU

As reações foram realizadas em um reator de vidro, equipado com agitação mecânica, controle de temperatura, condensador de refluxo e entrada de gás inerte (N₂). A Figura 4.1 apresenta o sistema reacional utilizado na síntese das dispersões PU.

Figura 4.1. Sistema reacional utilizado nas sínteses de resinas PU.

Foram realizadas vinte e cinco reações, das quais as dez primeiras foram sintetizadas com o diisocianato TMXDI, variando-se o poliol. O segundo grupo de reações, produzindo cinco DPUs, foi sintetizado variando-se, também o poliol e utilizando o diisocianato IPDI. As dez últimas reações foram realizadas utilizando-se o diisocianato TMXDI e o poliol poliéster linear A, variando-se outros parâmetros, como razão NCO/OH, tipo e conteúdo de emulsificante interno, grau de neutralização e de extensão de cadeia e o tipo de processo: processo do prépolímero e processo da acetona. Em todas as reações estudadas utilizou-se excesso de diisocianato (razão equimolar NCO/OH entre 1,4 e 2,0).

4.1.1. Síntese de dispersão PU pelo processo do pré-polímero

Em uma reação típica, inicialmente, foi carregado o reator com o poliol, o DMPA, o catalisador DBTDL e a NMP (no caso do IPDI) sob atmosfera de N₂. Na temperatura desejada (60 °C para o IPDI e 80 °C para o TMXDI), foi adicionado, lentamente, o diisocianato através de um funil de adição. Após, elevou-se a

temperatura e procedeu-se a reação fazendo-se o controle do residual de NCO através da titulação com *n*-dibutilamina^{7,54-56}, que consiste retirar uma amostra (~3 g) do pré-polímero em um erlenmeyer previamente tarado em balança analítica, dissolvê-la em 25 mL de tolueno, deixá-la reagir por 15 min com solução 2N de *n*-dibutilamina/tolueno e titular com solução aquosa de ácido clorídrico 1M. Os grupos NCO residuais, que estão em excesso estequiométrico em relação à *n*-dibutilamina, reagem com esta e aqueles que restam reagem com o ácido clorídrido em uma titulação de retorno. A reação foi considerada completa quando o teor de NCO residual foi estabilizado. Em seguida, com a temperatura reduzida para valores abaixo de 40 °C. Adicionou-se acetona (5 – 10 % em massa) para reduzir a viscosidade do meio e, após foi realizada a etapa de neutralização através da adição de TEA. Posteriormente, seguiu-se a etapa da dispersão e extensão de cadeia. Um esquema dessa síntese pode ser visualizado na Figura 4.2.

Figura 4.2. Esquema da síntese de DPU.

4.1.1.1. Etapa da dispersão e extensão de cadeia

Em um béquer, foram pesados a água deionizada e o extensor de cadeia (EDA) ou hidrazina (HZ) e, com uma agitação de 800 – 1500 rpm, foi adicionado o pré-polímero PU na solução aquosa de extensor de cadeia, a temperatura próxima da ambiente. A Figura 4.3 apresenta o sistema empregado para a dispersão das resinas PU.

Figura 4.3. Sistema empregado para a dispersão da resina PU em água.

4.1.2. Síntese de dispersão PU pelo processo da acetona

Os principais reagentes, diisocianato, poliol, catalisador e DMPA, foram colocados no reator e a temperatura foi elevada aos valores desejados (80 °C para IPDI, e 105 °C para TMXDI). Alíquotas foram retiradas para verificação do teor de NCO residual (idem 4.1.1) e quando este se estabilizou, a temperatura foi reduzida e adicionou-se aproximadamente 30 – 40 % (em massa) de acetona. Seguiu-se com a neutralização com TEA e, posteriormente, foi adicionada a solução aquosa de extensor de cadeia à solução de pré-polímero em acetona.

4.1.3. Retirada dos solventes orgânicos

Após a dispersão, os solventes orgânicos foram retirados com o auxílio de um rotovapor ou com uma linha de vácuo até a obtenção do teor de sólidos calculado para a quantidade de água adicionada (teor de sólidos de 37 a 50 %).

4.2. Técnicas de caracterização

4.2.1. Teor de sólidos (% de não-voláteis, % NV)

O teor de sólidos, porção não volátil presente nas dispersões, foi determinado pelo método gravimétrico, onde se pesou, em balança analítica, um grama da dispersão PU em uma forma de alumínio previamente tarada e seca. A massa residual presente após secagem em estufa a 105 – 110 °C, por 3 h, foi pesada e relacionada à massa inicial da dispersão. Os valores percentuais foram obtidos multiplicando-se essas razões por 100¹³.

4.2.2. Medidas de pH

As medidas de pH foram realizadas a 20 °C em um equipamento QUIMIS modelo Q-400A, com eletrodo combinado.

4.2.3. Preparação dos filmes

Os filmes foram preparados em uma placa de vidro, aplicados com um extensiômetro de 100 µm e secos ao ar por uma semana. Esses filmes foram caracterizados em função de transparência, cor, brilho e elasticidade, além de sua utilização para as análises como cromatografia de permeação em gel (GPC) e espectroscopia vibracional no infravermelho (IV) onde se utilizou os filmes dissolvidos em tetrahidrofurano (THF).

4.2.4. Espectroscopia vibracional no infravermelho (IV)

Os filmes produzidos das dispersões PU sintetizadas foram caracterizados por IV empregando o aparelho Perkin Elmer Instruments Spectrum One FT-IR Spectomer Hair Sampling Acessory, no intervalo de 4000 a 650 cm⁻¹. Os filmes das dispersões foram analisados com o acessório de refletância total atenuada (ATR) utilizando uma célula de seleneto de zinco. Os filmes foram solubilizados em THF, essa solução foi aplicada na célula de ATR e o solvente foi evaporado.

4.2.5. Cromatografia de permeação em gel (GPC)

Os filmes das dispersões PU foram dissolvidos em THF (5 mg/mL) e analisados em um cromatógrafo da Waters Instruments equipado com uma bomba isocrática 1515 (eluente: THF, fluxo: 1 mL/min), set de colunas Styragel (temp. das colunas: 40 °C) e detector de índice de refração 2414 (temp. do detector: 35 °C). Um gráfico de GPC pode ser visualizado no Apêndice A e os dados de massa molar serão mostrados na seção resultados e discussão.

4.2.6. Viscosidade Brookfield

As medidas de viscosidade relativa ou dinâmica foram realizadas em um viscosímetro Brookfield DV-II Prime, a 20 °C, utilizando os spindles SC4–21, SC4–27 e SC4–29 e com velocidade de rotação de 50 rpm.

4.2.7. Análise de tamanho de partícula médio e de distribuição de tamanho de partícula

As medidas de tamanho de partícula médio e de distribuição de tamanho de partícula foram realizadas em um Dispersion Analyser LUMiSizer, a 25 °C, utilizando célula quadrática de vidro de 10 mm x 10 mm. As análises dos resultados foram obtidos com o auxílio do *software* SEPView. Essa análise tem como princípio o fenômeno de separação de fases, sedimentação, flotação ou consolidação, que são

diretamente medidos pelo equipamento pelo perfil de extinção obtido por transmissão de radiação infravermelho (IV).

Para o programa (modo estatístico) utilizado para obter a distribuição do tamanho de partícula admitiu-se um índice de refração de 1,456 para as partículas, como descrito na literatura¹⁰ e de 1,3267 para água.

4.2.8. Análise reológica

O comportamento da viscosidade cinemática das dispersões PU foram realizadas em um reômetro HAAKE RotoVisco 1 da Thermo Electron Corporation. Utilizou-se os acessórios cilindro Meßbecher Z34 DIN Série 1 e o rotor Z34 DIN 53019 Série 1 ou a placa Messplatte P61 (hoch) Measuring Plate P61 (high) e o rotor C35/2 (cone com d = 35 mm, angle 2 DEG), a uma temperatura de 25 °C.

5. RESULTADOS E DISCUSSÃO

5.1. Caracterização geral das DPUs sintetizadas: infravermelho e reologia

As DPUs sintetizadas foram caracterizadas através da técnica de espectroscopia vibracional na região do infravermelho (IV), sendo as atribuições das bandas realizadas em comparação aos valores das freqüências características para os grupos existentes na molécula, de acordo com a literatura⁶⁸. As Figuras 5.1 e 5.2 apresentam os espectros de IV típicos de filmes de DPUs sintetizadas com o poliol poliéster linear A e, respectivamente, com TMXDI e IPDI e nas Tabelas 5.1 e 5.2 são apresentas as atribuições das bandas características para os filmes das respectivas DPUs.

Figura 5.1. Espectro de IV do filme de DPU sintetizada com o poliol poliéster linear A e o diisocianato TMXDI.

Figura 5.2. Espectro de IV do filme de DPU sintetizada com o poliol poliéster linear A e o diisocianato IPDI.

nº de ondas (cm⁻¹)	Atribuição			
3361	v_s NH (uretano)			
2964 e 2865	$v_{as} CH_3 e v_s CH_3$			
1730	v C=O (uretano + éster)			
1656	v_{as} COO ⁻ (DMPA) + v C=O (uréia)			
1604	v C=C (anel aromático)			
1549	ν CN + δ NH (uretano)			
1455	$\delta_{\sf as} {\sf CH}_3$			
1421	$v_s \text{COO}^-$ (DMPA)			
1379	$\delta_s CH_3$			
1242	v CO–O (éster)			
1180	v C–O–C (éster)			
1084	ν _s N–CO–O + ν C–O–C			
705	ω =C–H (TMXDI)			

Tabela 5.1. Atribuição das bandas no espectro de IV para a DPU sintetizada a partir do poliol poliéster linear A e do diisocianato TMXDI.

v: estiramento, as: assimétrico, s: simétrico, δ : deformação, ω : deformação fora do plano .

nº de ondas (cm⁻¹)	Atribuição				
3358	ν_s NH (uretano)				
2944 e 2868	$v_{as} CH_3 e v_s CH_3$				
1727	v C=O (uretano + éster)				
1648	v_{as} COO ⁻ (DMPA) + v C=O (uréia)				
1546	ν CN + δ NH (uretano)				
1458	$\delta_{\sf as} {\sf CH}_3$				
1415	$v_s \text{COO}^-$ (DMPA)				
1379	$\delta_s CH_3$				
1234	v CO–O (uretano)				
1064	ν _s N–CO–O + ν C–O–C				

Tabela 5.2. Atribuição das bandas no espectro de IV para a DPU sintetizada a partir do poliol poliéster linear A e do diisocianato IPDI.

v: estiramento, as: assimétrico, s: simétrico, δ : deformação, ω : deformação fora do plano.

Os espectros de IV, mostrados nas Figuras 5.1 e 5.2, referentes aos filmes de DPUs obtidos do poliol poliéster linear A e os diisocianatos TMXDI e IPDI, respectivamente, apresentam banda característica da ligação N-H de uretano em 3361 cm⁻¹ (para TMXDI) e 3358 cm⁻¹ (para IPDI). A banda característica do grupo NCO livre residual em torno de 2115 cm⁻¹ não é encontrada nos dois espectros, confirmando a reação total entre os grupos NCO do diisocianato com o poliol e com o extensor de cadeia, o que é desejado, já que NCO livre é tóxico e a existência de NCO livre pode gerar reações secundárias indesejáveis (por exemplo, com a água gerando ácido carbâmico que se decompõe para dar como produto final uréia). Nas regiões de 2964 cm⁻¹ e 2865 cm⁻¹, na Figura 5.1, e 2944 cm⁻¹ e 2868 cm⁻¹, na Figura 5.2, observam-se as bandas características de estiramento assimétrico e simétrico de CH₃, respectivamente. Um alargamento na banda atribuída ao estiramento C=O (uretano) (1730 cm⁻¹) é observado no espectro apresentado na Figura 5.1, em função da sobreposição com a banda de estiramento C=O de grupo éster. No espectro apresentado na Figura 5.2 essa banda deslocou-se para 1727 cm⁻¹. Outra banda característica pode ser observada em 1656 cm⁻¹ (Figura 5.1) e 1648 cm⁻¹ (Figura 5.2) referente ao estiramento assimétrico COO proveniente do DMPA e estiramento C=O devido à uréia. Em 1421 cm⁻¹ (Figura 5.1) e 1415 cm⁻¹ (Figura 5.2) aparece uma banda de baixa intensidade característica do estiramento simétrico COO⁻ do DMPA. As bandas características das ligações (CO-O) e (C-O-C) de poliéster ocorrem em 1242 cm⁻¹ e 1180 cm⁻¹, respectivamente, na Figura 5.1. Na Figura 5.2, a banda de estiramento em 1234 cm⁻¹ pode ser atribuída à ligação (CO–O) de uretano. Na região de 1084 cm⁻¹ (Figura 5.1) e 1064 cm⁻¹ (Figura 5.2) tem-se uma banda de média intensidade característica do grupo N–CO–O de uretano⁴. Em 1604 e 705 cm⁻¹ (Figura 5.1) aparecem duas bandas de baixa intensidade características, respectivamente, ao estiramento da ligação C=C e a deformação fora do plano da ligação C=C–H de anel aromático. Essas duas últimas bandas não são evidentes na Figura 5.2, já que nas DPUs sintetizadas com IPDI não existe anel aromático.

Através de uma observação mais detalhada, na região entre 1650–1550 cm⁻¹ (Figura 5.3), pode-se analisar o efeito da razão NCO/OH nas DPUs formadas com poliol poliéster linear A e TMXDI. Para comparação, os espectros de IV da Figura 5.3 foram normalizados e a região de interesse foi ampliada para os espectros das DPUs sintetizadas nas razões NCO/OH= 1,4; 1,7; 2,0, como mostrado na Figura 5.3.

Os espectros mostrados na Figura 5.3., apresentam duas bandas, em 1647 cm⁻¹ e 1560 cm⁻¹ que estão associadas com estiramento C=O e a deformação da ligação N–H, referentes aos grupos uréia e uretano, respectivamente. Observa-se que o aumento da razão NCO/OH (aumento dos segmentos rígidos), aumenta a intensidade das duas bandas, ou seja, maiores quantidades de uréia e uretano são formados, de acordo com dados da literatura⁴, onde se verifica que maiores razões de NCO/OH promove um maior grau de extensão de cadeia. Como grupos funcionais uréia e uretano são produtos de ligações cruzadas, maiores razões NCO/OH levam a maior conteúdo de uréia e uretano⁴.

Figura 5.3. Espectro de IV para DPUs sintetizadas com diferentes razões NCO/OH.

Buscando algumas informações quanto às propriedades mecânicas e de fluxo das DPUs sintetizadas, foram feitas caracterizações das mesmas quanto ao seu comportamento reológico. A análise foi realizada a 25 °C, a uma taxa de cisalhamento que variou de 0 a 300 s⁻¹ em 60 s e depois de 300 a 0 s⁻¹ em mais 60 s, essa corrida é chamada de ida e volta.

A Figura 5.4 apresenta um gráfico típico do comportamento da viscosidade (η , mPa.s) e da tensão de cisalhamento (σ , Pa) em função da variação da taxa de cisalhamento ($\overset{\bullet}{\gamma}$, 0 a 300 s⁻¹).

Figura 5.4. Gráfico de tensão de cisalhamento e viscosidade em função da taxa de cisalhamento (comportamento reológico) da DPU sintetizada com o poliol poliéster linear A e o diisocianato TMXDI.

Todas as DPUs apresentaram comportamento de viscosidade semelhante ao mostrado na Figura 5.4. Como pode ser observado neste gráfico, a DPU sintetizada com o poliol poliéster linear A e o diisocianato TMXDI apresenta comportamento não-Newtoniano, ou seja, essa DPU é classificada como pseudoplástico, pois a viscosidade diminui com o aumento da taxa de cisalhamento e quando é cessado o cisalhamento a viscosidade volta ao ponto inicial⁵⁷.

A curva de tensão de cisalhamento versus taxa de cisalhamento mostrada no gráfico da Figura 5.4 mostra histereses tixotrópicas, dando valores diferentes na ida e na volta. A análise matemática destes resultados evidencia o comportamento pseudoplástico quando sob cisalhamento estacionário (velocidade angular constante). As curvas das viscosidades em função da taxa de cisalhamento se ajustam ao modelo Pseudoplástico de Ostwald (τ = K[•]_γⁿ; n<1), segundo a Eq. (1), seu respectivo coeficiente de correlação, r, a saber⁵⁷:

$$\tau = 1,85 \times 10^4 \frac{0.04113}{\gamma}$$
; r = 0,9949 Equação (1)

5.2. Análise dos efeitos dos parâmetros reacionais sobre as propriedades das DPUs

5.2.1. Efeito da natureza dos polióis

5.2.1.1. DPUs sintetizadas com TMXDI

A Tabela 5.3 apresenta os dados de massa molar, tamanho de partícula e viscosidade das dispersões sintetizadas com o diisocianato TMXDI e diferentes polióis. Todos os outros parâmetros foram mantidos constantes: razão NCO/OH = 1,7, extensão de cadeia com 5 % de DMPA, 120 % de neutralização com TEA e 90 % de extensão de cadeia com EDA.

Devido à alta viscosidade das DPUs 6, 7, 9 e 10 (Tabela 5.3) não foi possível realizar ensaios como pH e viscosidade, e no caso da DPU 6 não houve formação de filme e, por isso, a análise de GPC não foi feita.

O pH das DPUs sintetizadas ficou em torno de 8–10, dentro da faixa requerida para manter a estabilidade das partículas nas dispersões, descrita na literatura⁴⁹.

As dispersões PU sintetizadas com TMXDI e diferentes polióis possuem um teor de sólidos (NV) entre 36 e 48 %. O teor de sólidos influencia muito a viscosidade da dispersão. De acordo com a literatura, o aumento da viscosidade nas dispersões PU pode ser explicado, em parte, pelo alto teor de sólidos, onde para valores \geq 42% a viscosidade aumenta fortemente. Este fato pode ser explicado pelo comportamento típico de formação de estrutura fractal ou gel, que é atribuída à forte interação entre as partículas, levando a um empacotamento das mesmas^{9,12}

Para as DPUs mostradas na Tabela 5.3, a viscosidade das dispersões sintetizadas com teor de sólidos maior que 42 % cresce abruptamente, e não foi possível fazer sua medida no equipamento que dispúnhamos, além de ser muito difícil sua aplicação para formação de filme. Além do teor de sólidos, parâmetros

como tamanho de partícula médio e massa molar do poliol utilizado na síntese de DPUs também apresentam influência em sua viscosidade.

Poliol			Dispersão						
Dispersão	Tipo	MM (g/mol)	NV (%)	pН	Mn (g/mol)	Mw (g/mol)	I.P.	T.P. (nm)	Viscosi- dade (mPa.s)
DPU 1	Poliéster linear A	1000	45	8	23065	44228	1,92	227	19500
DPU 2	Poliéster linear B	500	42	8	12490	22706	1,82	99	18800
DPU 3	Poliéster linear C	2760	38	9	32243	73480	2,28	212	84000
DPU 4	Poliéster ramificado	2000	44	*	17714	35638	2,01	163	>100000
DPU 5	Policaprolactona A	530	36	8	16206	28872	1,78	116	1300
DPU 6	Policaprolactona B	1250	48	*	**	**	**	**	*
DPU 7	Policarbonato A	1000	42	8	15412	28687	1,86	120	*
DPU 8	Policarbonato B	1000	38	10	10162	21671	2,13	61	763
DPU 9	Policarbonato C	1000	42	8	13063	21851	1,67	116	*
DPU 10	Policarbonato D	2000	42	*	8830	23766	2,69	265	*

Tabela 5.3. Resultados das sínteses realizadas com TMXDI e diferentes polióis.

MM: massa molar, NV: não voláteis, I.P.: índice de polidispersão, T.P.: tamanho de partícula médio. Todas as reações foram realizadas pelo processo do pré-polímero, com razão NCO/OH = 1,7, 5% do emulsificante interno DMPA, 120% de neutralização com TEA e 90% de extensão de cadeia com EDA. *Análise não realizada devido à alta viscosidade; **Análise não realizada devido a não formação de filme.

Comparando-se DPUs sintetizadas com polióis de mesma massa molar (MM = 1000 g/mol), as DPUs 1, 7, 8 e 9 (Tabela 5.3), observa-se que aquela que apresentou maior MM foi a DPU 1, que foi sintetizada com um poliol poliéster linear. Esse comportamento pode ser melhor visualizado através do gráfico apresentado na Figura 5.5.

Esta diferença na MM pode ser devido ao impedimento estérico criado pelas ramificações dos polióis policarbonatos, já que todos eles são ramificados, neste caso, estas cadeias com ramificações podem influenciar no tamanho de cadeia do polímero PU formado (menor tamanho de cadeia).

Para as DPUs 7, 8 e 9 observa-se que não existe grande diferença nos valores de MM das DPUs formadas pelos polióis policarbonatos.

Figura 5.5. Massas molares ponderais médias (M_w) das DPUs 1, 7, 8 e 9.

Um gráfico semelhante ao da Figura 5.5 foi feito para as DPUs sintetizadas com polióis poliésteres lineares (Figura 5.6), DPUs 1, 2 e 3 (Tabela 5.3), o polímero PU de maior MM foi obtido com o poliol poliéster linear C, de MM = 2760 g/mol (DPU 3) mostrando, como era de se esperar, que quanto maior a MM do poliol utilizado maior será a MM do polímero PU formado.

Figura 5.6. Massas molares ponderais médias (*M*_w) das DPUs 1, 2 e 3. Sintetizadas com poliésteres de massa molar (DPU 1) 1000 g/mol, (DPU 2) 500 g/mol e (DPU 3) 2760 g/mol.

Os valores de viscosidade destas DPUs aumentam com o aumento da massa molar do poliol, como conseqüência de um aumento na MM do PU formado. Para a DPU 3, onde se utilizou o poliol poliéster linear C (MM = 2760 g/mol) a alta viscosidade encontrada deve ser devido à formação de partículas grosseiras, pois, geralmente, há uma ampla e heterogênea distribuição de tamanho de partícula médio (alta polidispersidade) em termos de volume na dispersão. Isto pode explicar a viscosidade excessiva do pré-polímero durante a etapa de dispersão, onde a dispersão do pré-polímero se torna mais difícil produzindo partículas alongadas¹⁰. Este fato que é confirmado pelo alto valor de tamanho de partícula médio encontrado para esta DPU. Uma discussão mais detalhada sobre o tamanho de partícula será apresentada no item 5.4. Outro fator que auxilia no aumento da MM do polímero PU na DPU 3 é a funcionalidade maior do poliéster linear C (2,5), possibilitando a formação de uma rede polimérica de mais alta massa molar, o que é confirmado pelo valor do *M*_w desta DPU (73480 g/mol), bastante superior ao valor de *M*_w das outras DPUs.

Semelhantes massas molares e tamanhos de partículas foram encontrados para as DPUs sintetizadas com polióis de relativa baixa MM, a DPU 2 (sintetizada com poliol de MM = 500 g/mol) e a DPU 5 (sintetizada com poliol de MM = 530 g/mol). A maior diferença entre estas DPUs está na viscosidade, mas é importante lembrar que o teor de sólidos na DPU 2 é de 42 % (viscosidade de 18800 mPa.s) enquanto que na DPU 5 é de 36 % (viscosidade de 1300 mPa.s). Confirmando dados da literatura⁹, já comentados anteriormente.

A DPU 4, sintetizada com o poliol poliéster ramificado (MM = 2000 g/mol), apresentou um M_w menor (35638 g/mol) que as DPUs sintetizadas com poliésteres lineares, como a DPU 1 (44228 g/mol), sintetizada com poliol de MM = 1000 g/mol. Entretanto, o tamanho de partícula diminuiu e a viscosidade aumentou bruscamente na DPU 4. Este fato pode ser explicado através de dois efeitos relacionados com a estrutura do póliol: (a) quanto menor o tamanho de partícula, maior a viscosidade de DPUs; (b) as ramificações do poliéster podem influenciar negativamente no crescimento da cadeia e na movimentação dessas cadeias, dificultando o fluxo, ou seja, aumentando a viscosidade, conforme dados descritos na literatura^{8,9}.
O índice de polidispersão (I.P.) é bastante próximo em todas as DPUs, o que significa que o fato de diferentes MM, naturezas dos polióis ou se estes são lineares ou ramificados não altera significantemente a relação $M_w e M_n$.

5.2.1.2. DPUs sintetizadas com IPDI

Este grupo de reações foi sintetizado com o diisocianato IPDI e diferentes polióis. Todos os outros parâmetros foram mantidos constantes: razão NCO/OH = 1,7, extensão de cadeia com 5 % de DMPA (com exceção da DPU 12, na qual se utilizou DMBA como emulsificante interno), 120 % de neutralização com TEA e 90 % de extensão de cadeia com HZ (exceto DPU 11 que foi utilizado EDA). A Tabela 5.4 apresenta os resultados das sínteses realizadas com o diisocianato IPDI e diferentes polióis.

Poliol			Exton	Dispersão								
Dis- per- são	Poliol	MM Poliol (g/mol)	de cadeia	NV (%)	pН	Mn (g/mol)	Mw (g/mol)	I. P.	T.P. (nm)	Visco- sidade (mPa.s)		
DPU 11	Poliéster linear A	1000	EDA	35	9	36670	103756	2,83	72	5500		
DPU 12 ^a	Poliéster linear A	1000	ΗZ	38	8	34932	78099	2,24	239	900		
DPU 13	Poliéster ramificado	2000	ΗZ	38	7	23900	58343	2,44	-	680		
DPU 14	Policapro- lactona A	530	ΗZ	33	8	29766	67688	2,27	74	8		
DPU 15	Poliéter B	2000	ΗZ	38	8	33244	46565	1,40	80	111		

Tabela 5.4. Resultados das sínteses realizadas com IPDI e diferentes polióis.

Exten.: extensor, NV: não voláteis, I. P.: índice de polidispersão, T. P.: tamanho de partícula médio. Todas as reações foram realizadas pelo processo do pré-polímero, com razão NCO/OH = 1,7, 5% de emulsificante interno e com NMP. ^aDPU sintetizada com DMBA como emulsificante interno e sem NMP.

Os pHs destas dispersões ficaram em torno de 7 – 9, dentro da faixa descrita na literatura⁴⁹ para manter a estabilidade das partículas nas dispersões.

Considerando os quatro grupos de polióis utilizados nas reações com IPDI, poliol poliéster linear, poliol poliéster ramificado, poliol policaprolactona e poliol poliéter, pode-se notar a diferença de comportamento deste diisocianato frente aos mesmos polióis utilizados para a síntese de DPUs com o diisocianato TMXDI (item 5.2.1.1), sendo que, o diiocianato IPDI fornece polímeros PU com MM maiores, devido a este diisocianato ser mais reativo que o TMXDI, confirmando dados da literatura^{3,49}. Esse comportamento e outros aspectos das DPUs sintetizadas com IPDI, que serão discutidos a seguir, podem ser visualizados na Figura 5.7.

A partir dos dados mostrados na Tabela 5.4 e na Figura 5.7, pode-se observar o efeito do extensor de cadeia sobre a MM do polímero PU formado, quando se compara os valores de MM da DPU 11 e DPU 12, M_w = 103756 e 78099 g/mol, sintetizadas respectivamente com EDA e HZ. Neste caso, o efeito da cadeia maior do extensor EDA comparado ao da HZ se sobrepôs ao valor de teor de sólidos relativamente baixo da DPU 11 (35 %), fornecendo uma DPU com maior viscosidade e pequeno tamanho de partícula médio. Estes resultados estão em conformidade com dados da literatura^{8,9}, já que a DPU 11, com tamanho de partícula menor (72 nm), apresentou um valor de viscosidade maior que a DPU 12, com tamanho de partícula maior (239 nm). Este valor de tamanho de partícula relativamente alto pode ser devido ao fato de ter-se utilizado o emulsificante interno

DMBA para essa DPU, que possui estrutura maior que a do DMPA, provocando a formação de micela maior, o que confere maior volume da partícula.

Para as DPU 13 e DPU 15, obtidas com polióis de mesma MM (poliéster ramificado e poliéter, respectivamente), observa-se que apesar do mesmo extensor de cadeia (HZ) e teor de sólidos (38%), a DPU 13 apresenta uma maior viscosidade (680 mPa.s) com relação a DPU 15 (111 mPa.s). Da mesma forma que aparece nos resultados das DPUs formadas com TMXDI (item 5.2.1.1), estas cadeias com ramificações podem influenciar no tamanho de cadeia do polímero PU formado (menor tamanho de cadeia) e consequentemente, maior viscosidade.

O valor de viscosidade da DPU 14 (8 mPa.s) muito abaixo daquele obtido para as demais, provavelmente, é devido a menor massa molar do poliol utilizado na sua síntese, intensificando o efeito causado pelo baixo teor de sólidos desta DPU.

5.3. DPUs sintetizadas com TMXDI e o poliol poliéster A

Para a avaliação da influência dos parâmetros reacionais, tais como, razão NCO/OH, tipo e conteúdo de emulsificante interno (grupos iônicos), grau de neutralização, grau de extensão de cadeia e processo (pré-polímero ou acetona), realizaram-se alguns experimentos com o diisocianato TMXDI e o poliol poliéster linear A variando estes parâmetros. Os resultados deste grupo de reações são mostrados na Tabela 5.5.

	Parâmetros reacionais					Dispersão							
Dis- per- sões	NCO/ OH	Emulsi- ficante interno	EDA (%)	TEA (%)	NV (%)	pН	Mn (g/mol)	Mw (g/mol)	I. P.	T.P. (nm)	Visco- sidade (mPa.s)		
DPU 16	1,4	DMPA	90	120	35	10	15364	26389	1,72	89	2900		
DPU 17	1,5	DMPA	90	120	48	*	24297	47918	1,97	184	*		
DPU 18	1,6	DMPA	90	120	46	9	21749	43797	2,01	177	22500		
DPU 19	2,0	DMPA	90	120	35	10	18761	31111	1,66	198	350		
DPU 20 [♭]	1,7	DMPA	90	120	36	9	18552	35540	1,92	430	640		
DPU 21	1,7	DMBA	90	120	38	9	16181	31712	1,96	**	**		
DPU 22 ^c	1,7	DMPA	90	100	34	8	16196	27280	1,68	-	275		
DPU 23 ^d	1,7	DMPA	100	120	36	9	18309	32937	1,80	-	680		
DPU 24	1,7	DMPA	90	120	36	9	19843	36535	1,84	110	175		
DPU 25	1,5	DMPA	90	120	41	9	28780	53070	1,84	121	10800		

Tabela 5.5. Resultados das sínteses realizadas com TMXDI e o poliol poliéster linear A (MM=1000g/mol).

NV: não voláteis, I. P.: índice de polidispersão, T. P.: tamanho de partícula médio. As reações foram realizadas pelo processo do pré-polímero, com 5% de emulsificante interno, 120% de neutralização e 90% de extensão, com exceção das reações 24 e 25 que foram sintetizadas pelo processo da acetona. ^bDPU sintetizada com 7% de emulsificante interno. ^cDPU produzida com 100% de neutralização. ^dDPU produzida com 100% de extensão. *Análise não realizada devido à alta viscosidade. **Análise não realizada devido à instabilidade da amostra.

5.3.1. Teor de sólidos

As dispersões PU sintetizadas com TMXDI e o poliol poliéster linear A foram obtidas com um teor de sólidos (NV) entre 34 e 48 %. Da mesma forma que anteriormente, a afirmação de que o teor de sólidos possui grande influência na viscosidade da dispersão é confirmada, conforme dados da literatura⁹, pois nas DPUs 19, 20, 22, 23 e 24, nas quais o teor de sólidos foi menor ou igual a 36 %, os valores de viscosidades apresentaram-se relativamente baixos.

Para a DPU 17, com teor de sólidos de 48 %, a viscosidade ficou extremamente alta e não foi possível a realização da medida de viscosidade. No caso das DPUs 18 e 25, onde os teores de sólidos foram, respectivamente, 46 % e

41 %, as viscosidades apresentaram-se bastante altas em relação às demais reações deste grupo, 22500 mPa.s e 10800 mPa.s, respectivamente.

5.3.2. Razão NCO/OH

Comparando-se as DPUs 16, 17, 18 e 19, onde foi variada a razão NCO/OH de 1,4, 1,5, 1,6 e 2,0, respectivamente, observa-se que com o aumento da razão NCO/OH (diminuição do segmento flexível) a massa molar numérica média do polímero PU obtido tende a diminuir, enquanto a viscosidade das mesmas tende aumentar, confirmando dados da literatura²⁰. Para o caso da DPU 19 (razão NCO/OH = 2,0), a baixa viscosidade pode ser atribuída ao tamanho de partícula obtido na dispersão.

Na tentativa de investigar sobre o efeito da razão NCO/OH no tamanho de partícula das DPUs, os dados de tamanho de partículas das DPUs 16 (NCO/OH = 1,4), 17 (NCO/OH = 1,5), 18 (NCO/OH = 1,6), 1 (NCO/OH = 1,7) (Tabela 5.2, Item 5.2.1.1) e 19 (NCO/OH = 2,0) foram colocados em um gráfico em função da razão NCO/OH, mostrado na Figura 5.8.

Figura 5.8. Efeito da razão NCO/OH no tamanho de partícula das DPUs.

Considerando-se o tamanho de partícula médio, também foi confirmando dados da literatura^{9,23,24}, que diz que o tamanho de partícula diminui quando a razão NCO/OH é menor que 1,5, o que pode ser notado na Figura 5.8.

No entanto quando a razão NCO/OH é aumentada para 1,7 (DPU 1, item 5.2.1.1, T. P. = 227 nm) tamanho de partícula maior é obtido e quando esta razão é maior que 1,7 (DPU 19, T. P. = 198 nm) é observado que o tamanho de partícula diminui²⁴.

5.3.3. Tipo e conteúdo de emulsificante interno

A DPU 20 foi sintetizada com 7 % do emulsificante interno DMPA. Para esta DPU, foi obtido um valor de massa molar não muito diferente daquele encontrado para as reações realizadas com 5 % de emulsificante interno. A grande discrepância observada, neste caso, foi no valor de tamanho de partícula médio desta DPU (430 nm), que se apresentou bastante maior que os valores obtidos para as outras DPUs (em torno de 100 – 200 nm), o que contraria dados da literatura⁹, onde é mostrado que o tamanho de partícula diminui com o aumento da concentração de DMPA até 5%, maiores concentrações de emulsificante diminuem suavemente o valor do tamanho de partícula. Este fato ocorre porque a área superficial global da fase dispersa aumenta para acomodar os grupos adicionais de sal na interface, porém para concentrações acima de 5 % não haveria diminuição adicional no tamanho da partícula, provavelmente, devido à inabilidade do sistema para acomodar eficazmente grupos adicionais na estrutura⁹.

Pérez-Limiñana et al. mostraram que para uma concentração de DMPA de 8 % o tamanho médio em volume aumenta enormemente, diferentemente do tamanho médio em número que é menor, e com uma distribuição de tamanho de partícula bem larga¹⁰. Uma discussão detalhada sobre o tamanho de partícula médio das DPUs sintetizadas será apresentada no item 5.4.

A DPU 21 foi sintetizada com o emulsificante interno DMBA e, diferentemente da DPU 12 (com IPDI, poliol poliéster linear A e DMBA) (Item 5.2.1.2, Tabela 5.4),

essa DPU apresentou-se instável, separando-se em duas fases, uma de prépolímero e outra aquosa.

5.3.4. Grau de neutralização

Em todas as reações, o grau de neutralização foi mantido em 120 % para garantir que a DPU fosse totalmente neutralizada. Na DPU 22, o grau de neutralização foi variado para 100 %. E, logicamente, apresentou um pH abaixo das demais DPUs (pH = 8), já que a neutralização é realizada com uma amina (TEA), que possui caráter básico, é natural que a amina livre (em reações com 120 % de neutralização) forneça um valor de pH mais alto.

5.3.5. Grau de extensão de cadeia

O grau de extensão de cadeia foi mantido em 90 % em todas as reações, exceto na DPU 23, na qual este parâmetro foi variado para 100 %. O valor de massa molar média obtida com esta dispersão é comparável aos valores obtidos com a DPU 1, nas mesmas condições reacionais., mostrando que a pequena variação no grau de extensão não afeta significativamente os valores de massa molar. Porém a maior variação desta DPU para as demais foi na viscosidade, que, com um teor de sólidos relativamente baixo, apresentou uma viscosidade ainda baixa quando comparada às reações com o mesmo teor de sólidos (36 %), o que indica que esta DPU deve ter um valor de tamanho de partícula médio relativamente alto, conforme dados da literatura^{9,28}.

5.3.6. Processo

Todas as reações foram realizadas pelo processo do pré-polímero, com exceção das DPUs 24 e 25, que foram sintetizadas pelo processo da acetona. A DPU 24 foi sintetizada com uma razão NCO/OH de 1,7 e a DPU 25 foi sintetizada com uma razão NCO/OH 1,5. Para a comparação dos dados da DPU 24, usaremos a DPU 1 (item 5.2.1.1, Tabela 5.3), que foi sintetizada tal qual a DPU 24, exceto por

ter-se utilizado o processo do pré-polímero, os resultados destas reações serão repetidos na Tabela 5.6.

Tabela 5.6. Resultados das sínteses realizadas com TMXDI e o poliol poliéster linear A (MM = 1000g/mol) pelo processo do pré-polímero e pelo processo da acetona, com razão NCO/OH = 1,7.

Disper-	Processo	NCO/	NV	۳Ц	Mn	Mw	ιв	T.P.	Viscosidade
sões	Processo	ОН	(%)	рп	(g/mol)	(g/mol)	I. P.	(nm)	(mPa.s)
DPU 1	Pré-polímero	1,7	45	8	23065	44228	1,92	227	19500
DPU 17	Pré-polímero	1,5	45	-	24297	47918	1,97	184	-
DPU 24	Acetona	1,7	36	9	19843	36535	1,84	110	175
DPU 25	Acetona	1,5	41	9	28780	53070	1,84	121	10800

NV: não voláteis, I. P.: índice de polidispersão, T. P.: tamanho de partícula médio. Todas as reações foram sintetizadas com razão NCO/OH = 1,7, 5% de emulsificante interno, 120% de neutralização com TEA e 90% de extensão com EDA.

No processo da acetona é necessária a utilização de quantidade maior de acetona na etapa da dispersão para que a água possa solubilizar o pré-polímero, já que é feita a adição de água no pré-polímero, ao contrário do processo do pré-polímero, em que este é adicionado à água. Outra variação é no teor de sólidos, no processo da acetona o teor de sólidos máximo obtido foi de 41 %.

A diferença no valor de viscosidade entre as dispersões mostradas na Tabela 5.6, é devida, provavelmente, ao alto valor de teor de sólidos obtidos na dispersões DPU 1 e DPU 25, já que uma maior quantidade de segmento flexível (razão NCO/OH= 1,5 na DPU 25) parece não afetar significativamente os valores de MM do polímero PU disperso.

Ao analisar os valores de tamanho de partícula médio (Tabela 5.6) pode-se concluir que, para uma razão NCO/OH = 1,7, o processo da acetona fornece produtos com tamanho de partícula médio menor.

Da mesma maneira que a DPU 24 foi comparada com a DPU 1 por ter sido sintetizada com os mesmos parâmetros, exceto pelo processo, a DPU 25 será comparada com a DPU 17, que também foi sintetizada com os mesmos parâmetros, ou seja, razão NCO/OH = 1,5, 5 % de DMPA, 120 % de neutralização com TEA e 90 % de extensão de cadeia com EDA, porém a DPU 17 foi sintetizada pelo processo do pré-polímero e a DPU 25, pelo processo da acetona. Para melhor visualização dos resultados, esses foram novamente exibidos na Tabela 5.6.

Pelo mesmo motivo de diferentes processos, o teor de sólidos da DPU 17, sintetizada pelo processo do pré-polímero apresentou valor maior, como conseqüência, esta DPU se tornou uma pasta e a viscosidade e o pH não puderam ser medidos. O M_n destas dispersões também não apresentou diferenças significativas.

Da mesma forma que os resultados de tamanho de partícula médio encontrados para as DPUs 1 e 24, 248 nm e 110 nm, respectivamente, a DPU 25 possui tamanho de partícula médio menor (121 nm) que o encontrado para a DPU 17 (184 nm). Conclui-se que, independentemente da razão NCO/OH, o processo acetona produz dispersões com tamanhos de partículas médios menores do que aquelas produzidas pelo processo do pré-polímero.

5.4. Tamanho de partícula e distribuição de tamanho de partícula

5.4.1. DPUs sintetizadas com TMXDI

Os resultados de tamanho de partícula médio das DPUs sintetizadas com TMXDI e diferentes polióis estão dados na Tabela 5.3, porém os valores apresentado são valores médios. Uma informação também importante é a distribuição do tamanho de partícula, que pode ser visto na Figura 5.9, que apresenta o gráfico de distribuição de tamanho de partícula da DPU 1, é notável a ampla e heterogênea distribuição de tamanho de partícula. A grande maioria das partículas desta DPU possui tamanho menor que 200 nm, porém existem várias partículas com tamanho maior que 500 nm, o que influencia significativamente na viscosidade da dispersão produzida. Este fato é confirmado na literatura¹⁰, que apresenta uma maior heterogeneidade na distribuição de partículas em termos de volume, e essa maior dispersão pode ser devido a excessiva viscosidade do pré-

polímero durante a etapa de dispersão na produção da partícula iônica, e produzindo partículas com formas mais alongadas, a qual são responsáveis pelas diferentes medidas de tamanho de partícula¹⁰.

Figura 5.9. Gráfico de distribuição de tamanho de partícula da DPU 1.

As reações feitas com polióis poliésteres apresentam, geralmente, esta mesma heterogeneidade no tamanho de partícula médio. Para efeito de visualização, as Figuras 5.10, 5.11 e 5.12 apresentam os gráficos de distribuição de tamanho de partícula médio das DPUs 2, 3 e 4, respectivamente, sintetizadas com polióis poliésteres.

Todas as dispersões apresentaram heterogeneidade na distribuição do tamanho de partícula. Para as demais dispersões sintetizadas, os gráficos de distribuição são mostrados no Apêndice B.

Figura 5.10. Gráfico de distribuição de tamanho de partícula da DPU 2.

Figura 5.11. Gráfico de distribuição do tamanho de partícula da DPU 3.

Figura 5.12. Gráfico de distribuição do tamanho de partícula da DPU 4.

5.4.2. DPUs sintetizadas com IPDI

Os resultados de tamanho de partícula médio das DPUs sintetizadas com IPDI estão dados na Tabela 5.3. As DPUs 11 e 15 não decantaram totalmente para considerarmos a análise válida. As Figuras 5.13 e 5.14 apresentam os gráficos de distribuição de tamanho de partícula das DPUs 11 e 12, respectivamente, sintetizadas com o poliol poliéster linear A. A diferença entre essas duas DPUs foi o extensor de cadeia: EDA para a DPU 11 e HZ para a DPU 12.

O extensor de cadeia HZ forneceu uma DPU com tamanho de partícula e distribuição de tamanho de partícula menores do que a EDA. As Figuras 5.15 e 5.16 apresentam os gráficos de distribuição de tamanho de partícula das DPUs 14 e 15, respectivamente.

Como, na análise de tamanho de partícula médio e de distribuição de tamanho de partícula, as amostras são colocadas em uma centrífuga para sedimentação da fase sólida (polímero), se essa sedimentação não ocorrer totalmente, a análise é prejudicada. Foi o que ocorreu com as amostras das DPUs 11 e 15, fato este devido, provavelmente, à presença de partículas muito pequenas,

pois quanto maior a massa das partículas, mais rápida a sedimentação. Observando-se as Figuras 5.13 e 5.16, referentes às análises de distribuição de tamanho de partícula das DPUs 11 e 15, respectivamente, nota-se a diferença no perfil de distribuição de tamanho de partícula em relação às demais.

Figura 5.13. Gráfico de distribuição de tamanho de partícula da DPU 11.

Figura 5.14. Gráfico de distribuição de tamanho de partícula da DPU 12.

Figura 5.15. Gráfico de distribuição de tamanho de partícula da DPU 14.

Figura 5.16. Gráfico de distribuição de tamanho de partícula da DPU 15.

5.4.3. DPUs sintetizadas com TMXDI e o poliol poliéster linear A

Da mesma forma que nos casos anteriores, as dispersões sintetizadas com TMXDI e o poliol poliéster linear A apresentam grande polidispersão na distribuição de tamanho de partícula. As Figuras 5.17 e 5.18 apresentam os gráficos de distribuição de tamanho de partícula para a DPU 16 e DPU 17 como exemplos. Os demais gráficos de distribuição são mostrados no Apêndice B.

Analisando-se as Figuras 5.17, nota-se que a DPU 16 possui a maior parte das partículas com tamanhos irregulares, já a DPU 17 (figura 5.18) a distribuição é mais simétrica, o que indica que os tamanhos de partícula nesta dispersão são mais regulares.

Figura 5.17. Gráfico de distribuição de tamanho de partícula da DPU 16.

Figura 5.18. Gráfico de distribuição de tamanho de partícula da DPU 17.

5.4.4. Processo

As DPUs 24 e 25 foram sintetizadas pelo processo da acetona. A fim de avaliar como o processo afeta a distribuição do tamanho de partícula, como no item 5.3.6, faremos comparação entre os gráficos de distribuição de tamanho de partícula da DPU 1 (processo pré-polímero) e da DPU 24 (processo acetona), ambas com razão NCO/OH 1,7. O gráfico de distribuição de tamanho de partícula da DPU 1 foi apresentado, primeiramente, na Figura 5.9 e será repetido na Figura 5.19. A Figura 5.20 apresenta o gráfico de distribuição de tamanho de partícula da DPU 24.

Ao analisar os gráficos de distribuição de tamanho de partícula (Figuras 5.19 e 5.20) pode-se concluir que, para uma razão NCO/OH = 1,7, o processo da acetona fornece produtos com tamanho de partícula médio menor e, o mais interessante, é a distribuição de tamanho de partícula, que se apresentou menos heterogêneo, ou seja, a DPU 24 possui uma distribuição de tamanho de partícula máis regular.

Figura 5.19. Repetição do gráfico de distribuição de tamanho de partícula da DPU 1.

Figura 5.20. Gráfico de distribuição de tamanho de partícula da DPU 24.

A DPU 25 (processo acetona), novamente, será comparada com a DPU 17 (processo pré-polímero), ambas com razão NCO/OH = 1,5. O gráfico de distribuição de tamanho de partícula da DPU 17 foi apresentado na figura 5.18 e a Figura 5.21 apresenta o gráfico de distribuição de tamanho de partícula da DPU 25.

Figura 5.21. Gráfico de distribuição de tamanho de partícula da DPU 25.

Ao contrário dos resultados de tamanho de partícula médio encontrados para as DPUs 1 e 24, 248 nm e 110 nm, respectivamente, ou seja, o processo do prépolímero resultou em partículas maiores para a razão NCO/OH = 1,7, para razão NCO/OH = 1,5, valor de tamanho de partícula médio maior foi encontrado para a DPU sintetizada pelo processo da acetona.

Analisando os gráficos de distribuição de tamanho de partícula, pode-se concluir, finalmente, que o processo da acetona produz partículas mais homogêneas, em relação ao tamanho, ou seja, sua distribuição ou polidispersão é menor que aquelas formadas pelo processo do pré-polímero.

Essas diferenças na distribuição de tamanho de partícula entre as reações são, provavelmente, devidas à etapa da dispersão, pois é nesta etapa que as micelas são formadas e, dependendo da velocidade de rotação, da viscosidade do pré-polímero, do tipo de hélice utilizada na dispersão entre outros fatores, as micelas podem apresentar tamanhos diferentes.

5.5. Resultados da caracterização do aspecto do filme

As DPUs sintetizadas com polióis poliéteres formaram filmes mais transparentes e com brilho quando comparadas com os filmes formados das DPUs sintetizadas com polióis poliésteres. Esses dois tipos de polióis conferem flexibilidade ao filme formado pela DPU, porém as DPUs sintetizadas com polióis poliéteres fornecem filmes com maior elongação, ou seja, capacidade de retornar ao estado inicial após deformação.

As DPUs sintetizadas com polióis policaprolactonas também formaram filmes flexíveis e transparentes, porém mais opacos.

Os filmes formados por DPUs sintetizadas com polióis policarbonatos apresentaram-se transparentes, com brilho, duros e quebradiços.

Figura 5.22. Fotografias do filme da DPU 1. A única diferença entre as fotografias é o ângulo em que as mesmas foram fotografadas.

6. CONCLUSÕES

A síntese de dispersões aquosas de poliuretano (DPUs) mostrou-se ser uma alternativa que acrescenta um avanço tecnológico importante devido à minimização e/ou a ausência de solventes orgânicos no produto final.

As dispersões estudadas apresentaram as características intrínsecas dos sistemas coloidais e a influência dos parâmetros reacionais mostrou-se ser de grande importância na síntese deste material, alterando a massa molar, o tamanho de partícula e a distribuição de tamanho de partícula e, conseqüentemente, a viscosidade das DPUs.

Em relação à caracterização das DPUs sintetizadas, destaca-se:

 As DPUs sintetizadas possuem massa molar ponderal média em torno de 20000-100000 g/mol. Estes valores foram, em geral, obtidos com polímeros PU produzidos a partir de polióis com maior massa molar, levando a uma maior cadeia de segmentos flexíveis no polímero disperso;

• Todas as DPUs apresentaram comportamento reológico semelhante, não-Newtoniano, apresentando histereses tixotrópicas e se ajustando ao modelo Pseudoplástico de Ostwald (Equação 1). A saber: $\tau = 1,85 \times 10^4 \cdot 0.4113$; r = 0,9949.

A partir da avaliação da influência de alguns parâmetros reacionais nas características das DPUs sintetizadas, destaca-se que:

• A utilização de 7 % de DMPA forneceu valores de massa molar semelhantes daqueles encontrados para as DPUs sintetizadas com

5 % do emulsificante interno, contudo o tamanho de partícula médio desta DPU se apresentou bastante maior que os valores obtidos para as demais;

• Quando se utilizou como emulsificante interno o DMBA e o diisocianato TMXDI não houve a formação de dispersão estável, a qual, após algum tempo, separou-se em fase aquosa e fase polimérica.

 A variação no grau de neutralização (de 120 % a 100 %), não afetou significativamente as propriedades das DPUs sintetizadas, porém o pH apresentouse mais baixo, provavelmente pela diminuição de excesso de amina livre na dispersão;

 A variação no grau de extensão (de 90 % para 100 %), também não afetou significativamente os valores de massa molar da dispersão. Entretanto a utilização de etilenodiamina (EDA) ao invés de hidrazina (HZ), na síntese de DPU com IPDI, aumenta significativamente a massa molar da dispersão.

 Na utilização do processo da acetona na síntese das DPUs notou-se a necessidade de quantidade maior de acetona, para que, na etapa da dispersão, a água possa efetivamente ser incorporada à solução do pré-polímero;

 O teor de sólidos máximo obtido foi de 41 % para as dispersões sintetizadas através do processo da acetona, enquanto que no processo do prépolímero obtiveram-se dispersões com teor de sólidos de até 48%;

• A viscosidade aumentou abruptamente nas dispersões com teor de sólidos acima de 42 %, confirmando dados da literatura⁹;

 A viscosidade das DPUs tende a aumentar com o aumento da razão NCO/OH como resultado do aumento da massa molar e do menor tamanho médio de partículas; Observou-se uma ampla e heterogênea distribuição de tamanho de partícula médio. A grande maioria das partículas das DPUs sintetizadas possui tamanho menor que 200 nm;

• O processo da acetona produziu dispersões com tamanho de partícula médio menor e com distribuição de tamanho de partícula mais homogêneo;

 As DPUs sintetizadas com polióis poliéteres formaram filmes mais transparentes e com maior brilho quando comparados com os filmes formados das DPUs sintetizadas com polióis poliésteres. Já as DPUs sintetizadas com polióis policaprolactonas também formaram filmes flexíveis e transparentes, porém mais opacos. E os filmes formados por DPUs sintetizadas com polióis policarbonatos apresentaram-se transparentes, com brilho, duros e quebradiços;

SUGESTÕES PARA A CONTINUIDADE DO TRABALHO

Na continuidade deste trabalho sugere-se estudar parâmetros reacionais, não enfatizados nesta dissertação, como:

- Utilizar outros diisocianatos;
- Utilizar misturas de diisocianatos;
- Realizar análise térmica (DSC), de microscopia eletrônica de transmissão e de difração de raio-x das DPUs;
- Realizar um estudo mais detalhado do comportamento reológico das DPUs;
- Realizar ensaios de adesão com as DPUs sintetizadas;
- Estudar a extrapolação (*scale-up*) do processo através de uma planta piloto.

7. REFERÊNCIAS BIBLIOGRÁFICAS

1. TAWA, Tsutomu; ITO, Shinzaburo. Preparation and reactions of hydrophilic isocianate micelles dispersed in water. **Colloid Polym Sci**, v. 283, p. 731-737, 2005.

2. JEONG, Ho Young; LEE, Min Hee; KIM, Byung Kyu. Surface modification of waterborne polyurethane. **Colloids and surfaces A: Physycoquem. Eng. Aspects**, v. 290, p. 178-185, 2006.

VILAR, Walter. Química e tecnologia dos poliuretanos. 3ª ed. Rio de Janeiro:
 Vilar Consultoria, 2005. 400 p.

4. OTTS, Daniel; URBAN, Marek. Heterogeneous crosslinking of waterbourne twocomponent polyuretanes (WB 2K-PUR); stratification processes and the role of water. **Polymer**, v. 46, p. 2699-2709, 2005.

5. COOPER, Stuart; TOBOLSKY, Arthur. Properties of linear elastomeric polyurethanes. **Journal of Applied Polymer Science**. v. 10, n. 12, p. 1837-1844, 1956.

6. HICKS JR., E. M.; ULTEE, A. J.; DROUGAS, C. Spandex elastic fibers: Development of a new type of elastic fiber stimulates further work in the growing field of stretch fabrics. **Science**, v. 147, n. 3656, p. 373-379, 1965.

7. SUBRAMANI, S.; CHEONG, I. W.; KIM, J. H. Synthesis and characterizations of silylated polyurethane from methyl ethyl ketoxime-blocked polyurethane dispersions. **European Polymer Journal**, v. 40, p. 2745-2755, 2004.

8. SUBRAMANI, S.; CHEONG, I. W.; KIM, J. H. Chain extension of water-borne polyurethanes from methyl ethyl ketoxime/ε-caprolactam-blocked aromatic isocyanates. **Progress in organic coatings**, v. 51, p. 329-338, 2004.

9. NANDA, Ajaya; WICKS, Douglas. The influence of the ionic concentration, concentration of the polymer, degree of neutralization and chain extension on aqueous polyurethane dispersions prepared by the acetone process. **Polymer**, v. 47, p. 1805-1811, 2006.

10. PÉREZ-LIMIÑANA, M. Angeles et al. Characterization of waterborne polyurethane adhesives containing different amounts of ionic groups. **International Journal os Adhesion & Adhesives**, v. 25, p. 507-517, 2005.

11. CHATTOPADHYAY, D. K.; RAJU, K. V. S. N. Structural engineering of polyurethane coatings for high performance applications. **Progress in Polymer Science**, v. 32, p. 352-418, 2007.

12. MADBOULY, Samy A. et al. Rheological behavior of aqueous polyurethane dispersions: Effects of solid contend, degree of neutralization, chain extension, and temperature. **Macromolecules**, v. 38, p. 4014-4023, 2005.

13. COUTINHO, Fernanda; DELPECH, Márcia. Síntese e caracterização de poliuretanos em dispersão aquosa à base de polibutadieno líquido hidroxilado e diferentes diisocianatos. **Polímeros: ciência e tecnologia**, v. 12, n. 4, p. 248-254, 2002.

14. DODGE, J. In: **Synthetic Methods in Step-Growth Polymers**. Polyurethanes and polyureas. United States of America, 2003, p. 197-258.

15. SUBRAMANI, Sankaraiah et al. Crosslinked aqueous dispersion of silylared poly(urethane-urea)/clay nanocomposites. **Composites Science and technology**, v. 67 p. 1561-1573, 2007.

16. DZIERZA, W. Mechanical properties of crosslinked polyurethanes. **Journal of applied polymer science**, v. 22, p. 1331-1342, 1978.

17. SÁNCHES-ADSUAR, M. S. et al. Relevance of polyurethane configuration on adhesion properties. **Int. J. Adhesions and Adhesives**, v. 14, n. 3, p. 193-200, 1994.

18. MONDAL, S.; HU, J. L. Structural characterization and mass transfer properties of nonporous-segmented polyurethane membrane: Influence of the hidrofílic segment contend and soft segment melting temperature, **Journal of membrane science**, v. 276, p. 16-22, 2006.

19. KRÓL, Piotr. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethanes elastomers, copolymers and elastomers. **Progress in materials science**, v. 52, p. 915-1015, 2007.

20. ŠEBENIK, Urška; KRAJNC, Matjaž. Influence of the soft segment length and content on the synthesis and properties of isocyanate-terminated urethane prepolymer. **International Journal of Adhesion & Adhesives**, v. 27, p. 527-535, 2007.

21. COUTINHO, Fernanda; DELPECH, Márcia. Síntese e caracterização de poliuretanos aniônicos em dispersão aquosa à base de polibutadieno líquido hidroxilado, poli(glicol propilênico) e diisocianato de isoforona. **Polímeros: ciência e tecnologia**, v. 10, n. 1 p 49-55, 2000.

22. SARIER, Nihal; ONDER, Emel. Thermal characteristics of polyurethane foams incorporated with phase change materials. **Thermochimica Acta**, v. 454, p. 90-98, 2007.

23. DELPECH, Márcia; COUTINHO, Fernanda. Waterborne anionic polyurethanes and poly(urethane-urea)s: influence of the chain extender on mechanical and adhesive properties. **Polymer testing**. v. 19, p. 939-952, 2000.

24. LI, Qing-Na; SUN, Dong-Cheng. Synthesis and characterization of high solid contend aqueous polyurethane dispersion. **Journal of applied polymer science**, v. 105, p. 2516-2524, 2007.

25. JIANG, Li; XU, Qiang; HU, Chun Pu. Preparation and characterization of waterborne polyurethaneurea composed of dimer fatty acid polyester polyol. **Journal of nanomaterials**, v. 2006, article ID 14906, p. 1-10, [2006].

26. MADBOULY, Samy et al. Thermal-induced simultaneous liquid-liquid phase separation and liquid-solid transition in aqueous polyuretane dispersions. **Polymer**, v. 46, p. 10897-10907, 2005.

27. FLICKINGER, G. L.; DAIRANIEH, I. S.; ZUKOSKI, Z. F. The reology of aqueous polyurethane dispersions. **J. Non-Newtonian Fluid Mech**, v. 87, p. 283-305, 1999.

28. YEN, Meng-Shung; TSAI, Ping-Yuan; HONG, Po-Da. The solution properties and membrane properties of polydimethylsiloxane waterborne polyurethane blended with the waterborne polyurethanes of various kinds of soft segments. **Colloids and Surfaces A: Physichem. Eng. Aspects**, v. 279, p. 1-9, 2006.

29 KÄSTNER, U. The impact of rheological modifiers on waterborne coatings. **Coloids and surfaces – A: Physicochemical and engineering aspects**, v. 183-185, p. 805-821, 2001.

30. RICHTER, Reinard H.; PRIESTER, Ralph D. Isocyanates, Organic. **Kirk-Othmer Encyclopedia of Chemical Technology**, John Wiley & Sons. Disponível em http://www.interscience.wiley.com/emrw/9780471238966/kirk/article/isocrich.a01/cur ent/pdf. Acesso em 31 de outubro de 2007.

31. DEARTH, R. S.; MERTES, H.; JACOBS, P. J. An overview of the structure/properties relationship of coating based on 4,4'-dicyclohexylmethane diisocyanate (H₁₂MDI). **Progress in organic coatings**, v. 29, p. 73-79, 1996.

32. LIMA, Viviane de. **Estudo de catalisadores organometálicos na síntese de poliuretanos**. Porto Alegre. 2007. 96p. Dissertação (Mestrado em Engenharia e Tecnologia de Materiais). Faculdade de Engenharia, Pontifícia Universidade Católica do Rio Grande do Sul, Brasil.

33. COOPER, Stuart L.; TOBOLSKY, Arthur. Anomalous depression of rubbery modulus through crosslinking. **Journal of applied polymer science**, v. 11, p. 1361-1369, 1967.

34. CYTEC. Informativo técnico TMXDI. West Paterson, 2001.

35. BILLMAYER, F. W. **Textbook of Polymer Science**. New York: John Wiley & Sons, 1984, 578 p.

36. AITKEN, R. R.; JEFFS, G. M. Thermoplastic polyurethane elastomers based on aliphatic diisocyanates: transições térmicas. **Polymer**, v. 18, p. 197-198, 1977.

37. KIM, Bum Soo; KIM, Byung Kyu. Enhancement of hydrolytic stability and adhesion of waterborne polyurethanes. **Journal of applied polymer science**, v 97, p. 1961-1969, 2005.

38. FURUKAWA, Mutsuhisa; SHIIBA, Tetsuro; MURATA, Shigeru. Mechanical properties and hidrolityc stability of polyesterurethane elastomers with alkyl side groups. **Polymer**, v. 40, p. 1791-1798, 1999.

39. SHOONOVER, Jon R. et al. Infrared linear dichroism study of a hydrolytically degraded poly(ester urethane). **Polymer degradation and stability**, v. 74, p. 87-96, 2001.

40. BROWN, Daniel W.; LOWRY, Robert E.; SMITH, Leslie E. Kinetics of hydrolytic aging of polyester urethane esaltomers, **Macromolecules**, v. 13, p. 248-252, 1980.

41. ULRICH, Henri. Urethane polymers. **Kirk-Othmer Encyclopedia of Chemical Technology**, John Wiley & Sons. Disponível em http://www.interscience.wiley.com/emrw/9780471238966/kirk/article/isocrich.a01/cur ent/pdf. Acesso em 31 de outubro de 2007 .

42. RHODIA. FISPIQ HDI, março, 1998.

43. UNION CARBIDE CORPORATION. Ficha técnica policaprolactona, 1993.

44. PERSTORP. Informativo técnico policarbonatos.

45. CHANG, S. L. et al. Effect of polyester side-chains on the phase segregation of polyurethanes using small-angle X-ray scatterin. **Polymer**, v. 39, n. 15, p. 3479-3489, 1998.

46. MISHRA, Aswini K et al. FT-IR and XPS studies of polyurethane-urea-imide coatings. **Progress in organic coatings**, v. 55, p. 231-243, 2006.

47. BAI, Chen Yan et al. Water resistance of the membranes for UV curable waterborne polyurethane dispersions. **Progress in organic coatings**, v. 59, p. 331-336, 2007.

48. SEYMOUR, Robert; COOPER, Stuart. Viscoelastic properties of polyurethane block polymers. **Adv urethane sci technol**, v. 3, p. 66-80, 1966.

49. KOUTSKY, J. A.; HIEN, N. V.; COOPER, S. L. Some results on electron microscope investigations of polyether-urethane and polyester-urethane block copolymers. **Polymer Letters**, v. 8, p 353-359, 1970.

50. MEQUANINT, Kibret; SANDERSON, Ronald. Hydrolytic stability of nano-particle polyurethane dispersions: Implacations to their long-term use. **European polymer journal**, v. 42, p. 1145-1153, 2006.

51. STANFORD, John L.; STILL, Richard H; WILKINSON, Arthur N. Effects of segment prepolymer functionality on structure development in RIM copolymers. **Polymer**, v. 36, n. 18, p. 3555-3564, 1995.

52. FLICKINGER, G. L.; ZUKOSKI, C. F. Rheology of aqueous polyurethane dispersions: Links between flow and particle interaction. **J. Rheol**. v. 46, n.2, p. 455-480, 2002.

53. ASIF, Anila et al. Physical and thermal properties of UV curable waterborne polyurethane dispersions incorporating hyperbranched aliphatic polyester of varying generation number. **Polymer**, v. 46, n. 38, p. 11066-11078, 2005.

54. MOSS, Michelle. Polyurethane dispersions for adhesive applications. **Pigment & Resin Technology**, v. 26, n. 5, p. 296-299, 1997.

55. Book of American Society for Testing and Materials Standards ASTM D 1638-74 (1979).

56. AMERICAN SOCIETY FOR TESTING AND MATERIALS. Standart test method for isocyanate groups in urethane material or prepolymers. ASTM 2572. 1997.

57. SCHRAMM, Gebhard. Reologia e Reometria: Fundamentos Teóricos e Práticos. 2ª ed. São Paulo: Artliber, 2006. 232 p.

58. PATERLINI, Willian C. et al. Efeito da concentração do catalisador acetilacetonato férrico na cura de poliuretano à base de polibutadieno líquido hidroxilado (PBLH) e diisocianato de isoforona (IPDI). **Química Nova**, v. 25, n. 2, p. 221-225, 2002.

59. KHANNA, Yash P.; MCDONNEL, Milton E.; HAN, Peter K. In: **Materials characterization and chemical analysis**, Rheology and molecular weight of polymers. Livingston, ano, p 287-309.

60. SAD, Cristina M. S. et al. Estudo da classificação reológica de alguns petróleos leves e médios. **30ª Reunião Anual da Sociedade Brasileira de Química**: 2007, São Paulo. Anais da 30ª Reunião Anual da Sociedade Brasileira de Química, São Paulo: SBQ.

61. ALONZO, Sérgio. Rheology aspects of leather finishing formulations. **Chem. Eng. Comm.**, v. 192, p. 839-854, 2005.

62. FAN, Haojun; XINNIAN, Ling Li; SHI, Bi. The water vapour permeability of leather finished by thermally-responsive polyurethane. **Journal of the society technologists and chemists**, v. 89, p.121-125, 2005.

63. DŽUNUZOVIĆ, E. et al. Photoreactive hyperbranched urethane acrylates modified with a branched saturated fatty acid. **Reactive & functional polymers**, v. 66, n. 10, p. 1097-1105, 2006.

64. HANS-JÜRGEN; JAHNY, Karsten; VOGT-BIRNBRICH, Bettina. Polyurethane macromers – new building blocks for acrylic hybrid emulsions with outstanding performance. **Progress in organic coatings**, v. 43, p. 251-257, 2001.

65. DEGUSSA. Ficha técnica poliol poliéster A.

66. PERSTORP. Ficha técnica poliol policarbonato A.

67. BAYER. Ficha técnica IPDI.

68. SILVERSTEIN, R. M.; Bassler, G. C.; Morril, T. C. Identificação
Espectrométrica de Compostos Orgânicos. Rio de Janeiro: Guadanabara, 1994, 387 p.

APÊNDICES

APÊNDICE A – Gráfico de GPC da DPU 1 (sintetizada com o poliol poliéster linear A e o diisocianato TMXDI).

	Distribution Name	Mv (Daltons)	K (dl/g)	alpha	Intrinsic ∀iscosity (dl/g)	Mn (Daltons)	Mw (Daltons)	MP (Daltons)	Mz (Daltons)	Mz+1 (Daltons)	Polydispersity
1						23065	44228	63470	65372	82178	1,917536

104

APÊNDICE B – Gráficos de distribuição de tamanho de partícula obtidos para as demais DPUs.

DPU 7

DPU 18

Tamanho de partícula (nm)

0,011 0,01 Distribuição de densidade ponderal Q(x) [1/hm] 0,009 0,008 0,007 0,006 0,005 0,004 0,003 0,002 0,001 And Anterna millin 0 500 1.000 1.500

Tamanho de partícula (nm)

DPU 20
ANEXO

ANEXO A: Publicações originadas deste trabalho.

- OLIVEIRA, V. M. S.; Rocha, F. R.; LIGABUE, R.; EINLOFT, S.; DULLIUS, J.; Klein, C. F. Influência de Parâmetros Reacionais na Massa Molar e Viscosidade de Dispersões PU. In: II Mostra de pesquisa da pós-graduação da PUCRS, 2007, Porto Alegre.
- OLIVEIRA, V. M. S.; Klein, C. F.; Rocha, F. R.; DULLIUS, J.; EINLOFT, S.; LIGABUE, R. Influência de parâmetros reacionais na massa molar e viscosidade de dispersões aquosas de poliuretano. In: 9° Congresso Brasileiro de Polímeros, 2007, Campina Grande. Anais do 9° Congresso Brasileiro de Polímeros, 2007.
- OLIVEIRA, V. M. S.; JOHNSON, A.; DULLIUS, J.; EINLOFT, S.; LIGABUE, R. Síntese de Resinas PU Utilizando Diferentes Polióis. In: 17° Congresso Brasileiro de Engenharia e Ciência dos Materiais, 2006, Foz de Iguaçu. Anais do 17° Congresso Brasileiro de Engenharia e Ciência dos Materiais, 2006.
- OLIVEIRA, V. M. S.; COSER, E.; DULLIUS, J.; LIGABUE, R.; EINLOFT, S. Síntese de Resinas Poliuretânicas a Partir de Matérias-primas Comerciais. In: 8º Congresso Brasileiro de Polímeros - CBPol, 2005, Águas de Lindóia - SP. 8º Congresso Brasileiro de Polímeros - CBPol, 2005.

- OLIVEIRA, V. M. S.; Rocha, F. R.; LIGABUE, R.; DULLIUS, J.; EINLOFT, S. Sintese e caracterização de resina PU a partir de diisocianatos e polióis comerciais. In: Mostra de pesquisas da pós-graduação, 2006, Porto Alegre. Mostra de pesquisas da pós-graduação, 2006.
- OLIVEIRA, V. M. S.; EINLOFT, S.; LIGABUE, R.; DULLIUS, J.; COSER, E. Síntese e Caracterização de Resina PU a Partir de Diisocianato e Poliol Comercial. In: VI Salão de Iniciação Científica, 2005, Porto Alegre. VI Salão de Iniciação Científica - PUCRS, 2005.