Pontifícia Universidade Católica do Rio Grande do Sul
Programa de Pós-Graduação Zoologia

História evolutiva de Conepatus (Carnivora: Mephitidae):
 padrões biogeográficos de diversificação, investigação
 filogenética e revisão taxonômica do gênero

Manoel Ludwig da Fontoura Rodrigues

Tese de Doutorado
Porto Alegre

- 2013 -

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE BIOCIÊNCIAS

 PROGRAMA DE PÓS-GRADUAÇÃO EM ZOOLOGIA
HISTÓRIA EVOLUTIVA DE CONEPATUS (CARNIVORA: MEPHITIDAE): PADRÕES BIOGEOGRÁFICOS DE DIVERSIFICAÇÃO, INVESTIGAÇÃO FILOGENÉTICA E REVISÃO TAXONÔMICA DO GÊNERO

Manoel Ludwig da Fontoura Rodrigues
Orientador: Dr. Eduardo Eizirik

TESE DE DOUTORADO
PORTO ALEGRE - RS - BRASIL

SumÁrio

Agradecimentos ii
Resumo iv
Abstract V
Apresentação vi
Capítulo I - Introdução Geral 1
Capítulo II - Complex evolution and highly structured populations of South American hog- nosed skunks (Conepatus) 20
Capítulo III - Taxonomic revision of Conepatus (Carnivora: Mephitidae) based on molecular phylogenetics, morphological comparisons and distributional patterns 62
Capítulo IV - Conclusões Gerais 130
Anexo I - Normas para submissão de artigos científicos ao periódico Journal of Heredity 140
Anexo II - Normas para submissão de artigos científicos ao periódico Zoological Journal of the Linnean Society 145
Anexo III - Recent advances in the knowledge of Molina's Hog-nosed Skunk Conepatus chinga and Striped Hog-nosed Skunk C. semistriatus in South America (Publicado no periódico Small Carnivore Conservation) 150

AgRADECIMENTOS

É impossível iniciar os devidos agradecimentos e não lembrar de toda a trajetória escolar até o dia de hoje. Um doutorado é apenas mais um de vários ciclos de aprendizado e acumulação de conhecimento, que começaram na escola ou mesmo antes. Ninguém faz um doutorado sem saber ler e escrever, por exemplo, então acho justo que alguém seja reconhecido por isso. Infelizmente, não haveria espaço e paciência do leitor para agradecer a todos, então citarei apenas aqueles que estiveram mais diretamente ligados à minha caminhada até aqui. De uma maneira simbólica começarei agradecendo à professora que me alfabetizou: Aninha. Esse não é exatamente o nome dela, mas é como eu me lembro. Estendo esse agradecimento simbólico a todos os professores que tive e que foram decisivos na minha formação, seja dentro ou fora da escola. Também devo um agradecimento especial ao meu primeiro professor de biologia, Henrique Meyer, certamente um dos principais responsáveis pela minha escolha pelas ciências biológicas. A partir daqui, inicio os agradecimentos relacionados a este último ciclo, o doutorado.

Agradeço à minha família, apoio constante desde sempre e para sempre.

Pelo suporte e parceria, aos meus amigos, de dentro e de fora da biologia.

Aos companheiros do lab Genoma, com quem dividi meu dia-a-dia nos últimos oito anos. Em especial agradeço à Renata Bornholdt, que me ajudou decisivamente com as análises morfológicas. Menções honrosas a Felipe, Nelson, Alice, Ricardo, Beta, Cladi, Priscilla, Talita, Lari, Ane, Déa, Marina, Mirian e Thomas, valoroso pessoal da velha guarda. E também Cristine, Taia, Tatinha, Henrique, Carla, Lisie, Livia, Ale, Fê Pedone, Adri, Fabiano, Laurinha e Tiago, colegas de grupo de pesquisa. Agradeço também aos professores Sandro e Maurício, sempre disponíveis para discussões e auxílios importantes.

À Vanessa Dias, que trabalhou comigo durante praticamente todo o doutorado.

Ao meu orientador, Eduardo Eizirik, pela orientação, por ser um dos meus principais norteadores do campo científico desde que eu me conheço por (projeto de) cientista, e principalmente pela amizade que vai além da academia.

A Kristofer Helgen, curador da Coleção Mastozoológica do Museu Nacional Americano, pela orientação e acolhida durante meu (breve) período de doutorado-saunduíche no Smithsonian Institution. Estendo este agradecimento a todo o pessoal desta instituição que viabilizou minha visita, e a Brian e Christine, que me acolheram em sua casa.

Aos professores do PPG-Zoologia da PUCRS, em especial ao professor Taran Grant, ilustre figura que me ensinou muito, principalmente no que diz respeito à postura crítica que um cientista deve ter em todas as instâncias acadêmicas, independente de questões pessoais.

Ao meu grande amigo e companheiro de projeto, Carlos Benhur Kasper, pela amizade, parceria nas discussões de planejamento e resultados, idas a congressos, coleta de amostras e idas a campo.

À minha colaboradora e grande amiga Gitana, pela parceria desde o começo deste projeto, há longos anos atrás. Agradeço também a Diego Castillo, Adam Ferguson e Juliana Vianna, pela colaboração direta e que viabilizou boa parte do trabalho final.

A todos os colaboradores, coautores e curadores de museu que disponibilizaram dados, amostras, tempo e paciência em meu auxílio.

À minha querida amiga Josi, responsável maior por me fazer trocar as bactérias pelos mamíferos durante a graduação, além de todo o apoio e parceria, dentro e fora da academia em todos os anos que se seguiram.

A CAPES pela bolsa de doutorado e de doutorado-sanduíche, e também ao pessoal da PUCRS e do PPG-Zoologia, que ajudaram em vários aspectos e viabilizaram esse projeto.

À minha querida Mariana, companheira incondicional dos últimos anos, pelo suporte e por me fazer todos os dias uma pessoa melhor (além de incontáveis motivos mais).

Resumo

Conepatus (Mammalia: Carnivora) compreende um dos grupos de mamíferos neotropicais menos conhecidos. Apesar de apresentar uma extensa área de distribuição, indo do sul da América do Norte ao extremo sul da América do Sul, poucos estudos foram conduzidos até o momento sobre o gênero. A falta de conhecimento envolvendo ecologia, morfologia e distribuição das diferentes populações dificulta estudos comparativos, fazendo com que grande parte da diversidade do grupo permaneça desconhecida. O problema mais básico, contudo, parece ser a falta de estudos envolvendo sua história evolutiva e relações filogenéticas, disciplinas balizadoras da taxonomia moderna. Uma classificação taxonômica sólida é primordial para o estudo de qualquer grupo, já que é o princípio que norteia a descrição dos demais aspectos de uma determinada população. Além das contribuições taxonômicas, conhecer a história evolutiva de um táxon é importante também por que é a partir do entendimento cumulativo da estrutura da diversidade de vários grupos que se pode entender grandes padrões históricos. Assim, para contribuir com o conhecimento relativo a essas questões fundamentais, este estudo procurou revisar vários aspectos deste gênero. Entre eles estão padrões filogenéticos, evolutivos, morfológicos, de distribuição e de estrutura populacional, culminando assim em uma revisão taxonômica. Para tanto, foram realizadas análises moleculares baseadas em 1.902 pares de base pertencentes a três fragmentos do DNA mitocondrial, além de oito locos de microssatélites nucleares. Também foram conduzidos dois tipos de análise morfológica. A primeira baseou-se em um painel de 29 medidas de crânio e dentes para identificar padrões de estrutura populacional, enquanto a segunda procurou por diferenças no padrão corporal geral entre algumas das populações identificadas. Finalmente, realizou-se uma extensa busca por registros de ocorrência geográfica do gênero em publicações originais e bases de dados de coleções científicas. Os resultados obtidos indicam que Conepatus é um gênero bastante estruturado geograficamente, apresentando, no mínimo, 10 grupos distintos. Também é possível afirmar que ao menos alguns dos grupos identificados apresentam um nível perceptível de diferenciação morfológica em termos de aspectos corporais gerais, o que reforça a idéia de estruturação neste grupo. A respeito dos padrões de distribuição, fica claro que o gênero habita quase que exclusivamente áreas de campo e florestas secas, sendo raramente encontrado em florestas densas. Algumas descontinuidades de distribuição podem ser percebidas, podendo estar diretamente ligadas ao isolamento total ou parcial dos grupos. A história evolutiva do gênero é complexa, e parece estar ligada a padrões biogeográficos amplos. A coalescência dos grupos da América do Sul e Central é de cerca de 3,2 milhões de anos atrás (MAA), apoiando a hipótese de que o gênero invadiu o continente sul-americano logo após o fechamento do Istmo do Panamá, há 2.8 MAA . A coalescência das amostras sul-americanas, contudo, é bem mais recente (cerca de 0.85 MAA), sugerindo uma evolução complexa, possivelmente ligada à dinâmica vegetacional intrincada da América do Sul ao longo das eras glaciais do Pleistoceno. Finalmente, a revisão taxonômica proposta sugere que os 10 grupos identificados sejam elevados à categoria de espécie, devido ao padrão observado de diferenciação entre estas linhagens.

ABSTRACT

Abstract

Evolutionary history of Conepatus (Carnivora: Mephitidae): biogeographic patterns of diversification, phylogenetics investigation and taxonomic revision Conepatus (Mammalia: Carnivora) comprises one of the least known groups of Neotropical mammals. Despite its broad distribution, ranging from southern North America to southernmost South America, few studies have been conducted on this genus. The lack of knowledge regarding the ecology, morphology and distribution of different populations hampers comparative studies, resulting in much of the group's diversity remaining unknown. The most basic problem, however, seems to be the lack of studies regarding the evolutionary history and phylogenetic relationships among its populations, which are the main grounds for modern taxonomic classifications. A solid taxonomic arrangement is critical, since it is the principle that guides the description of all other aspects of a given population. Finally, understanding the evolutionary history of a taxon is important not only due to taxonomic concerns, but also because it is the cumulative knowledge on the diversification of different groups that allows the description of major biogeographic patterns. Attempting to shed light on several of these aspects, this study investigated phylogenetic patterns, evolutionary history, population structure, morphological variation and general distribution of Conepatus, which altogether led to a taxonomic revision. To accomplish this, molecular analyses were performed, based on 1,902 base pairs of the mitochondrial DNA and eight microsatellite loci. We also conducted two types of morphological surveys. The first one was based on a panel of 29 craniodental measurements, while the second one investigated the differentiation of external body features among previously identified populations. Finally, we performed an extensive search for geographic records in original publications and scientific collection databases. Overall, the results indicated that Conepatus is a highly structured genus, encompassing at least 10 distinct geographic groups. In addition, at least some of these groups presented a noticeable level of morphological differentiation in terms of general body aspects, which reinforces the identified population structure. With respect to distributional aspects, Conepatus seems to inhabit almost exclusively open habitats and dry forests, rarely being found in moist dense forests. Some distributional discontinuities could be identified, which may be directly linked to the complete or partial isolation between groups. The evolution of the genus is complex, and appears to be linked to broad biogeographic patterns. The coalescence of Central and South American groups was estimated in ca. 3.2 million years ago (MYA), supporting the hypothesis that this genus colonized South America right after the complete closure of the Panama Isthmus, ca. 2.8 MYA, during the Great American Biotic Interchange. The coalescence of the South American populations, however, is far more recent (ca. 0.85 MYA), suggesting a complex evolutionary history, possibly linked to the peculiar vegetation dynamics that took place in South America during the cycles of Pleistocene ice ages. Finally, a new taxonomic arrangement is proposed, suggesting that all 10 identified groups could be elevated to the rank of species, due to the observed pattern of differentiation among these lineages.

Apresentação

A presente tese de doutoramento está estruturada na forma de artigos científicos (Capítulos II e III), acompanhados de introdução e conclusões gerais (Capítulos I e IV, respectivamente). Introdução e conclusões gerais estão redigidas em português, seguindo as normas da revista Zoological Journal of the Linnean Society para referências bibliográficas. Os artigos estão em fase de finalização e serão submetidos aos periódicos científicos Journal of Heredity (artigo que representa o Capítulo II) e Zoological Journal of the Linnean Society (Capítulo III), após a incorporação das recomendações recebidas da banca examinadora. As normas de submissão de cada uma das revistas estão anexadas no final do presente documento (Anexos I e II). Adicionalmente, está anexado um artigo em que o doutorando é o segundo autor (Anexo III), publicado no periódico Small Carnivore Conservation, durante o primeiro ano do período deste doutoramento (2009). Este artigo faz uma revisão geral do conhecimento à época sobre duas das espécies sul-americanas de Conepatus, C. chinga e C. semistriatus, e também apresenta alguns resultados iniciais dos estudos desenvolvidos por este doutorando e seus colaboradores.

CAPÍTULO I - INTRODUÇÃO GERAL

Zorrilhos, jaratatacas, jitiras, jacarambevas ou cangambás. Estes são alguns dos nomes populares pelos quais são conhecidos os membros do gênero Conepatus no Brasil. Nos países de língua espanhola recebem outras diversas denominações: zorrinos, zorrillos, zorros hediondos, chingues ou mapurites. No inglês, hog-nosed skunks ou rooter skunks. Todas estas denominações se referem a um grupo de animais bastante conspícuos. São mamíferos de pequeno a médio porte, pesando de 0,5 a 4 quilos e medindo de 40 centímetros a quase 1 metro de comprimento, sendo aproximadamente um terço deste tamanho devido à cauda. O corpo é fusiforme, com focinho alongado e unhas grandes. A coloração dos pelos de fundo vai do negro ao marrom, com uma característica coloração branca no dorso (Dragoo, 2009).

O padrão da coloração dorsal varia enormemente, tanto entre populações quanto dentro das mesmas, sendo inclusive motivo de controvérsias taxonômicas ao longo da história. Há desde indivíduos com uma faixa contínua e larga, que se estende desde a cabeça até a cauda, até animais sem praticamente qualquer pelo branco. Indivíduos intermediários geralmente apresentam duas listras brancas, que podem variar tanto na largura quanto no comprimento, com diferentes padrões de manchas na cabeça e cauda (Figura 1). Recentemente, um indivíduo aparentemente albino foi também registrado na Argentina (Castillo, 2011). Muitos autores basearam-se nas diferenças de coloração para sugerir agrupamentos taxonômicos, mas estudos recentes mostram que a variação de pelagem dentro de uma mesma população é tão grande que a torna pouco aplicável para a delimitação de táxons (Van Gelder, 1968; Dragoo et al., 2003; Schiaffini et al., 2013).

Parece claro, contudo, que tal combinação de cores os torna inconfundíveis, o que talvez tenha relação direta com a sua característica mais conhecida. Característica esta que compartilham com os outros gêneros da família a que pertencem, Mephitidae (Wozencraft, 2005). Os mefitídeos possuem um par de glândulas perianais capazes de produzir e armazenar uma quantidade considerável de uma secreção líquida fétida, utilizada como defesa (Dragoo, 2009). Em situação de perigo, os indivíduos levantam a cauda e borrifam a substância a até um metro de distância na direção da ameaça, que
é imediatamente afastada (Brazil, 1924). Alguns autores associam esta coloração conspícua com aposematismo, isto é, uma vez que o agressor a relacione com o forte odor, passa a evitá-la (Stankowich et al., 2011). A potência singular desta defesa química atraiu o interesse de vários pesquisadores, que tentam rastrear seus componentes moleculares desde 1862. Wood (1999) publicou uma revisão bastante informativa sobre o tema, incluindo o histórico da pesquisa e uma tabela comparativa com os principais componentes encontrados em espécies dos três gêneros americanos de Mephitidae. Segundo este autor, a composição da secreção de C. leuconotus contém 71\% de (E)-2-buteno-1-tiol, um composto organossulfurado que parece assim ser o responsável pelo forte odor, altamente eficiente como arma de defesa. Coincidentemente ou não, a predação de zorrilhos por outros animais já foi eventualmente registrada (Yáñez et al., 1986; Foster et al., 2010), mas parece rara.

Figura 1. Aparência geral e variação morfológica e de coloração de indivíduos do gênero Conepatus de diferentes regiões da sua distribuição. A - Patagônia, América do Sul (Crédito: Dênis Sana); B - Pampas, Brasil (Crédito: Manoel LF Rodrigues); C - Arizona, EUA (Crédito: Saguaro National Park, disponível em http://www.inaturalist.org); D - Cusco, Peru (Crédito: Edward Hurme, disponível em http://www.inaturalist.org).

A eficiência na defesa contra predadores naturais talvez seja uma das explicações para o grande sucesso do gênero em termos de distribuição, já que

Conepatus é um dos gêneros de mamíferos neotropicais com maior área de ocorrência. Sua distribuição e hábitos parecem estar ligados a ambientes de campo (Nowak, 1999), mas alguns registros em áreas de floresta densa (e.g. Cáceres, 2004) e a falta de uma revisão detalhada acerca das áreas de ocorrência deixam alguns pontos dessa discussão em aberto. A distribuição conjunta das quatro espécies atualmente reconhecidas vai da Patagônia até o sul da América do Norte, sendo registrada em quase todos os países da América do Sul e Central, além de México e Estados Unidos (Figura 2).

Figura 2. Distribuição das quatro espécies atualmente reconhecidas de Conepatus, baseada nos mapas da Lista Vermelha da IUCN (IUCN, 2012). Amarelo - C. humboldtii; Verde - C. chinga; Vermelho - C. semistriatus; Azul - C. leuconotus.

Ao mesmo tempo, algumas características da biologia destes animais também parecem estar relacionadas ao seu grande sucesso em vários e diferentes ambientes. Apesar de poucas populações já terem sido estudadas quanto a este quesito, os
poucos trabalhos são congruentes, apontando um padrão geral que será apresentado a seguir. Zorrilhos são animais noturnos, solitários e com comportamento territorialista pouco desenvolvido (Fuller et al., 1987; Donadio et al., 2001; Castillo et al., 2011a Kasper et al., 2012a). O forrageamento é intenso e dura quase todo o período de atividade do indivíduo, quando ele revira o solo utilizando suas fortes garras e boa capacidade olfatória à procura de insetos e larvas (Kasper et al., 2009; Dragoo, 2009). Alternativamente, zorrilhos podem se alimentar de outros invertebrados, ovos, peixes, sapos e aves, além de carcaças de outros animais e até plantas e frutas (Travaini et al., 1998; Donadio et al., 2004; Medina et al., 2009; Peters et al., 2011), o que os torna bastante generalistas e, portanto, mais plásticos em termos de adaptação a diferentes condições ambientais. Também usam suas garras para cavar buracos, os quais usam como tocas, onde geralmente repousam durante o período diurno. Alternativamente, também se abrigam em cavidades deixadas por outros animais, ocos de árvores e mesmo elementos da vegetação, mudando com frequência o local de refúgio (Castillo et al., 2011b; Kasper et al., 2012a). Finalmente, pouco se sabe sobre sua reprodução. Parecem se reproduzir uma vez ao ano, tendo geralmente de dois a três filhotes. Há cuidado parental por parte das mães até que os filhotes dispersem, alguns meses após o nascimento (Kasper et al., 2009; Dragoo, 2009). A capacidade reprodutiva relativamente alta é outro fator que pode contribuir para o sucesso do gênero.

Contudo, apesar de estarem presentes em vários ambientes, sendo até mesmo abundantes em alguns deles (e.g. Kasper et al., 2012b), o gênero está entre os grupos de mamíferos neotropicais menos conhecidos (Oliveira, 2006). Poucas populações foram estudadas quanto à sua morfologia, ecologia e distribuição precisa, e quase toda a biologia descrita para o grupo está baseada em alguns poucos estudos conduzidos com populações do sul da América do Sul (Argentina, Chile, Uruguai e sul do Brasil). A distribuição geográfica disponibilizada pela Lista Vermelha da IUCN (IUCN, 2012) é claramente incorreta, deixando de incluir algumas regiões onde a presença de indivíduos do gênero é notória, como boa parte do Brasil e o centro da Argentina (como exemplo de registros geográficos para estas localidades ver Cavalcanti, 2010; Peters et al., 2011; Schiafiini et al. 2013). Dessa maneira, estudos comparativos e de revisão do gênero ficam bastante comprometidos, o que pode levar a uma
subestimativa da diversidade real de formas e hábitos que compõem o gênero. Também importante, a falta de estudos comparativos impede que se gerem hipóteses de estruturação geográfica, uma vez que é a partir de diferenças aparentes entre as diversas populações que se pode suspeitar que duas ou mais delas estejam total ou parcialmente isoladas.

A taxonomia, de fato, é um dos problemas mais claros e urgentes no grupo, uma vez que uma sólida delimitação de unidades taxonômicas é a base para que futuros estudos descritivos caracterizem os diferentes grupos, identificando também possíveis ameaças regionais à sua conservação. Até o momento não existem revisões amplas e modernas do gênero, o que está diretamente relacionado ao escasso conhecimento sobre sua história evolutiva e relações filogenéticas internas. A seção seguinte visa a revisar os aspectos já estudados e as principais limitações no conhecimento referente à evolução e taxonomia de Conepatus dentro do contexto da sua família, Mephitidae.

Taxonomia e história evolutiva de Mephitidae

Carnivora é uma das ordens mais populares entre os mamíferos, incluindo vários animais conhecidos pelo público em geral, como felinos, hienas, canídeos, ursos, lontras, focas, leões marinhos e os próprios zorrilhos. Classicamente, 11 famílias eram reconhecidas pela literatura (Nowak, 1999), mas recentes avanços moleculares na área elevaram este número para 16, resolvendo boa parte das incertezas taxonômicas do grupo (Eizirik et al., 2010). Entre as novas famílias está Mephitidae, anteriormente colocada dentro de Mustelidae como subfamília Mephitinae devido ao compartilhamento de alguns caracteres, agora sabidamente homoplásicos: glândulas perianais maiores que em outros carnívoros e perda de algumas estruturas dentárias. As glândulas dos mefitídeos, no entanto, são ainda mais desenvolvidas que nos mustelídeos, dando à família sua característica mais típica, que ao mesmo tempo é a sinapomorfia que sempre os uniu: a defesa química (Dragoo, 2009). A elevação do grupo para o nível de família foi primeiramente proposta por Dragoo \& Honeycutt 1997, sendo definitivamente confirmada por estudos mais completos e robustos publicados posteriormente (Flynn et al., 2005; Eizirik et al., 2010).

Mephitidae é uma família essencialmente americana, composta por quatro gêneros e 12 espécies. Destas, apenas as duas espécies de Mydaus (M. javanensis e M. marchei) são exclusivamente asiáticas, ocorrendo nas Filipinas, Malásia, Ilha de Java e Indonésia. Os três outros gêneros (Mephitis, Spilogale e Conepatus) se distribuem exclusivamente pelas Américas. Enquanto Mephitis e Spilogale têm distribuição restrita às Américas do Norte e Central, Conepatus tem ocorrência mais ampla, ocorrendo também na América do Sul (Wozencraft, 2005). Apesar de apresentarem alguma variação no tamanho, os componentes deste grupo são todos mamíferos de pequeno a médio porte, apresentando uma coloração de fundo escuro com manchas claras bastante característica e possivelmente aposemática (Stankowich et al., 2011) (Figura 3). O hábito alimentar do grupo parece ser essencialmente onívoro, com ênfase em insetos. Todos possuem garras fortes e têm por hábito revirar o solo em busca de insetos e larvas, estando presentes nos mais diferentes ambientes das Américas (Dragoo, 2009).

A evidência fóssil indica que a origem da família é a Eurásia, onde apresentava ampla distribuição e diversidade considerável ao redor do Mioceno Médio. O fóssil mais antigo de um mefitídeo conhecido até hoje - um crânio do gênero Palaeomephitis - é datado em cerca de 11-12 milhões de anos atrás (MAA) (Wolsan, 1999). Pelo menos três gêneros - e possivelmente mais - presentes em diferentes regiões da Ásia e da Europa são atribuídos a esta família entre o Mioceno (23-5,3 MAA) e o Plioceno (5,3-3,6 MAA) (Wang et al., 2005). A relação filogenética dos gêneros atuais apoia essa hipótese, já que a posição de Mydaus como grupo mais basal é reconstruída por abordagens moleculares recentes com alto suporte (Eizirik et al., 2010). Acredita-se que em algum ponto do Mioceno uma única invasão do continente americano tenha ocorrido, provavelmente através do estreito de Bering, dando origem ao grupo dos mefitídeos do Novo Mundo. A datação molecular de Eizirik et al. (2010) estima a separação entre as linhagens da Eurásia e das Américas em cerca de 20 MAA (IC 95\%: 14,6-28,2 MAA), sugerindo uma origem ainda mais antiga para a família inteira. No entanto, devido à falta de registros fósseis anteriores a 12 MAA e aos poucos pontos internos de calibração fóssil utilizados para a análise de datação, esta estimativa pode estar superestimada.

Figura 3. Representantes dos quatro gêneros atuais de Mephitidae. A - Mydaus marchei (Crédito: Daniel Heuclin, disponível em Http://www.arkive.org); B - Mephitis mephitis (Crédito: Jeff Foott, disponível em http://www.arkive.org); C - Spilogale gracilis (Crédito: ramdomtruth (usuário), disponível em http://www.flickr.com); D - Conepatus chinga (Crédito: Carlos Benhur Kasper).

Em relação à linhagem do Novo Mundo, o mais antigo fóssil conhecido pertence ao gênero Martinogale, com idade estimada de 9,3 milhões de anos (MA) (Wang et al., 2005). Este parece ser o mefitídeo americano mais basal, apresentando registros fósseis espalhados pelo Mioceno tardio, embora sua monofilia não seja clara (Wang et al., 2005; Wang \& Castañeda, 2008). Uma forma mais recente e intermediária, Buisnictis, aparece no início do Plioceno, e logo a seguir uma explosão de diversidade parece ter tido início, com vários novos grupos sendo registrados em várias bacias sedimentares da América do Norte. Os primeiros membros dos gêneros atuais parecem ter origem neste episódio de diversificação, sugerindo que a coalescência do grupo-coroa dos mefitídeos americanos esteja entre o fim do Mioceno e o início do Plioceno (Kurtén \& Anderson, 1980; Wang et al., 2005). Atualmente, o mais antigo registro de um gênero americano moderno se refere a um espécime de Conepatus do México, com 4,8 MA de idade (Wang \& Catañeda, 2008). Já os fósseis mais antigos de Mephitis e Spilogale têm entre 1,8 e 3 MA de idade (Kurtén \& Anderson, 1980) sugerindo que estes gêneros sejam mais recentes. Mais uma vez, os
dados moleculares de Eizirik et al. (2010) corroboram este cenário, uma vez que Conepatus aparece como grupo basal, com alto suporte. A estimativa de ponto para a idade deste nó é muito próxima daquela do fóssil mais antigo de um mefitídeo americano (~9,2 MA), de forma que no momento não se pode inferir se o mesmo se trata de um táxon basal (stem taxon) ou de um representante do grupo-coroa desta linhagem.

Taxonomia e história evolutiva de Conepatus

Quatro espécies são atualmente aceitas para Conepatus (Wozencraft, 2005): C. leuconotus para a América do Norte e Central; C. semistriatus para América Central, norte da América do Sul e nordeste brasileiro; C. chinga para a porção central da América do Sul; e C. humboldtii para a Patagônia (Figura 2). O histórico da taxonomia do grupo, no entanto, é complexo. A problemática envolvendo Conepatus parece ser fruto da grande variação morfológica existente no grupo, referente tanto ao tamanho e formas corporais quanto aos padrões de pelagem. Muitos táxons foram descritos, entre o final do século XIX e início do século XX, por naturalistas europeus que coletavam ou recebiam carregamentos de coletas realizadas em diferentes pontos nas Américas. Baseando-se em um ou poucos espécimes, estes naturalistas atribuíam quase qualquer padrão variante a um novo táxon, como pode ser percebido nos textos de Oldfield Thomas, do Museu Britânico de História Natural. Sozinho, ele descreveu mais de dez táxons para o gênero. Uma passagem da descrição de C. arequipae (Thomas, 1900: 467), ilustra esta postura (trecho traduzido para o português por este autor):

> "... Este zorrilho é um intermediário entre C. quitensis e C. rex. Ele se diferencia do primeiro pelo seu tamanho menor, pela natureza mais definitivamente reversa dos pelos da nuca, e pelas listras brancas terminando na região lombar e não passando para trás, para a raiz da cauda. De C. rex, por outro lado, ele se diferencia pelo tamanho consideravelmente maior e pelas listras brancas serem totalmente separadas uma da outra pela linha preta mediana."

A primeira espécie de Conepatus, C. chinga, foi descrita por Molina (1782), originalmente como Viverra chinga. Algumas outras espécies foram descritas nos anos
seguintes, como C. semistriatus Boddaert, 1785 e C. leuconotus Lichtenstein 1832, originalmente Viverra semistriatus e Mephitis leuconota, respectivamente (Dragoo, 2009). Foi apenas em 1837 que Gray cunhou o nome Conepatus, ao descrever C. humboldtii, e sugeriu que algumas espécies já descritas fossem incorporadas ao novo gênero. Muitas espécies e subespécies foram então descritas para Conepatus, principalmente na virada do século XX , chegando a totalizar mais de 20 táxons.

As primeiras revisões do gênero surgiram em meados do século XX. Cabrera (1958) sinonimizou vários táxons e deu à taxonomia do grupo o padrão geral que é seguido por muitos autores até hoje. Ele incluiu vários táxons com ocorrência para Uruguai, sul do Brasil e Argentina em C. chinga, do Chile, dando à espécie um padrão de distribuição muito próximo ao aceito atualmente. Também foi este autor que incluiu as populações da América Central, centro do Brasil, Colômbia, Venezuela e Equador e norte do Peru em C. semistriatus, gerando o padrão disjunto que hoje se observa em todas as distribuições da espécie presentes na literatura. Alguns anos depois, em 1965, Kipp realizou um estudo comparativo, e, baseando-se principalmente em amostras de pele, fez algumas proposições taxonômicas (Van Gelder, 1968; Schiaffini et al., 2013). O arranjo geral proposto por esta autora não foi seguido, mas duas de suas proposições foram incorporadas ao esquema de Cabrera: a inclusão de C. rex (Peru, Bolívia, norte da Argentina e norte do Chile) em C. chinga, e a de C. castaneus (Argentina, entre o sul da província de Buenos Aires e norte de Rio Negro) em C. humboldtii. Assim, pode-se dizer que o arranjo taxonômico seguido hoje pelos principais autores (e.g. Wozencraft, 2005; Dragoo, 2009) é baseado em Cabrera, com pequenas modificações incorporadas a partir de Kipp.

Estes autores, contudo, não incluíram os táxons norte-americanos nas suas revisões. As duas espécies tradicionalmente aceitas para a América do Norte, C. leuconotus e C. mesoleucus, e suas respectivas subespécies, foram revisadas por Dragoo et al. (2003), que ao não encontrar padrões geográficos de diferenciação morfológica ou molecular propôs que ambas fossem sinonimizadas. Chega-se assim ao arranjo taxonômico atualmente aceito, com quatro espécies. Entretanto, a falta de uma revisão geral, comparativa e com ferramentas taxonômicas modernas, além do desencontro de informações entre alguns autores importantes, deixa várias questões em aberto. Alguns pesquisadores admitem inclusive que todas as espécies atualmente
reconhecidas no gênero possam ser coespecíficas (Nowak, 1999). Em recente compilação sobre a família, Dragoo (2009) enfatiza a grande necessidade de um estudo de revisão sobre o gênero.

A falta de um arranjo taxonômico consistente para Conepatus é também um reflexo da escassez de estudos envolvendo a história evolutiva do gênero, principalmente no que se refere às populações sul-americanas. A filogenética é a disciplina-base da taxonomia moderna, o que faz com que cada vez mais as revisões taxonômicas sejam conduzidas em conjunto com o estudo da evolução do grupo. Poucos estudos até hoje abordaram este aspecto, e a história evolutiva de Conepatus permanece com muitos pontos desconhecidos.

Acredita-se que a origem do gênero deu-se na América do Norte, dentro de uma explosão de diversidade da família Mephitidae que ocorreu no início do Plioceno (ver acima). O registro fóssil indica que o gênero já estava presente na região da atual América Central antes do fechamento total do Istmo do Panamá (Wang \& Castañeda, 2008). Este evento geológico, que começou há aproximadamente 12 MA e culminou na total conexão dos dois continentes há aproximadamente 2,8 MA (Woodburne, 2010), deu origem a um dos mais importantes eventos biogeográficos da história dos mamíferos, o Grande Intercâmbio Americano de Fauna. Muitos táxons da fauna endêmica sul-americana, como preguiças e gambás, invadiram o continente do norte. Mas a maior migração em termos de número de táxons foi no sentido norte-sul, podendo-se citar veados, porcos-do-mato, camelídeos e diversas famílias de carnívoros como principais representantes. Dentre os representantes da família Mephitidae, Conepatus é o único que parece ter invadido e prosperado na América do Sul (Marshall et al., 1982).

A invasão dos diferentes táxons, contudo, não foi simultânea. Existem ondas migratórias descritas mesmo antes do fechamento completo do Istmo, como no caso da invasão dos procionídeos (sentido norte-sul) e preguiças (sul-norte) (Marshall et al., 1982; Woodburne, 2010). Algumas das primeiras revisões sobre o tema indicavam que Conepatus teria participado da primeira onda migratória após o fechamento completo, aproximadamente 2,6 MAA, devido a um registro fóssil desta época encontrado na Argentina (e.g. Marshall et al., 1982). Posteriormente a idade precisa deste fóssil foi colocada em dúvida, sendo este um tema ainda em debate (para uma revisão ver

Wang \& Castañeda, 2008). A provável presença do gênero na América Central no período do fechamento do istmo, bem como a cobertura vegetal aberta que se estendia tanto pela América Central como pela maior parte da América do Sul à época (Woodburne, 2010), fortalecem a hipótese de que Conepatus possa ter sido um dos primeiros gêneros a migrar do norte para o sul. Contudo, segundo Wang \& Castañeda (2008), teria havido duas entradas distintas de Conepatus no continente sulamericano, uma delas dando origem às linhagens do sul (C. chinga e C. humboldtii) e outra dando origem à população do Brasil central, mais proximamente relacionada a linhagens centro-americanas atuais. Estudos evolutivos que possam investigar a estruturação populacional do grupo e datar a separação entre as linhagens norte e sulamericanas poderiam contribuir significativamente com este debate.

Outro aspecto diretamente ligado ao estudo evolutivo do gênero é a análise da estruturação geográfica de Conepatus na América do Sul através de ferramentas modernas, a qual ainda se encontra em um estágio inicial. Até 2012 nenhum trabalho havia sido publicado sobre o tema. Schiaffini et al. (2013), em um estudo simultâneo com a presente tese, foram os primeiros a publicar dados confrontando a estrutura taxonômica tradicional com uma investigação envolvendo dados moleculares e morfológicos. Os autores testaram a existência de C. humboldtii e C. chinga buscando por uma possível estruturação geográfica consistente da variação encontrada. Ao não serem capazes de encontrá-la, os autores sugerem a sinonimização das duas espécies, em caso semelhante ao de Dragoo et al. (2003), que propuseram a mesma medida para as espécies norte-americanas. Em conjunto, estes resultados revelam a urgência de uma revisão mais ampla da taxonomia de Conepatus através de um estudo que investigue seus padrões de estruturação geográfica ao longo de toda sua distribuição. Ao mesmo tempo, a partir do ponto de vista evolutivo, a delimitação taxonômica e espacial das populações, em conjunto com a datação dos seus eventos de divergência, torna possível realizar inferências a respeito de quais e como foram os processos responsáveis pela diversidade observada atualmente (e.g. Johnson et al., 2006; Patou et al., 2008). Esse conhecimento também é de suma importância, uma vez que a caracterização dos processos que afetaram um determinado táxon pode ser analisada em conjunto com os processos que afetaram outros grupos, para que se entendam grandes padrões de diversificação. Conepatus, por exemplo, pode ser utilizado como
referência para táxons que estejam intimamente relacionados com os ambientes de campo da América do Sul, os quais sabidamente apresentam uma história complexa. Nos últimos 2 milhões de anos a Terra tem passado por períodos alternados de glaciação e interglaciação (Sigman \& Boyle, 2000). Os períodos glaciais são mais frios, e assim uma maior parte da água do planeta fica retida nas calotas polares. O clima fica então mais seco, o que pode favorecer a expansão das savanas. O processo contrário acontece nos períodos interglaciais, quando o clima é mais quente, úmido e assim mais propício à expansão de florestas. A alternância entre estes dois tipos de período, associados a fatores edáficos e climáticos locais, fez com que a vegetação da América do Sul tenha tido uma evolução complexa, com períodos de expansão das florestas sobre os campos e vice-versa (para uma revisão ver Pinheiro \& Monteiro, 2010). Como os zorrilhos parecem ter seus hábitos diretamente relacionados a ambientes abertos, eventuais retrações dos campos podem ter levado populações a ser reduzidas ou mesmo se extinguir localmente, com o contrário acontecendo com a expansão destes ambientes.

Diante de todo o exposto, uma investigação que aborde ao mesmo tempo os aspectos evolutivos e taxonômicos do grupo contribuirá significativamente não só para o conhecimento mais detalhado de Conepatus, mas também com futuros estudos que caracterizem a variação biológica das populações sul-americanas, bem como com um entendimento mais completo de questões ligadas ao Grande Intercâmbio Americano de Fauna e à evolução complexa dos ambientes campestres da América do Sul.

Ferramentas de estudo

A utilização de ferramentas moleculares em investigações filogenéticas e evolutivas é cada vez mais frequente, devido à facilidade em gerar caracteres informativos independentes e a crescente gama de análises associadas que estão se tornando possíveis, como as de datação de coalescência. Estudos que investiguem a história evolutiva de apenas uma espécie, ou grupos de espécies próximas, tratam de uma escala de tempo que vai de alguns milhares até poucos milhões de anos, sendo assim realizadas com marcadores de evolução mais rápida, como DNA mitocondrial (DNAmt) e DNA microssatélite (e.g. Escorza-Treviño \& Dizon, 2000). Apesar de possuir informação filogenética facilmente acessível, o DNAmt apresenta padrão de herança
matrilinear, tornado sua história passível de vieses por eventuais diferenças comportamentais entre machos e fêmeas. As regiões de DNA microssatélite, por sua vez, se caracterizam por apresentarem altíssimos níveis de mutação e conseqüente variabilidade. Apresentam a vantagem de serem usualmente biparentais e potencialmente neutros, fora raras exceções (Ellegren, 2004). Raramente são utilizados como fonte de informação filogenética, mas sua alta variabilidade Ihes confere grande poder na detecção de estruturação populacional, mesmo que recente. Assim, a utilização conjunta de DNAmt e microssatélites é muito difundida (e.g. Escorza-Treviño \& Dizon, 2000; Tchaika et al. 2007).

Abordagens morfológicas detalhadas também têm sido empregadas em estudos de estruturação geográfica (e.g. Bornholdt, 2012; Schiaffini et al., 2013). Estas devem ser distinguidas do emprego tradicional da morfologia na descrição dos táxons (ver acima), uma vez que se baseiam em um número maior de caracteres independentes e empregam metodologias estatísticas mais rigorosas. Quase a totalidade destes estudos utiliza medidas de crânio, mandíbula e dentes, uma vez que este é o tipo de material mais comumente disponível nas coleções científicas. A análise morfométrica tem a vantagem de buscar por padrões de estruturação geográfica e ao mesmo tempo fornecer padrões morfológicos para determinadas populações. Assim, novos indivíduos podem ser adicionados à análise e alocados em algum dos grupos descritos.

Finalmente, uma caracterização detalhada da história evolutiva e taxonomia de um grupo passa também pelo conhecimento preciso de suas áreas de ocorrência. Mais de uma versão para a distribuição de Conepatus está presente hoje na literatura, e nenhuma parece ser suficientemente correta. A versão disponibilizada pela Lista Vermelha da IUCN (IUCN, 2012) baseia-se em dados do Global Mammal Assessment (Schipper et al., 2008), uma das revisões mais recentes e importantes sobre as espécies de mamíferos. No entanto, como discutido anteriormente, os mapas apresentados para as espécies do gênero necessitam ser revisados. Além de deixar de incluir regiões com notória presença de Conepatus, eles incorporam a região de costa do Equador e Colômbia, onde a cobertura vegetal é majoritariamente de floresta densa, uma questão que também precisa ser melhor investigada. Finalmente, uma revisão detalhada das áreas de ocorrência do gênero pode permitir que se verifiquem
descontinuidades de distribuição, as quais podem auxiliar na identificação dos padrões de estruturação populacional de Conepatus.

Conceitos de espécie

A definição de espécies é um dos tópicos mais debatidos e controversos da biologia. Apesar de a espécie ser a unidade fundamental para descrição e comparação da biodiversidade, até hoje não há consenso geral sobre o seu conceito ou critério de reconhecimento. Ao longo das últimas décadas, dezenas de conceitos foram sugeridos (para uma lista dos mais importantes, ver Mayden, 2002), quase sempre refletindo as diferentes características biológicas dos grupos ou áreas da biologia com as quais os autores trabalhavam. Todos receberam críticas ao longo do tempo, principalmente pela falta de aplicabilidade em todos os grupos que compõem a árvore da vida. Poucos conceitos conseguem lidar, por exemplo, com grupos formados por seres assexuados. Recentemente, alguns autores têm sugerido que o conceito de espécies e o critério para delimitá-las devem ser tópicos dissociados, propondo uma unificação dos conceitos existentes (e.g. Mayden, 2002; de Queiroz, 2007; Naomi, 2011). Esta unificação de conceitos parece ser a abordagem mais aplicável frente ao imenso debate sobre o tema, sendo assim discutida a seguir.

Mayden $(1999,2002)$ e de Queiroz $(2005,2007)$ vêm propondo, respectivamente, uma abordagem hierárquica e de unificação de conceitos. Ambas as propostas são bastante semelhantes em vários pontos, mas com pequenas diferenças, como discutido por Naomi (2011). A ideia central é a dissociação entre conceituação e delimitação de espécies, questões que os autores consideram terem sido misturadas durante muito tempo. Ambos propõem que o conceito norteador utilizado seja o de que uma espécie é uma linhagem independente, uma metapopulação com uma história evolutiva definida e única, semelhante ao conceito evolutivo de espécie (Wiley, 1978). Reconhecendo-se esse como o conceito filosófico, os autores propõem que outros conceitos de espécie (como o biológico, o ecológico e o filogenético) sejam utilizados como ferramentas de identificação do processo evolutivo de especiação. Desta maneira, os autores sugerem a unificação dos diversos conceitos, ideia que aparentemente foi bem aceita pela comunidade científica.

Em uma revisão das ideias destes autores, Naomi (2011) ressalta pequenos problemas com ambas as ideias, e sugere sua correção através da uma unificação que utiliza elementos das duas propostas. As divergências entre estas três visões são mínimas, e envolvem principalmente a filosofia por trás e o raciocínio desenvolvido para chegar ao resultado final. Em termos de aplicação prática, todas são bastante semelhantes. No contexto desta tese, uma vez que a mesma versa sobre uma espécie sexuada, a abordagem proposta por esses três autores é bastante compatível e aplicável, e assim será adotada. Assim, o conceito de espécie a ser adotado neste estudo é o evolutivo, sendo os outros conceitos modernos utilizados como critérios de delimitação. Tais critérios serão principalmente o filogenético e o biológico, ou seja, o isolamento reprodutivo aparente.

Objetivos

Frente a todo o exposto acima, os objetivos desta tese são: (i) investigar o padrão geral de estruturação geográfica das populações de Conepatus; (ii) realizar uma revisão detalhada da distribuição do gênero; (iii) investigar a história evolutiva de Conepatus, relacionando padrões de diversificação com eventos biogeográficos e vegetacionais históricos importantes; e (iv) utilizar todos os dados gerados e compilados para realizar uma revisão taxonômica de Conepatus.

Referências

Bornholdt R. 2012. Revisão do gênero Galictis (Mammalia, Carnivora, Mustelidae) utilizando métodos morfológicos e moleculares. Unpublished D. Phil. Thesis, Pontifícia Universidade Católica do Rio Grande do Sul, Brazil.

Brazil V. 1924. Notas sobre a biologia de Conepatus chilensis - contribuição ao estudo de seu aparelho defensivo. Arquivos do Instituto Vital Brazil 2(2): 57-67.

Cabrera AL. 1958. Catálogo de los Mamíferos de América Del Sur. Revista del Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia'. Buenos Aires: Instituto Nacional de Investigación de las Ciencias Naturales.

Cáceres NC. 2004. Occurrence of Conepatus chinga (Molina) (Mammalia, Carnivora, Mustelidae) and other terrestrial mammals in the Serra do Mar, Paraná, Brazil. Revista Brasileira de Zoologia 21: 577-579.

Castillo D. 2011. Ecología espacial, temporal y trófica del zorrino (Conepatus chinga) en un área natural y un área de uso agrícola. Unpublished D. Phil. Thesis, Universidad Nacional del Sur, Argentina.

Castillo D, Lucherini MLM, Vidal ELVEL, Manfredi CMC, Casanave ECE. 2011a. Spatial organization of Molina's hog-nosed skunk (Conepatus chinga) in two landscapes of the Pampas grassland of Argentina. Canadian Journal of Zoology 89(3): 229-238.

Castillo DF, Lucherini M, Casanave EB. 2011b. Denning ecology of Molina's hog-nosed skunk in a farmland area in the Pampas grassland of Argentina. Ecological research 26(4): 845-850.

Cavalcanti GN. 2010. Biologia comportamental de Conepatus semistriatus (Carnivora, Mephitidae) em Cerrado do Brasil Central. Unpublished D. Phil. Thesis, Universidade Federal de Minas Gerais, Brazil.
de Queiroz K. 2005. Different species problems and their resolution. Bioessays 27: 1263-1269.
de Queiroz K. 2007. Species Concepts and Species Delimitation. Systematic Biology 56: 879886.

Donadio E, Di Martino S, Aubone M, Novaro AJ. 2001. Activity patterns, home range, and habitat selection of the common hog-nosed skunk, Conepatus chinga (Mammalia, Mustelidae), in northwestern Patagonia. Mammalia 65: 49-54.

Donadio E, Di Martino S, Aubonea M, Novaro AJ. 2004. Feeding ecology of the Andean hognosed skunk (Conepatus chinga) in areas under different land use in north-western Patagonia. Journal of Arid Environments 56: 709-718.

Dragoo JW, Bradley RD, Honeycutt RL, Templeton JW. 1993. Phylogenetic relationships among the skunks: a molecular perspective. Journal of Mammalian Evolution 1: 255-267.

Dragoo JW, Honeycutt RL. 1997. Systematics of mustelidlike carnivores. Journal of Mammalogy 78: 426-443.

Dragoo JW, Honeycutt RL, Schmidly DJ. 2003. Taxonomic status of white-backed hog-nosed skunks, genus Conepatus (Carnivora: Mephitidae). Journal of Mammalogy 84: 159-176.

Dragoo JW. 2009. Family Mephitidae (skunks). In: Wilson DE \& Mittermeier RA, eds. Handbook of the mammals of the world. Barcelona: Lynx Edicions, 532-563.

Eizirik E, Murphy WJ, Koepfli KP, Johnson WE, Dragoo JW, Wayne RK, O’Brien SJ. 2010. Pattern and timing of diversification of the mammalian order Carnivora inferred from multiple nuclear gene sequences. Molecular Phylogenetics and Evolution 56: 49-63.

Ellegren H. 2004. Microsatellite: simple sequences with complex evolution. Nature Reviews Genetics 5: 435-445.

Escorza-Treviño S \& Dizon AE. 2000. Phylogeography, intraspecific structure and sex-biased dispersal of Dall's porpoise, Phocoenoides dalli, revealed by mitochondrial and microsatellite DNA analyses. Molecular Ecology 9: 1049-1060.

Flynn JJ, Finarelli JA, Zehr S, Hsu J, Nedbal MA. 2005. Molecular phylogeny of the Carnivora (Mammalia): assessing the impact of increased sampling on resolving enigmatic relationships. Systematic Biology 54: 317-337.

Foster RJ, Harmsen BJ, Valdes B, Pomilla C, Doncaster CP. 2009. Food habits of sympatric jaguars and pumas across a gradient of human disturbance. Journal of Zoology 280(3): 309318.

Fuller TK, Johnson WE, Franklin WL, Johnsonn KA. 1987. Notes on the Patagonian hog-nosed skunk (Conepatus humboldti) in southern Chile. Journal of mammalogy 68(4): 864-867.

Gray JE. 1837. Description of some new or little known Mammalia, principally in the British Museum collection. Magazine of Natural History 1: 577-587.

IUCN 2012. IUCN Red List of Threatened Species, version 2012.2. <www.iucnredlist.org>. Downloaded on 25 February 2013.

Johnson WE, Eizirik E, Pecon-Slattery J, Murphy WJ, Antunes A, Teeling E, O'Brien SJ. 2006. The late Miocene radiation of modern Felidae: a genetic assessment. Science 311(5757): 73-77.

Kasper CB, Fontoura-Rodrigues ML, Cavalcanti GN, De Freitas TRO, Rodrigues FHG, Olivera TG, Eizirik E. 2009. Recent advances in the knowledge of Molina's Hog-nosed Skunk Conepatus chinga and Striped Hog-nosed Skunk C. semistriatus in South America. Small Carnivore Conservation 41: 25-28.

Kasper CB, Soares JB, Freitas TRO. 2012a. Differential patterns of home-range, net displacement and resting sites use of Conepatus chinga in southern Brazil. Mammalian Biology-Zeitschrift für Säugetierkunde 77(5): 358-362.

Kasper CB, Bastazini VA, Soares JB, Freitas TRO. 2012b. Abundance of Conepatus chinga (Carnivora, Mephitidae) and other medium-sized mammals in grasslands of southern Brazil. Iheringia. Série Zoologia 102(3): 303-310.

Kipp VH. 1965. Beitrag zur Kenntnis der Gattung Conepatus Molina, 1782. Zeitschrift für Säugetierkunde 30: 193-232.

Kurtén B \& Anderson E. 1980. Pleistocene mammals of North America. New York: Columbia University Press.

Marshall LG, Webb SD, Sepkoski JJ Jr, Raup, DM. 1982. Mammalian evolution and the Great American interchange. Science 215: 1351-1357.

Mayden RL. 1999. Consilience and a Hierarchy of Species Concepts: Advances Toward Closure on the Species Puzzle. Journal of Nematology 31: 95-116.

Mayden RL. 2002. On biological species, species concepts and individuation in the natural world. Fish and Fisheries 3: 171-196.

Medina CE, Díaz CV, Delgado FA. 2009. Dieta de Conepatus chinga (Carnívora: Mephitidae) en un bosque de Polylepis del departamento de Arequipa, Perú. Revista Peruana de Biología 16(2): 183-186.

Molina JI. 1782. Saggio sulla storia naturale del Chili. Bolonia: Nella Stamperia di S. Tommaso d'Aquino.

Naomi SI. 2011. On the integrated frameworks of species concepts: Mayden's hierarchy of species concepts and de Queiroz's unified concept of species. Journal of Zoological Systematics and Evolutionary Research 49: 177-184.

Nowak RM. 1999. Walker's mammals of the world, $6^{\text {th }}$ ed. Baltimore: The Johns Hopkins University Press.

Oliveira TG. 2006. Research in terrestrial Carnivora from Brazil: current knowledge and priorities for the new millennium. In: Morato RG, Rodrigues FHG, Eizirik E, Mangini PR, Azevedo FCC, Marinho-Filho J, eds. Manejo e conservação de carnívoros Neotropicais: I Workshop de pesquisa para a conservação. São Paulo: IBAMA, 39-45.

Patou ML, Debruyne R, Jennings AP, Zubaid A, Rovie-Ryan JJ, Veron G. 2008. Phylogenetic relationships of the Asian palm civets (Hemigalinae \& Paradoxurinae, Viverridae, Carnivora). Molecular Phylogenetics and Evolution 47: 883-892.

Peters FB, Roth PRDO, Christoff AU. 2011. Feeding habits of Molina's hog-nosed skunk, Conepatus chinga (Carnivora: Mephitidae) in the extreme south of Brazil. Zoologia (Curitiba) 28(2): 193-198.

Pinheiro MHO \& Monteiro R. 2010. Contribution to the discussions on the origin of the cerrado biome: Brazilian savanna. Brazilian Journal of Biology 70(1): 95-102.

Schiaffini MI, Grabrielli M, Prevosti FJ, Cardoso YP, Castillo D, Bo R, Casanave E, Lizarralde M. 2013. Taxonomic status of southern South American Conepatus (Carnivora: Mephitidae). Zoological Journal of the Linnean Society 167: 327-344.

Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, Katariya V, Hammond PS. 2008. The status of the world's land and marine mammals: diversity, threat, and knowledge. Science 322(5899): 225-230.

Sigman DM \& Boyle EA. 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407(6806): 859-869.

Stankowich T, Caro T, Cox M. 2011. Bold coloration and the evolution of aposematism in terrestrial carnivores. Evolution 65(11): 3090-3099.

Tchaicka L, Eizirik E, De Oliveira TG, Cândido Jr JF, Freitas TRO. 2007. Phylogeography and population history of the crab-eating fox (Cerdocyon thous). Molecular Ecology 16: 819-838.

Travaini A, Delibes M, Ceballos O. 1998. Summer foods of the Andean hog-nosed skunk (Conepatus chinga) in Patagonia. Journal of Zoology 246(4): 457-460.

Thomas O. (1900). LXI.—New Peruvian species of Conepatus, Phyllotis, and Akodon. The Annals and Magazine of Natural History 6(35): 466-469.

Van Gelder RG. 1968. The genus Conepatus (Mammalia, Mustelidae): variation within a population. American Museum Novitates 2322: 1-37.

Wang X, Whistler DP, Takeuchi GT. 2005. A new basal skunk Martinogale (Carnivora, Mephitinae) from late Miocene Dove Spring Formation, California, and origin of new world mephitines. Journal of Vertebrate Paleontology 25(4): 936-949.

Wang X, Carranza-Castañeda O. 2008. Earliest hog-nosed skunk, Conepatus (Mephitidae, Carnivora), from the early Pliocene of Guajanato, Mexico and origin of South American skunks. Zoological Journal of the Linnean Society 154: 386-407.

Wiley EO. 1978. The evolutionary species concept reconsidered. Systematic Biology 27(1): 1726.

Wolsan M. 1999. Oldest mephitine cranium and its implications for the origin of skunks. Acta Palaeontologica Polonica 44: 223-230.

Wood WF. 1999. The history of skunk defensive secretion research. The Chemical Educator 4: 44-50.

Woodburne MO. 2010. The Great American Biotic Interchange: dispersals, tectonics, climate, sea level and holding pens. Journal of Mammalian Evolution 17: 245-264.

Wozencraft WC. 2005. Order Carnivora. In: Wilson DE, Reeder DM, eds. Mammal species of the world. A taxonomic and geographic reference, Vol. 1, $3^{\text {rd }}$ ed. Baltimore: The Johns Hopkins University Press, 601-624.

Yáñez JL, Cárdenas JC, Gezelle P, Jaksić FM. 1986. Food habits of the southernmost mountain lions (Felis concolor) in South America: natural versus livestocked ranges. Journal of Mammalogy 67: 604-606.

CAPítulo II

Artigo Científico

Complex evolution and highly structured populations of South American hog-nosed skunks (Conepatus)

Manoel Ludwig da Fontoura-Rodrigues, Vanessa Guterres Dias, Carlos Benhur Kasper, Gitana Nunes Cavalcanti, Juliana de Abreu Vianna, Adam Ferguson, Eduardo Eizirik

Complex evolution and highly structured populations of South American hog-nosed skunks (Conepatus)

Manoel Ludwig da Fontoura-Rodrigues

Faculdade de Biociências, PUCRS. Av. Ipiranga 6681, prédio 12. Porto Alegre, RS 90619-900, Brazil.

Email address: mlfontoura.rodrigues@gmail.com

Vanessa Guterres Dias

Faculdade de Biociências, PUCRS. Av. Ipiranga 6681, prédio 12. Porto Alegre, RS 90619-900, Brazil.

Email address: vanessadias.biologia@gmail.com

Carlos Benhur Kasper

Centro de Ciências Biológicas e da Saúde, Centro Universitário Univates. Rua Avelino Tallini, 171. Lajeado, RS 95900-000, Brazil.

Email address: cbkasper@yahoo.com.br

Gitana Nunes Cavalcanti

Email address: gitanacavalcanti@yahoo.com.br

Juliana de Abreu Vianna

Departamento de Ecosistemas e Medio Ambiente, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile. Vicuña MacKenna 4860. Santiago, Chile.
Email address: jvianna@uc.cl

Adam Ferguson

Department of Biological Sciences,Texas Tech University. 2901 Main Street. Lubbock, Texas 79409, USA.
E-mail address: adamwferguson@gmail.com

Eduardo Eizirik

Faculdade de Biociências, PUCRS. Av. Ipiranga 6681, prédio 12. Porto Alegre, RS, 90619-900, Brazil.
Instituto Pró-Carnívoros. Av. Horácio Neto, 1030, Casa 10, Parque Edmundo Zanoni, Atibaia, SP 12940-970, Brazil.
E-mail address: eduardo.eizirik@pucrs.br

Running Title: Phylogeny and evolution of Conepatus

Abstract

Six carnivoran families invaded South America during the Great American Biotic Interchange (GABI), originating a fascinating endemic fauna. Conepatus, the only representative of the Mephitidae that immigrated, comprises the group of invaders for which the diversification times and patterns are the least understood, which is reflected in poor taxonomic and biogeographic knowledge. Here we investigated the evolutionary history of Conepatus by analyzing 1,902 base pairs of mitochondrial DNA and eight autosomal microsatellite loci. Our results indicate that South American populations represent a distinct lineage relative to Central and North American species. The estimated time for this basal south-north split (ca. 3.2 million years ago) is consistent with an early invasion of South America during the GABI. The mitochondrial lineage from central Brazil is significantly divergent from that found in Mexico, indicating that they do not belong to the same species (C. semistriatus) as traditionally assumed. Also, the extant genetic diversity of C. chinga is highly structured geographically, suggesting the presence of at least three major phylogroups with additional internal subdivision. The evolution and demography of these groups seem to have been closely connected to the history of South American grasslands, with phylogeographic partitions associated with well-defined natural barriers. Altogether, these results shed light onto the evolutionary history of Conepatus, and indicate the need for a taxonomic revision of this group, which is critical to support the design of detailed research programs and adequate conservation strategies targeting these species.

Keywords: Mephitidae, phylogeny, molecular dating, taxonomy, demography, conservation

Introduction

The Great American Biotic Interchange (GABI) is one of the main events driving mammal evolution in the American Continent. The complete closure of the Panama landbridge, ca. 2.8 million years ago (MYA) (Woodburne 2010), triggered waves of invasion by many mammalian taxa in both directions (Marshall et al. 1982; Webb 2006). In the case of the order Carnivora, at least six different families migrated from North to South America at different points during and after the isthmus formation, giving rise to a spectacular endemic carnivore radiation in the southern continent (Eizirik 2012). The evolutionary history of such colonizer taxa is, however, often difficult to trace. Taken together, the recent age of the invasions and the rapid lineage diversifications that ensued pose challenges to phylogenetic reconstruction due to the narrow time that each branch had to accumulate apomorphies. In addition to this particular evolutionary history, South America has experienced a complex vegetational dynamics that also affected the evolution of several mammalian taxa in that continent. During the last two million years, the Earth has undergone several alternating glacial and interglacial cycles (Sigman and Boyle 2010). Glacial periods are colder and therefore dryer, causing open environments (e.g. grasslands, savannas) to flourish. On the other hand, interglacial periods are warmer and moister, favoring the expansion of forests. This expansion-reduction dynamics has affected several South American biomes, such as the Cerrado, and therefore could have influenced the evolutionary history of taxa closely associated to them (for a review see Pinheiro and Monteiro 2010). Together, the GABI and the complex vegetational dynamics are two of the most important factors that have shaped the evolution of South American mammals, and therefore their understanding is essential in the process of describing the history and diversity of such taxa. On a broader context, the characterization of the evolutionary history of individual taxa can also help shed light on biogeographic events and processes that affected entire communities or biomes.

Most carnivoran families that colonized South America during the GABI have already been studied at some level, enabling at least a basic understanding of their diversification patterns (for a review see Eizirik 2012). However, this is not the case of Conepatus, the only genus of Mephitidae that invaded and flourished in the southern continent. The exact time of invasion is still uncertain, and the subsequent evolution of the genus is still poorly characterized. The exact species-level composition, population structure and phylogenetic relationship among different groups have all received very little attention so far, as has the role played by the complex vegetation dynamics of South America in shaping the genus' diversity. Therefore, Mephitidae remains the
group with the least understood diversification patterns among the Carnivora involved in the GABI.

Currently, there are four accepted species of Conepatus: C. leuconotus in southern North America and part of Central America; C. semistriatus in Central and northern South America, in addition to a disjunct population in northern/central Brazil (C. s. amazonicus); C. chinga in the central/southern portion of South America; and C. humboldtii in southernmost South America (Wozencraft 2005) (Figure 1). However, recent studies have challenged the traditional taxonomic arrangement of the genus, indicating the need for a modern revision based on a more detailed understanding of the phylogeny and evolutionary history of the group (Dragoo et al. 2003; Schiaffini et al. 2013). A few studies have already been conducted on this issue, but several points need further attention. Fossil evidence strongly indicates that Conepatus has originated in North America along with other New World skunk lineages, in the early Pliocene or earlier (Wolsan 1999; Wang et al. 2005). The oldest Conepatus fossil was found in Mexico and dated at 4.8 million years ago (MYA), long before the closure of the Panama Isthmus (Wang and Castañeda 2008). For South America, the oldest Conepatus record comes from the Chapadmalalan formation in Argentina, dated at 2.5 MYA (Hunt 1996). This date would make Conepatus one of the first genera to invade the continent after the complete formation of the landbridge (Marshall et al. 1982). However, the association of this fossil with that particular formation was contested later by some authors, originating a debate that persists until the present (for a review see Wang and Castañeda (2008). Therefore, this issue still needs to be better characterized given its importance to understand the evolutionary history of the genus.

Another important issue that needs further investigation is the phylogeographic structure of Conepatus and the main diversification events that shaped the evolution of the genus. In this context, Wang and Castañeda (2008) proposed a gradual divergence pattern, from north to south, based on a phylogenetic reconstruction that relied on fossil and present osteological material. They suggested that C. leuconotus is the most basal skunk, with the Central American group (C. semistriatus) being the sister clade of the South American one. The dates of both divergence events would be very old, occurring before the closure of the Panama Isthmus. Finally, they postulated two South American invasions: one lineage giving rise to an endemic South American group (C. chinga and C. humboldtii) and another occupying central and northeastern Brazil (C. s. amazonicus), but still closely related to Central American lineages. However, it is worth mentioning that their phylogeny was based on only 38 morphological characters, and did not include any individual from Central Brazil. It is therefore interesting to perform a broader phylogenetic assessment of the relationships among major Conepatus
lineages, including estimates of their divergence times. It is also important to test the evolutionary scenario proposed in that previous study, along with its biogeographic ramifications.

In addition to the large-scale evolutionary history of the main Conepatus lineages, the internal structure within each species also requires more detailed characterization. It is very common for species with broad distributions to present subdivided populations (Avise 2008). Among the South American Conepatus species, C. chinga has the broadest predicted distribution, ranging from southern Peru, southern Bolivia and northern Chile through northern Argentina, Paraguay, Uruguay and southern Brazil (Figure 1) (IUCN 2012). A total of seven subspecies are currently accepted (Dragoo 2009), but so far no study has investigated the phylogeography of this species, so as to directly assess the historical discontinuities among these and other regional populations. From a biogeographic perspective, there are a few potential barriers when considering the geographic distribution of C. chinga: the Andes, major rivers, and forested areas such as the Amazon Forest. Addressing this issue is critical to allow the design of adequate conservation assessments of these animals, since their distribution could result in the differentiation of local populations in distinct MUs (Management Units), ESUs (Evolutionarily Significant Units) or even species (Moritz 1994). In the IUCN Red List (IUCN 2012) C. chinga is referred to as 'Least Concern' (Lc), and the species is not listed on any appendix of CITES. However, threats to local populations could be greatly underestimated due to lack of knowledge of the phylogeographic structure. Although apparently abundant in some of its occurrence areas, a high mortality rate is recorded in some regions due to road-killing and hunting pressure (Kasper et al. 2009; Peters et al. 2011). Furthermore, South American savannas are among the most endangered ecosystems in that continent (Jarvis et al. 2010), which could represent a major threat to the genus since it seems to be strongly associated to this type of environment (Dragoo 2009) The exact impact of such pressures has not been characterized so far, and that, along with the lack of knowledge on species-level partitions, can make conservation problems remain undetectable.

Another South American population that needs attention is the one from Central and Northeastern Brazil. It is traditionally considered to be a disjunct population of C. semistriatus, whose main distribution area, the one that includes the species type, ranges from Mexico to Northern South America (Dragoo 2009). Brazilian C. semistriatus is described as a distinct subspecies, C. s. amazonicus, but even its exact geographic range is presently not well established. However, a more critical concern is the taxonomic position of this population, which needs to be investigated with modern phylogenetic tools. Considering that Conepatus seems to be strongly related to field
environments, it is easily noted that a significant barrier - the entire Amazon Forest would separate C. s. amazonicus from the rest of the species' distribution. As all the conservation issues mentioned for Chinga can also apply to this population (e.g. Alves et al. 2009), an investigation of its phylogenetic position among Conepatus could help further taxonomic and biological studies and enable proper conservation plans on its behalf.

As for the investigation of large-scale evolutionary patterns and species internal structure, several types of molecular characters have been used with increased frequency and robustness. Since intra-specific level studies usually deal with recent evolutionary processes, the most used markers in these cases are rapidly-evolving DNA regions, such as mitochondrial DNA (mtDNA) segments (Avise 2008). Together with mtDNA, microsatellite loci are useful tools, since they can also provide insights on recent evolutionary history, but with the addition of biparental information (e.g. Charruau et al. 2011; Barton and Wisely 2012). So far, no study has characterized in detail any mtDNA region for use in such surveys, nor any microsatellite locus has been characterized for use in the South American populations of the genus.

Thus, the goals of this study were to: (i) characterize mtDNA and autosomal microsatellite loci which can be utilized in the present and in future investigations of Conepatus phylogeny, intraspecific structure and evolutionary history; and to use such regions in (ii) an analysis of Chinga intraspecific structure, aiming to better understand the phylogeography and population history of this species, and (iii) an evolutionary assessment of C. semistriatus populations from Central Brazil, aiming to test whether they form a monophyletic group with putative conspecifics from North/Central America. We also aimed to (iv) construct a comprehensive phylogeny of genus Conepatus, with more detailed emphasis on South American lineages; and (v) combine molecular dating estimates and demographic history reconstructions to draw inferences on the evolution of the genus in South America.

Materials and Methods

Samples

Our sampling scheme was aimed at covering as much as possible the presumed diversity of species belonging to Conepatus, encompassing much of the geographic distribution of the genus, with emphasis on South American populations (Table 1 and Figure 1). In particular, we included areas that had not been surveyed by previous evolutionary or taxonomic studies (e.g. the Cerrado biome in Central Brazil), aiming to investigate their phylogeographic affiliations. Samples were obtained through direct collection of tissue from road-killed or free-ranging animals captured for field
ecology studies. Blood samples were stored in a salt saturated solution (100mM Tris, 100 mM EDTA, 2% SDS), and muscle/skin samples were preserved in 70-96\% ethanol; all samples were stored at room temperature.

Regarding C. chinga, 104 samples from its predicted distribution were obtained: five samples from central Chile (between Los Ríos y Coquimbo Regions), 20 from central and northern Argentina (from Cordoba, Buenos Aires, Mendoza, Corrientes and Entre Ríos provinces), seven from Uruguay (from Canelones, Maldonado and Rocha provinces), and 72 from southern Brazil (Rio Grande do Sul and Santa Catarina states). In the latter region, two different biomes can be recognized: a southern portion which belongs to the 'Uruguayan Savannas' (comprised by southern Brazil and Uruguay), component of the 'Pampas' biome (56 out of 72 samples), and a northern one, comprising altitude grasslands locally called 'Campos de Cima da Serra' (16 out of 72 samples), hereafter Southern Brazil Altitude Grasslands. Both biomes are open environments dominated by grasslands, which are geographically close to each other but historically separated by a stretch of Atlantic Forest (IBGE 2004).

As for C. semistriatus, samples of 34 individuals from central Brazil (encompassing both the Cerrado and Caatinga biomes) were analyzed, along with one additional sample collected in Yucatán province, Mexico. A single sample of C. humboldtii was obtained, from southern Chile (Aisén Region). Finally, we also included two C. leuconotus samples, one from the United States (Texas State) and another one from Mexico (Oaxaca province).

Therefore the major phylogenetic diversity of Conepatus that is currently accepted was included in this study. An initial division of the South American samples in distinct populations, defined by geographic origin, was established: southern Brazil Altitude Grasslands (SB-AG), southern Brazil Uruguayan Savannas (S BRA), Uruguay Uruguayan Savannas (URU), central/northern Argentina (ARG), central Chile (C CHI), southern Chile (S CHI) and central Brazil (C BRA) (see Figure 1). However, due to the consistent analyses outcomes, a rearrangement was necessary, in order to facilitate the visualization of the results. First, southern Brazil Uruguayan Savannas (S BRA) and Uruguay Uruguayan Savannas (URU) were unified in a single population, the Uruguayan Savannas (US). Additionally, Argentinean samples were subdivided in two distinct populations: eastern Argentina (E ARG - Corrientes and Entre Ríos provinces), and northern/central Argentina (N/C ARG - Cordoba, Buenos Aires and Mendoza provinces). Table 1 shows sample information organized by population, including putative species (according to the current literature), geographic and biome origin and collectors. Southern Brazil and Uruguay were kept separate in this table in order to provide more detailed information.

DNA isolation and PCR amplification

Genomic DNA was isolated from tissue samples through a standard Proteinase-K/phenol-chloroform protocol (Sambrook and Russel 2001). Three different regions of the mtDNA were chosen on the basis of their informativeness potential, and amplified through Polymerase Chain Reactions (PCRs): partial ND5 gene, using primers ND5-DF1 and ND5-DR1 (Trigo et al. 2008); partial Cytochrome-B gene, using primers L15162 and L15915 (Irwin et al. 1991); and a segment that includes partial ATP6 and Cytochrome Oxidase-III genes, hereafter referred to as segment 7a following a nomenclature based on Delisle and Strobeck (2002). The latter was amplified using the forward primer mtDNA7H (Delisle and Strobeck 2002) in combination with the reverse primer MCi7R1 (5' CAAGTAATAGATACTCCGGAGGCTAG - 3^{\prime}) designed in this study using the software Primer3 (Rozen and Skaletsky 2000) and an alignment containing mtDNA sequences of Spilogale putorius (Genebank accession code NC_010497.1) and multiple canids. Two different sequencing approaches were followed, depending on the target analysis. A subset of the entire set of individuals (dataset A), representative of all geographic groups, was chosen to be sequenced for all three mtDNA regions, for use in phylogenetic analyses. The final number of individuals sequenced for all three segments was 36 . A second dataset (dataset B), comprising all sampled individuals, was constructed to assess haplotype frequency information and thus be more appropriate for demographic and population structure analyses. Due to initial assessments of PCR efficiency, ND5 was the chosen segment to be amplified for all available individuals, yielding a final alignment with 133 animals.

For the microsatellite analyses, we employed the 10 dinucleotide loci described by Dragoo et al. (2009). After efficiency tests, only eight out of the initial 10 loci were amplified for all the populations (loci Meph22-16 and Meph22-19 were excluded). A maximum number of 30 individuals per population was surveyed, yielding a final number of 88 individuals typed. Chilean populations could not be typed due to technical limitations of our Chile-based molecular laboratory. Microsatellite primers were ordered with a universal M13-tail added to the 5' end of the forward primer (Boutin-Ganache et al. 2001). Thus, a third M13 primer tagged with a fluorescent label (6-FAM, NED or HEX) was included in the reactions in order to label the PCR products with the desired fluorescent dye.

PCRs were conducted in a 20μ l volume, containing 1x PCR Buffer (Invitrogen), $200 \mu \mathrm{M}$ dNTPs, $0.1 \mu \mathrm{M}$ of each primer (which included a third M -13 fluorescently labeled primer, diluted 15 times in relation to the others, in the case of the microsatellite

PCRs), 1.5 to 2.5 mM of $\mathrm{MgCl}_{2}, 0.2$ to 0.5 unit of Platinum Taq DNA Polymerase (Invitrogen) and 10-50 ng of template DNA. PCR conditions were kept constant for all three mtDNA segments and microsatellite loci, beginning with initial denaturation at $94^{\circ} \mathrm{C}$ for 3 min ; then 10 touchdown cycles of denaturation at $94^{\circ} \mathrm{C}$ for 45 s , annealing at $60-51^{\circ} \mathrm{C}$ for 45 s and extension at $72^{\circ} \mathrm{C}$ for 1 min 30 s ; followed by 30 to 35 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 45 s , annealing at $50^{\circ} \mathrm{C}$ for 45 s and extension at $72^{\circ} \mathrm{C}$ for 1 min 30 s ; and ending with a final extension at $72^{\circ} \mathrm{C}$ for 3 min .

Mitochondrial PCR products were checked and quantified through visualization on a 1\% agarose gel stained with GelRed 10x (Biotium), using DNA Ladder (Invitrogen) as a size and concentration marker. The products were then purified either by ammonium acetate precipitation or enzymatic purification (employing Exonuclease I and Shrimp Alkaline Phosphatase). Finally, purified products were sequenced using the DYEnamic ET Dye Terminator Sequencing Kit (GE Healthcare) and a MEGABACE 1000 (GE Healthcare) automated DNA sequencer. For nearly all sequences, both forward and reverse strands were sequenced. Microsatellite fluorescently-labeled PCR products were multiplexed and genotyped in a MEGABACE 1000 (GE Healthcare) sequencer, utilizing an ET-ROX 550 size standard (GE Healthcare).

Mitochondrial DNA sequence analysis

Consensus sequences were generated using Phred/Phrap/Consed (Gordon et al. 1998), and then manually checked and edited using Chromas 2.0 (http://www.technelysium.com.au/chromas.html) and Bioedit 7.0.9.0 (Hall 1999). Sequences were aligned with the ClustalW algorithm implemented in Bioedit, and concatenated with Dambe 5.2.40 (Xia and Xie 2001). To characterize the selected mtDNA segments and to provide a baseline of their diversity to be used in this and other evolutionary studies, molecular diversity indices, such as nucleotide diversity (Pi) and haplotype diversity (h), were generated for each segment using MEGA 5.1 (Tamura et al. 2011) and Arlequin 3.5 (Excoffier and Lischer 2010). Separate estimates were made for each population.

Median-joining networks were drawn with Network 4.6.0.1 (Bandelt et al. 1999) using dataset B (ND5, 133 individuals), in order to assess information on haplotype ancestry, geographic structure and historical demography. The same dataset was used to analyze geographic structure through tests of population differentiation such as fixation indices (F_{st}), as implemented in Arlequin 3.5.

Phylogenetic analyses were carried out using two different search optimization criteria. First, Maximum Likelihood (ML) was employed, using the RaxML plataform, through the RaxML BlackBox web server (Stamatakis et al. 2008). Dataset A was
used, adding one individual each of Mephitis mephitis and Spilogale putorius as outgroups, whose sequences were obtained directly from Genbank (accession numbers HM106332.1 and NC_010497, respectively). We implemented a gamma model of rate heterogeneity among sites, with an estimated proportion of invariable sites. The algorithm automatically conducts bootstrap searches to provide support values for the final trees. A second phylogenetic analysis was conducted using Bayesian inference, employing the package Beast 1.7.4 (Drummond et al. 2012). Before running this software, substitution models were estimated for each of the three different mtDNA segments via the Corrected Akaike Information Criterion (AICc) and Bayesian Information Criterion (BIC), both implemented in jModelTest 0.1.1 (Posada, 2008). In addition to the phylogenetic topology, node dates were also estimated with Beast. Dating estimates were calibrated with a set of fossil and molecular dating priors located within the Mephitidae tree. Analyses were run assuming substitution models HKY+G with four categories for both Cytb and 7a, and HKY+I for ND5 (as estimated through jModelTest). The uncorrelated lognormal relaxed molecular clock was used to estimate a molecular rate for each of the three segments at all nodes. A Yule process of speciation was defined as the tree prior, and the starting tree was generated randomly. Two points of calibration were defined, namely: (1) the split between Spilogale+Mephitis and Conepatus (Eizirik et al. 2010); and (2) the split between Spilogale and Mephitis. The prior for node 1 was defined as a Gamma distribution with the following parameters: Shape $=3$, Scale $=1.6$ and Offset $=4.8$. The offset value was based on the age of the oldest fossil of the extant mephitid genera (Wang \& Castañeda 2008). The shape and scale of the Gamma distribution were set so as to match the parameters (mean and 95% credibility interval) of the molecular dating reported by Eizirik et al. (2010) for this node. The prior for node 2 was also set as a gamma distribution (with Shape $=3$, Scale $=1.3$ and Offset $=1.8$), also matching the parameters of the molecular dating performed by Eizirik et al. (2010). The offset value was defined by the oldest Spilogale and Mephitis fossil records (Kurtén and Anderson 1980). Finally, fifty million generations were run, with parameters sampled every 5,000 steps. Results were analyzed with Tracer v1.5 and the trees visualized with FigTree v1.3.1, both of them included in the Beast package.

To access past variation in the population size of the different populations, we conducted two different kinds of demographic analyses, both of them utilizing dataset B. We initially assessed each of the phylogeographic groups with statistical tests of neutrality, including Tajima's D and Fu's Fs, as implemented in Arlequin 3.5, and Fu and Li's D^{*} and F^{*}, as implemented in DnaSP 5.10 (Rozas et al. 2003). Additionally, we investigated the molecular signatures of past variations in effective population size with
a Bayesian Skyline Reconstruction, as implemented in Beast 1.7.4. A separate run was performed for each phylogenetic group, with the tree prior set to Bayesian Skyline. We assumed a strict clock model, and the mean substitution rate estimated in the previous phylogenetic and dating analyses (2.779E-8/year). The substitution model was set to HKY +l , following the previous assessment with jModelTest.

Microsatellite data analysis

General diversity indices for the microsatellite loci (number of alleles, expected and observed heterozygosity and allele size range) were calculated with Cervus 3.0.3 (Marshall et al. 1998). HW-equilibrium and linkage disequilibrium tests were performed in Arlequin 3.5, applying the Bonferroni correction to the statistical significance level given the use of multiple comparisons. We also utilized Arlequin to estimate $F_{\text {st }}$ and $R_{\text {st }}$ for all population pairs. $D_{\text {est }}$ fixation indices were calculated through the web-based platform SMOGD (Crawford 2010). It is important to mention that no statistical significance test is available for the $D_{\text {est }}$ analysis, for which only the classical $F_{\text {st }}$ levels of differentiation are adopted to interpret the results.

Finally, we also conducted a Bayesian analysis of population structure using the software Structure 2.3.2.1 (Pritchard et al. 2000), to investigate which number of distinct genetic groups would best fit our microsatellite data. The run parameters were: 100,000 steps of burn-in plus 1,000,000 MCMC iterations, under the admixture model; the number of clusters tested (parameter K) ranged from 1 to 10 , and for each value of K we performed 15 different runs.

Results

Mitochondrial DNA markers

We generated sequences for the three assayed mtDNA segments: ND5 - 642 base pairs (bp); Cytochrome-b (cytb) - 631 bp; and $7 a-629 \mathrm{bp}$. Considering all segments jointly, a total of 1,902 bp was generated and kept in the final alignment for each of the completely sequenced individuals. Table 2 shows basic molecular diversity indices by segment for each population. The final number of sequences generated for Cytb and 7a is larger than 36 (the final number of individuals of dataset A) because for some individuals we obtained good quality sequences for only one of these two segments. When considering individuals from all different populations, diversity indices found for the three different segments were relatively similar, ranging from 1.58 to 2.39\% in nucleotide diversity and from 17 to 34 in total number of haplotypes. However, values varied hugely among different populations. Central/northern Argentina presented very high levels of diversity for all indices, in opposition to very low values
found for central Brazil and southern Brazil (both populations) + Uruguay populations. Central Chile and eastern Argentina also presented low diversity, but these results can be biased by their small sample size. It is worth mentioning, however, that even with few individuals sampled, many diversity indices of these latter two populations were higher than those of central Brazil and southern Brazil (both populations) + Uruguay.

The network drawn from the ND5 sequences is shown in Figure 2a. The general structure of the network shows four major phylogeographic groups: southern Brazil (both populations) + Uruguay (A); Argentina (both populations) + central Brazil (B), central Chile (C) and southern Chile (D). Clades A, B and C are major representatives of current C. chinga mtDNA diversity, while southern Chile is a putative representative of the Patagonian species C. humboldtii. The South American representative of C. semistriatus, i.e. the central Brazil population, is clearly nested inside the Argentinean C. chinga diversity (group B-II). Another population nested inside phylogroup B is Eastern Argentina (group B-I), comprised by samples from the Entre Ríos and Corrientes provinces (see Figure 2a). Regarding phylogroup A, we found a haplotype that was exclusive of individuals from the Southern Brazil Altitude Grasslands biome, and almost all individuals from this Biome bore this haplotype (CCN05; group A-I). The only exception was one individual from the municipality of Campestre da Serra (contained in the SB-AG biome), which presented the haplotype CC-N06, shared with individuals from the Uruguayan Savannas biome. Phylogroup C was formed by the central Chile samples, a population that is clearly separated from phylogroup B by the major Cordillera of the Andes. Finally, group D was formed by a single sample from southern Chile, which was clearly separated from phylogroups B and C. It is important to note that almost all of the identified geographic groups and subgroups were separated from one another by several mutational steps, which is quite remarkable considering that the network was drawn based on a single 642-bp segment containing only 63 variable sites. The only group that did not follow this pattern was the central/north Argentina population, which presented the most structured diversity and may represent to some extent the basal diversity for the whole group. Still, it is possible to visualize the proximity among all the Argentinean haplotypes. Finally, the positions of C. semistriatus sample from Mexico and both samples of C. leuconotus from USA are not shown in Figure $2 a$ due to the great divergence (ca. 100 mutational steps) from the core network.

Regarding the mtDNA $F_{\text {st }}$ analysis, a first round was conducted keeping the populations from the Uruguayan Savannas of southern Brazil and Uruguay separated. As the $F_{\text {st }}$ value for this population pair was very low and statistically not significant, a second round of analysis was conducted, this time joining these populations as a single

Uruguayan Savannas (US) unit. The results of the second round of mtDNA $F_{\text {st }}$ analysis is shown on Table 3, and corroborate most of the network conclusions. As would be expected from the lack of haplotype sharing among major phylogroups (A, B and C), pairwise values among them are very high, ranging from 0.25 to 0.98 . The lowest values were found within major phylogroups, such as SB-AG versus Uruguayan Savannas and between Argentinean populations. On the other hand, values between major phylogroups were very high, most of them being higher than 0.9 . Values of p for all pairwise comparisons were highly significant (see Table 3).

The tree generated with both phylogenetic approaches presented very similar topologies, so that only the one found with the Bayesian analysis is shown (Figure 2b; support values in Table 4). Despite slight differences in the hierarchical structure within the main clades, both trees agree almost completely in the composition and support of such groups. Disagreements refer only to the poorly supported clades (nodes 11 and 12), with the support values found with the Bayesian analysis being slightly higher. The phylogenetic relationships among mephitids show Conepatus clearly as a basal group relative to Spilogale and Mephitis. Regarding the internal arrangement of Conepatus, three major groups can be noted: C. leuconotus from the USA and Mexico; C. semistriatus from Mexico; and a third one that includes all South American samples. Regarding the hierarchical structure of these three groups, the strongest trend is to position South America as a basal clade relative to C. leuconotus and Mexican C. semistriatus, but support values for this relationship are moderate. It is worth mentioning that the monophyletic regional groups found with the phylogenetic analyses are perfectly congruent with those recovered in the network analysis and present high support values, corroborating the existence of such mitochondrial clades. The lowest support for a regional clade was that of phylogroup B (Argentina + Central Brazil), with a bootstrap value of 70% in the ML tree. However, the posterior probability of this clade in the Bayesian analysis was 1.0, strongly supporting its recognition. Finally, it is important to note that the exact hierarchical structure among the regional groups was not well resolved in any of the trees (nodes 11 and 12).

The dating estimates for each of the well-supported nodes, including the mean and 95% credibility interval, are shown in Table 4. The tree root age was estimated at around 7 MYA , with the coalescence of the extant diversity of Conepatus being slightly older than 3 MYA. Interestingly, the coalescence estimate of the South American Conepatus clade was considerably younger, ca. 0.85 MYA. Also, all South American populations (phylogroups) had relatively young coalescence times, with the central/northern Argentina population being the oldest, around 0.5 MYA. The Central Brazil and Southern Brazil (both populations)/Uruguay populations presented very
similar coalescence times, ca. 0.1 MYA. The Central Chilean population, with only five samples and three haplotypes, presented an older coalescence estimate, indicating that the very recent coalescence times of the two well-sampled Brazilian populations are even more remarkable.

Only two populations presented signals of past demographic changes (Table 5, Figure 3). First, the Central Brazil population presented several signals of population growth. Its network structure (Figure 2a, group B-II) presented a star-shape, which indicates a recent expansion event. Of the neutrality tests, only Tajima's D showed statistically significant negative results, but Fu's Fs was also clearly negative, albeit marginally non-significant ($p=0.06$). Finally, the Bayesian Skyline Reconstruction showed a considerable effective size growth event for this population, starting ca. 20,000 years ago (Figure 3a). Another population presenting growth signals was southern Brazil-Uruguay, although these results were not as straightforward as those from central Brazil. Fu's Fs was the only neutrality test yielding significantly negative results, and the Bayesian Skyline Reconstruction indicated a very recent change in effective population size, ca. 1,000 years ago (Figure 3b). All other populations showed no significant changes in population size, as inferred from the neutrality tests or the Bayesian Skyline Reconstruction (result not shown).

Microsatellite analyses

Table 6 summarizes the basic information regarding the microsatellite loci surveyed, including locus name and fluorescent label, multiplex arrangement, number of individuals typed per population for each locus, basic diversity indices and results from the HW-equilibrium test per locus and population. No linkage disequilibrium was detected. Only one locus (Meph42-15) was monomorphic for all populations, and thus was not utilized in the subsequent analyses. All other loci were polymorphic and informative, and final missing data across all loci and individuals was around 25%. In general, diversity indices were moderate to low for all populations surveyed, except for central/northern Argentina. The mean expected heterozygosity across loci (excluding Meph42-15) for each population ranged from 0.45 (Eastern Argentina) to 0.71 (northern/central Argentina), with a mean of 0.55 . The central Brazil and southern Brazil-Uruguay groups presented considerably lower diversity indices than would be expected given their predicted broad distributions and large populations. These results are congruent with the mtDNA diversity indices, for which central/northern Argentina also showed the highest levels.

The microsatellite-based fixation indices are shown on Table 3. Similarly to the analogous analysis performed with the mtDNA data, a first round of tests was
conducted keeping the populations of the Uruguayan Savannas biome from southern Brazil and Uruguay separated. As the results for all three fixation indices were very low or statistically non-significant for this particular pair (results not shown), a second round was performed uniting these populations in a single Uruguayan Savannas group. The values found in this final round were similar across the three fixation indices ($F_{s t}, R_{s t}$ and $D_{\text {est }}$) for all population pairs. All values were statistically significant for both $F_{s t}$ and $\mathrm{R}_{\text {st }}$, and higher than 0.15 for $\mathrm{D}_{\text {est. }}$. In general, $\mathrm{R}_{\text {st }}$ values were the highest, indicating that the allele sizes are an important parameter underlying population distinctiveness. Altogether, the microsatellite biparental information expressed in the fixation indices corroborated the existence of the phylogroups identified with the mtDNA, pointing to the existence of five isolated populations: Uruguayan Savannas (Uruguay + southern Brazil Uruguayan Savannas); southern Brazil Altitude Grasslands; eastern Argentina; central/northern Argentina; and central Brazil.

The results obtained with the Bayesian approach implemented in Structure were mostly concordant with those of the microsatellite fixation indices. Table 7 shows the mean likelihood and variance calculated across 15 iterations for each K (number of assumed clusters) tested. The best mean likelihood value was obtained for $K=4$ populations, but $K=5$ resulted in a very similar value. The best likelihood across all K values and all iterations was obtained for one of the iterations of $K=5$ (result not shown). Figure 4 shows the bar plots generated for the iteration with the highest likelihood value of $K=4$ and $K=5$, and Table 8 shows the genetic distribution of each population in each of the identified clusters. It can be seen that results assuming both K $=4$ and $K=5$ agree in identifying the existence of clusters that roughly correspond to the populations of southern Brazil Altitude Grasslands, Uruguayan Savannas, central/northern Argentina and central Brazil. Eastern Argentina seems to be the least identifiable population, always clustering with Uruguayan Savannas individuals. However, it is interesting to note that eastern Argentina individuals always cluster together, which indicates the existence of some internal consistence. For $K=5$, Table 8 shows that each population is mostly allocated in a unique cluster (bold values). These results show a strong signal of population structure among the surveyed South American populations, corroborating the results obtained wtih the other analyses.

Discussion

This is the first comparative assessment of different mtDNA segments for use in phylogenetic approaches targeting Conepatus (but see the parallel study by Schiaffini et al. [2013], which also included different mtDNA segments). Results of the diversity tests and from the whole set of analyses show that the selected fragments are
appropriate markers for evolutionary surveys with this genus. Future studies that target similar goals may also include this set of genes, which would also be useful in the context of allowing direct data comparison and combined analyses. Similarly, it was the first time that a set of microsatellite loci was characterized for utilization in South American skunks, and further studies may employ the same markers to generate comparable results. Together, the set of mtDNA and nuclear markers utilized in this study proved to be complementary and informative, being useful for evolutionary and demographic analyses.

Results from both mitochondrial and microsatellite surveys are highly concordant and encourage us to rethink several aspects of the evolutionary history of Conepatus, in some cases leading to challenges to the presently accepted taxonomic structure of the genus. Foremost, all South American populations sampled here comprise a monophyletic group. It was not completely defined whether C. leuconotus and Mexican C. semistriatus lineages are also monophyletic, since the support value for this clade was not substantial. Further segments should be added to this survey in order to clarify this issue. However, this phylogenetic configuration seems to be a tendency and, if confirmed, the genus would have a single basal divergence originating northern and southern clades. A first consequence of such conclusion would be the support for the inference of a single invasion of South America by the genus. The divergence date between the northern and the southern clade, around 3 MYA , is perfectly consistent with a split caused by an early South American colonization after the closure of the Panama landbridge, around 2.8 MYA (Woodburne 2010). The 2.5 MYA date of the first South American Conepatus fossil, from Argentina, remains to be confirmed, but the hypothesis of the genus being present in the first wave of colonization during the GABI could not be ruled out by our results. On the contrary, although our dating estimates are not sufficiently precise, they fit better with an early entry scenario than a later colonization episode. Another important consequence of this phylogenetic arrangement is that central Brazilian Conepatus is not closely related to C. semistriatus from Mexico, but instead it is part of an Argentinean radiation of Conepatus, as it is clearly nested within the diversity of those lineages (see Figures 2a $-2 b$). This finding has important taxonomic implications, and also changes the current evolutionary hypothesis of two South American invasions by this genus. Taxonomically, C. semistriatus amazonicus must be renamed, which should be performed on the basis of additional analyses of molecular and morphological characters.

Another interesting result is that the South American clade has a recent coalescence time relative to the divergence from the northern clade. As the invasion of South America seems to have occurred early during the GABI, i.e. close to 2.8 MYA ,
one could expect a rapid expansion, with multiple early lineages arising right after that date. This seems to be the case of some other carnivoran lineages invading from the north during the GABI, such as the felids of the genus Leopardus (for a detailed review, see Eizirik 2012). In contrast, the coalescence of the southern Conepatus clade seems to be a little younger than 1 MYA. Together with the phylogenetic tree topology and the lack of hierarchical resolution above the phylogroup level, this result indicates that extant mtDNA lineages occurring in this area descend from a very recent and rapid colonization of different grassland environments of southern South America (south of the Amazon Forest), stemming from one or few source regions.

A likely candidate for such geographic origin is central/northern Argentina. This area presents the highest and most structured internal mtDNA diversity, and appears at a central position in the ND5 Network. Also, its microsatellite diversity is considerably higher than all other surveyed populations. These results are compatible with a scenario of extinction-recolonization of the South American grasslands, possibly related to the dynamics of field-like environments of South America during the world glacial-interglacial cycles that started around 2 million years ago (Sigman and Boyle 2000). It is well known that during this time great changes in the vegetation cover of South America occurred: forests advanced over grasslands in warmer/moister interglacial periods and the opposite scenario took place in colder/dryer glacial periods (Pinheiro and Monteiro 2010).

The beginning of the last Glacial Period, ca. 110 kiloyears ago (KYA), is one of such episodes that potentially allowed an expansion of grassland territories in South America (Werneck et al. 2012), and this event could have influenced the flourishing of some Conepatus populations. Interestingly, both central Brazil and southern BrazilUruguay populations present very similar coalescence times, around 100 KYA years ago, which may indicate that both biomes could have expanded, enabling its associated fauna to prosper. An alternative, non-exclusive hypothesis is that the retraction of forests increased the connectivity among grassland areas, facilitating the invasion of formerly isolated regions by Conepatus.

On the other hand, the joint coalescence time of the central Brazil population with Argentinean haplotypes is much older, around 400 KYA (result not shown). This result may indicate that the invasion of the central Brazil grasslands (currently Cerrado and Caatinga biomes) occurred long before the population expansion. Similarly, the divergence time of southern Brazil-Uruguay from the Argentinean population is also older, suggesting that the colonization and population expansion events may not be linked. Alternatively, such older coalescences may reflect the genealogical history of
the ancestral population, prior to the invasion of the new areas, which poses an interesting avenue for future phylogeographic investigation.

Several glacial-interglacial cycles are described for the last 2 million years (Sigman and Boyle 2000). Therefore, climatic and vegetational changes in this continent could have been a major force driving Conepatus evolution, which may be true for many other grassland-dwelling taxa that also seem to have experienced a complex evolutionary history. Maned wolves (Chrysocyon brachyurus), for example, also present a signature for a recent population expansion in the Brazilian Cerrado (Bonatto in prep.), while the pampas cat (Leopardus colocolo) seem to have invaded this biome coming from Argentina at some time in the past (Santos 2012). Therefore, additional analyses of the evolutionary history of Conepatus could shed light on our understanding of the faunal dynamics that occurred in South American grasslands in the last 3 million years.

Regarding the internal diversity of the southern Conepatus clade, it is clearly a highly structured lineage. Although the hierarchical relationships among regional groups are still not well resolved, their existence is very strongly supported by both mitochondrial and microsatellite data. All analyses consistently show no differentiation between the Uruguayan Savannas in southern Brazil and in Uruguay, strongly indicating that this biome holds a single evolutionary population of Conepatus. All other populations tested were solidly confirmed as distinct units, with the suggestion of an additional, unexpected population in eastern Argentina. Altogether, these results indicate the existence of at least four major phylogroups, some of them presenting internal, nested clades: (A) Southern Brazil + Uruguay, (B) Central/Northern Argentina + Central Brazil, (C) Central Chile and (D) Southern Chile. Clades A and B are the ones that present nested populations (see Figures 2a-2b).

Group A occupies two biomes of southern Brazil and Uruguay, delimited on the western edge by a major river, the Uruguay, and on the north by the Atlantic Forest (see Figure 2c). The largest portion of the group's occurrence area lies in the Brazilian and Uruguayan components of the Pampas biome, known as the Uruguayan Savannas. A nested group (A-I) occupies the isolated altitude grasslands known as the 'Campos de Cima da Serra', and seems to comprise a distinct demographic unit given the results obtained with both mtDNA and microsatellites. Field researchers already noticed a frequency difference in the coloration (presence of white areas) of the back and tail of individuals observed in this population, relative to those from the Uruguayan Savannas (C.B. Kasper pers. comm.). The former ones would have more white hairs in the back, and many of them also present a mostly white tail. On the other hand, the latter ones seem to have a darker fur, with very few of them presenting a significant
amount of white tail hairs. This morphological distinction should be further investigated and characterized, in the light of our results indicating a genetic disjunction between these areas. Interestingly, this difference was apparently noticed also by early naturalists (Inhering 1911: 258). A likely scenario that explains this pattern is the colonization or recolonization of this area by individuals from the Uruguayan Savannas, since its mtDNA diversity is nested within Group A. Finally, regarding Group A as a whole, it presents a moderate signal of population expansion, detected by some of the demographic analyses and the skyline plot performed with BEAST. This expansion seems to have occurred ca. 1,000 years ago, with no obvious link with major climatic or vegetation shifts. The event could be related to some change in the ecological structure of the Uruguayan Savannas, but such shift would be very difficult to identify.

Group B is the most diverse and structured one, delimited on its eastern portion by the same Uruguay River and on its western portion by the Andes (see Figure 2c). The internal diversity of this group presents some deeply divergent haplotypes subgroups. However, when considering Western, Central and Northern Argentina, no geographic structure was detected, and the haplotypes seem to be randomly dispersed. However, when considering eastern Argentina, a very unexpected but consistent phylogroup was detected by the phylogenetic, network and microsatellite analyses. Geographically, it seems to be limited by the Uruguay and Parana Rivers, which is plausible considering that the distribution of group A is also delimited by a river. Further studies are needed in order to better characterize the genetic diversity, morphology and evolutionary history of this clade.

Finally, still regarding Group B, one of the most interesting findings of this study was that the mtDNA diversity present in Central Brazil is clearly nested within the Argentinean clade. This result raises the strong hypothesis of a colonization of the Brazilian Cerrado and Caatinga biomes through the dispersal of Argentinean individuals across the Paraguayan Chaco and Brazilian Pantanal regions. At the same time, the high levels of microsatellite divergence and the clear mtDNA differentiation points to a lack of current gene flow, indicating that this is an isolated population with an already very distinct evolutionary history. Regarding demographic tests, this group presented the most significant signals of population expansion. The Bayesian skyline reconstruction showed a strong effective size growth around 20 KYA , the approximate time of the last glacial maximum (LGM), between 26 and 19 KYA (Clark et al. 2009). The LGM was traditionally associated with Cerrado expansion and its advance over forested environments by several authors (e.g. Behling 1998), and therefore could be the driving force behind this recent population expansion (but see Werneck et al. 2012).

Group C is comprised by the central Chilean samples, occurring west of the Andes (Figure 2c). As might be expected, this great cordillera prevents the gene flow among these organisms, leading to separate evolutionary histories of groups B and C. The small number of available samples from Central Chile hampers more detailed analyses of their diversity, internal structure and demographic history. However, it is important to mention that even with only five individuals sampled, diversity levels were higher and coalescence time were deeper for this group than for other areas with better coverage, possibly indicating an older and more diversified population. Further studies are needed in order to better characterize its evolutionary history and internal structure, being the addition of microsatellite data perhaps the most immediate issue.

Finally, Group D was represented by a single sample from Southern Chile, and the disjunction of Groups C and D remains to be further investigated. Going from north to south in Chile, a geographic section that contains several large lakes is known as the 'Los Lagos Region'. Some of these lakes prevent most of the passage over land, since they spread from the Pacific Ocean to the Andes foothills. These geographic elements can represent the physical barriers that separate groups C and D, but a more detailed sampling around this region is necessary in order to better understand this disjunction. At the same time, this 'group D' sample is a putative C. humboldtii individual, and its position in the South American Conepatus clade is worth mentioning. Despite the low support of the group that presents this sample as an internal lineage in relation to C. chinga populations, if this hierarchical structure is maintained in further investigations, the whole taxonomic structure of South America Conepatus should be reevaluated, as this would no longer be recognized as more deeply divergent group than the other units identified here. As for Group C, microsatellite data should be also generated for Group D , ir order to confirm the genetic structure pattern found.

Conclusion

The broad picture of Conepatus evolutionary history is just beginning to be understood. Very few studies have so far focused on this genus, hampering the understanding of a taxon that is closely linked to the GABI and to the evolution of South American savannas. Our results are consistent with the hypothesis that Conepatus could have been one of the first northern genera to invade and occupy South American grassland right after the closure of the Panama Isthmus. This invasion seems to be the cause of a North-South split in this genus, although more data is necessary to better assess this hypothesis. Our data support a single invasion of southern and central South America (south of the Amazonian Forest), but the young coalesce time of extant lineages within his group suggests a dynamics of extinction-recolonization of grassland
biomes. This complex history seems to be linked to the climatic and vegetational cyclic changes of the last Ice Age, which also seem to be the most likely driving force of the complex demographic history of some populations. Altogether, these results show that a finer understanding of the evolutionary history of a taxon such as Conepatus could shed light on the history of vegetation and faunal dynamics of South America.

Regarding the structure of the South American Conepatus clade, our data provide important and solid insights, which challenge the current taxonomic paradigm pertaining to this genus. We can recognize five distinct Evolutionarily Significant Units (ESUs): (i) Central Chile; (ii) Northern/Central Argentina; (iii) Northeastern Argentina; (iv) Central Brazil [Cerrado and Caatinga biomes]; and (v) Southern Brazil/Uruguay. All of them have been detected by the mtDNA survey, confirmed by microsatellite analyses (except for the Chilean populations) and present an evident geographic delimitation, thus comprising distinct evolutionary entities. Furthermore, we recognize the southern Brazil Altitude Grasslands (Campos de Cima da Serra) population as an MU, nested within the Southern Brazil/Uruguay clade. All of these units need focused research attention, in order to better characterize their internal genetic diversity, evolutionary history, demographic dynamics, morphological and ecological features, as well as exact geographic ranges. From a conservation perspective, all of the mentioned units must be managed and protected independently, which implies a dramatic change relative to presently employed strategies.

This study includes one sample of a putative C. humboldtii individual, and if that identification is correct our results indicate that this species is part of the radiation stemming from northern Argentina. Its exact phylogenetic relationship with the other South American Conepatus populations must be investigated in more detail, and a broad study including samples from both Chilean and Argentinean Patagonia is necessary in order to characterize the evolutionary history of this taxon. Interestignly, a recently published, parallel study employing mtDNA data and morphological analyses (Schiaffini et al. 2013) failed to identify a clear distinction between C. humboldtii and C. chinga, illustrating the need for further taxonomic analyses targeting this group.

Although this study could not address all outstanding taxonomic and evolutionary issues pertaining to Conepatus, it helped shed light on several issues, and indicated important avenues for further research. Follow-up studies should involve more molecular markers, a broader geographic sampling and more representatives of putative taxa. Important occurrence areas of Conepatus could not be sampled in this study, such as the Argentinean Patagonia, Paraguay, Bolivia, Peru, Ecuador, Venezuela, the United States and several Central American countries. Considering the apparent propensity of Conepatus populations to become isolated by several
geographic elements, it is quite likely that still many other ESUs can exist throughout the genus' distribution. Therefore, further comparative studies should be developed in order to better understand the evolutionary history of Conepatus, the GABI and the open habitats which harbor these widespread carnivores.

Funding

This study was supported by Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Brazil. MLFR was supported by fellowships from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil.

Acknowledgments

We would like to thank all the collaborators and sample collectors listed on Table 1, in addition to colleagues who provided laboratory support and participated in interesting discussions on the evolution of Neotropical mammals.

References

Alves R, Mendonça L, Confessor M, Vieira W, Lopez L. 2009. Hunting strategies used in the semi-arid region of northeastern Brazil. Journal of Ethnobiology and Ethnomedicine. 5(1):12.

Avise JC. 2008. Phylogeography: retrospect and prospect. Journal of Biogeography. 36(1):3-15.

Bandelt H-J, Forster P, Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 16:37-48.

Barton HD and Wisely SM. 2012. Phylogeography of striped skunks (Mephitis mephitis) in North America: Pleistocene dispersal and contemporary population structure. Journal of Mammalogy. 93(1):38-51.

Behling H. 1998. Late Quaternary vegetational and climatic changes in Brazil. Review of Palaeobotany and Palynology. 99(2):143-156.

Boutin-Ganache I, Raposo M, Raymond M, Deschepper CF. 2001. M13-tailed primers improve the readability and usability of microsatellite analyses performed with two different allele-sizing methods. Biotechniques. 31:24-26, 28.

Charruau P, Fernandes C, Orozco-Terwengel P, Peters J, Hunter L, Ziaie H, ... and Burger, P. A. 2011. Phylogeography, genetic structure and population divergence time of cheetahs in Africa and Asia: evidence for long-term geographic isolates. Molecular Ecology. 20(4):706-724.

Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, and McCabe AM. 2009. The last glacial maximum. Science. 325(5941):710-714.

Crawford NG. 2010. SMOGD: software for the measurement of genetic diversity. Molecular Ecology Resources. 10:556-557.

Delisle I and Strobeck C. 2002. Conserved Primers for Rapid Sequencing of the Complete Mitochondrial Genome from Carnivores, Applied to Three Species of Bears. Molecular Biology and Evolution. 19:357-361.

Dragoo JW, Honeycutt RL, Schmidly DJ. 2003. Taxonomic status of white-backed hognosed skunks, genus Conepatus (Carnivora: Mephitidae). Journal of Mammalogy. 84:159-176.

Dragoo JW. 2009. Family Mephitidae (skunks). In: Wilson DE and Mittermeier RA, editors. Handbook of the mammals of the world. Barcelona: Lynx Edicions; p. 532-563.

Dragoo JW, Coan KE, Moore KA, Henke SE, Fleischer RC, WISELY SM. 2009. Polymorphic microsatellite markers for the striped skunk, Mephitis mephitis, and other mephitids. Molecular Ecology Resources. 9(1):383-385.

Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution. 29(8):1969-1973.

Eizirik E, Murphy WJ, Koepfli KP, Johnson WE, Dragoo JW, Wayne RK, O'Brien SJ. 2010. Pattern and timing of diversification of the mammalian order Carnivora inferred from multiple nuclear gene sequences. Molecular Phylogenetics and Evolution. 56:4963.

Eizirik E. 2012. A molecular view on the evolutionary history and biogeography of Neotropical carnivores (Mammalia, Carnivora). In: Patterson BD and Costa LP, editors. Bones, Clones, and Biomes: The History and Geography of Recent Neotropical Mammals. Chicago (IL): University of Chicago Press; p. 123-144.

Excoffier L And Lischer HE. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources. 10(3):564-567.

Gordon D, Abajian C, Green P. 1998. Consed: a graphical tool for sequence finishing. Genome Research. 8(3):195-202.

Hall TA 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 41:95-98.

Hunt RM Jr. 1996. Biogeography of the order Carnivora. In: Gittleman JL, editor. Carnivore behavior, ecology, and evolution, Vol. 2. Ithaca (NY): Cornell University Press; p. 485-541.

IBGE 2004. Mapa de Vegetação do Brasil. (1:5.000.000) Rio de Janeiro (RJ): Fundação Instituto Brasileiro de Geografia e Estatística (IBGE/IBDF).

Ihering H. 1911. Os mammiferos do Brazil meridional. I Contribuição: Carnivora. I Felidae; II Canidae; III Procyonidae; IV Canidae. Revista do Museu Paulista. 8:147272.

Irwin DM, Kocher TD, Wilson AC 1991. Evolution of the Cytochrome b Gene of Mammals. Journal of Molecular and Evolution. 32:128-144.

IUCN. 2012. IUCN Red List of Threatened Species, version 2012.2. [cited 2013 February 25]. Avaiable from: HTTP://www.iucnredlist.org.

Jarvis A, Touval JL, Schmitz MC, Sotomayor L, Hyman GG. 2010. Assessment of threats to ecosystems in South America. Journal for Nature Conservation. 18(3):180188.

Kasper CB, Fontoura-Rodrigues ML, Cavalcanti GN, De Freitas TRO, Rodrigues FHG, Olivera TG, Eizirik E. 2009. Recent advances in the knowledge of Molina's Hog-nosed Skunk Conepatus chinga and Striped Hog-nosed Skunk C. semistriatus in South America. Small Carnivore Conservation. 41:25-28.

Kurtén B and Anderson E. 1980. Pleistocene mammals of North America. New York (NY): Columbia University Press.

Marshall LG, Webb SD, Sepkoski JJ Jr, Raup, DM. 1982. Mammalian evolution and the Great American interchange. Science. 215:1351-1357.

Marshall, TC, Slate, J, Kruuk, LEB and Pemberton, JM. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology. 7:639655.

Moritz, C. 1994. Defining 'evolutionarily significant units' for conservation.TRENDS in Ecology and Evolution. 9(10):373-374.

Peters FB, Roth PRDO, Christoff AU. 2011. Feeding habits of Molina's hog-nosed skunk, Conepatus chinga (Carnivora: Mephitidae) in the extreme south of Brazil. Zoologia (Curitiba). 28(2):193-198.

Pinheiro MHO and Monteiro R. 2010. Contribution to the discussions on the origin of the cerrado biome: Brazilian savanna. Brazilian Journal of Biology. 70(1):95-102.
Posada D. 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution. 25(7):1253-1256.

Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics. 155(2):945-959.

Rozas J, Sánchez-delBarrio JC, Messeguer X, Rozas R 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics. 19:24962497.

Rozen S and Skaletsky H. 2000. Primer3 on the WWW for general users and for biologist programmers. Methods in Molecular Biology. 132(3):365-386.

Sambrook J and Russel DW 2001. Molecular Cloning: A Laboratory Manual, $3^{\text {rd }}$ ed.. New York (NY): Harbor Laboratory Press.

Santos AS. 2012. História evolutiva de Leopardus colocolo (Mammalia, Felidae): análise de padrões filogeográficos e sua influência no processo de hibridação com Leopardus tigrinus [Msc Thesis]. Porto Alegre (RS): Pontifícia Universidade Católica do Rio Grande do Sul. 80 p.

Schiaffini MI, Grabrielli M, Prevosti FJ, Cardoso YP, Castillo D, Bo R, Casanave E, Lizarralde M. 2013. Taxonomic status of southern South American Conepatus (Carnivora: Mephitidae). Zoological Journal of the Linnean Society. 167:327-344.

Sigman DM and Boyle EA. 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature. 407(6806):859-869.

Stamatakis A, Hoover P, Rougemont J. 2008. A Rapid Bootstrap Algorithm for the RAxML Web-Servers. Systematic Biology. 75(5):758-771.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution. 28:2731-2739.

Trigo TC, Freitas TRO, Kunzler G, Cardoso L, Silva JCR, Johnson WE, Eizirik E. 2008. Inter-species hybridization among Neotropical cats of the genus Leopardus, and evidence for an introgressive hybrid zone between L. geoffroyi and L. tigrinus in southern Brazil. Molecular Ecology. 17(19):4317-4333.

Wang X, Whistler DP, Takeuchi GT. 2005. A new basal skunk Martinogale (Carnivora, Mephitinae) from late Miocene Dove Spring Formation, California, and origin of new world mephitines. Journal of Vertebrate Paleontology. 25(4):936-949.

Wang X and Carranza-Castañeda O. 2008. Earliest hog-nosed skunk, Conepatus (Mephitidae, Carnivora) from the early Pliocene of Guajanato, Mexico and origin of South American skunks. Zoological Journal of the Linnean Society. 154:386-407.

Webb SD. 2006. The great American biotic interchange: patterns and processes. Annals of the Missouri Botanical Garden. 93:245-257.

Werneck FP, Nogueira C, Colli GR, Sites JW, and Costa GC. 2012. Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot. Journal of Biogeography. 39(9):1695-1706.

Wolsan M. 1999. Oldest mephitine cranium and its implications for the origin of skunks. Acta Palaeontologica Polonica. 44:223-230.

Woodburne MO. 2010. The Great American Biotic Interchange: dispersals, tectonics, climate, sea level and holding pens. Journal of Mammalian Evolution. 17:245-264.

Wozencraft WC. 2005. Order Carnivora. In: Wilson DE and Reeder DM, editors. Mammal species of the world. A taxonomic and geographic reference, Vol. 1, $3^{\text {rd }}$ ed. Baltimore (MD): The Johns Hopkins University Press; p. 601-624.

Xia X and Xie Z. 2001. DAMBE: software package for data analysis in molecular biology and evolution. Journal of Heredity. 92(4):371-373.

Figures and Tables

Figure 1. Sample collection points (circles) plotted against the geographic distribution of the currently accepted Conepatus species (colored areas), following the IUCN Red List (IUCN 2012). Gray filled circles represent points from which only one sample was obtained. White filled circles indicate that two or more (up to seven) samples were collected at the same or adjacent localities. Dashed lines delimit populations to which the samples were initially assigned (see text and Table 1 for details and population codes). The total number of individuals sampled for each initial population is given in parenthesis. Color codes of the distribution for each Conepatus species are as follows: C. humboldtii - yellow; C. chinga - green; C. semistriatus - red; and C. leuconotus - blue.

Figure 2. Phylogroups recovered by mtDNA analyses and their distribution plotted on a map of South America. Color legend applies to all panels. (a) Haplotype network drawn from 642 bp of ND5 gene sequences of 132 Conepatus individuals, representing eight different geographic origins in South America. Each cross bar along network connectors represents one mutational step, and small white circles represent extinct/unsampled haplotypes; (b) Phylogenetic tree generated with the Bayesian analysis performed using Beast, showing the relationship among 38 ingroup and two outgroup individuals inferred from 1,902 bp of mtDNA. Ingroup individuals represent eight distinct South American geographic origins with additional C. leuconotus and C. semistriatus samples from Central/North America. Numbers next to nodes or pointing arrows indicate the node number (see Table 4 for support values and node dating estimates). The bar below the tree indicates time in million years before the present; (c) Geographic distribution of network phylogroups and tree-based clades visualized on a map of South America. Blue lines represent the Uruguay and Paraná Rivers and the hatched shape along the Pacific coast represents the southern portion of the Andes Cordillera (see text for more details).

Figure 3. Bayesian Skyline Reconstruction plots representing the past effective population size of two different populations: (A) Central Brazil (31 individuals) and (B) Southern Brazil-Uruguay (76 individuals). The X axis represents the time in years before present (BP), while the Y axis represents the female effective population size $\left(N_{e}\right)$. The reconstruction was conducted with 642 bp of the ND5 mitochondrial gene, assuming a strict molecular clock and utilizing a 2.779^{-8} substitutions/site per year rate, as calculated from the phylogenetic analysis performed with Beast. The solid black line represents the mean population size, while the grey shade represents the 95% credibility interval.

Figure 4. Bar plots drawn on the basis of the results of the Bayesian analysis performed with the software Structure, considering the runs with best values of likelihood among $K=4$ (above) and $K=5$ (below). ' K ' represents the number of genetically-defined population units, with each assumed unit/cluster shown as a distinct color. Runs were performed with a dataset containing 88 individuals and seven microsatellite loci. Each bar represents one individual, and black lines between some of them represent divisions between different geographic population. The Y axis represents the percentage of genetic composition of each individual with respect to the inferred clusters (colors). Populations: Southern Brazil Altitude Grasslands (SB-AG), Southern Brazil Uruguayan Savannas (S BRA), Uruguay Uruguayan Savannas (URU) Central/Northern Argentina (C/N ARG), Eastern Argentina (E ARG) and Central Brazil (C BRA).

Table 1. Information regarding each sample utilized in this study, including putative species (following the current literature), geographic origin, initial population assignment (see text for details) and collectors.

ID	Putative Species	City	State/Department/Region	Country	Population (this study)	Collector
bCch-002	C. chinga	Viamão	Rio Grande do Sul	Brazil	S BRA	E. Eizirik
bCch-003	C. chinga	Cristal	Rio Grande do Sul	Brazil	S BRA	Pró-Carnívoros Association
bCch-004	C. chinga	Pelotas	Rio Grande do Sul	Brazil	S BRA	Pró-Carnívoros Association
bCch-005	C. chinga	Pedro Osório	Rio Grande do Sul	Brazil	S BRA	Pró-Carnívoros Association
bCch-006	C. chinga	Arroio Grande	Rio Grande do Sul	Brazil	S BRA	Pró-Carnívoros Association
bCch-007	C. chinga	Arroio Grande	Rio Grande do Sul	Brazil	S BRA	Pró-Carnívoros Association
bCch-008	C. chinga	São Francisco de Paula	Rio Grande do Sul	Brazil	SB-AG	Pró-Carnívoros Association
bCch-009	C. chinga	Tainhas	Rio Grande do Sul	Brazil	S BRA	Pró-Carnívoros Association
bCch-010	C. chinga	Lagoa Vermelha	Rio Grande do Sul	Brazil	SB-AG	Pró-Carnívoros Association
bCch-011	C. chinga	Vacaria	Rio Grande do Sul	Brazil	SB-AG	Pró-Carnívoros Association
bCch-013	C. chinga	Arambaré	Rio Grande do Sul	Brazil	S BRA	Pró-Carnívoros Association
bCch-014	C. chinga	Camaquã	Rio Grande do Sul	Brazil	S BRA	Pró-Carnívoros Association
bCch-015	C. chinga	Capão do Leão	Rio Grande do Sul	Brazil	S BRA	Pró-Carnívoros Association
bCch-016	C. chinga	Cachoeira do Sul	Rio Grande do Sul	Brazil	S BRA	E. Eizirik, M. Fontoura-Rodrigues, R. Morato
bCch-017	C. chinga	Rio Grande	Rio Grande do Sul	Brazil	S BRA	P. B. Chaves
bCch-018	C. chinga	Rio Grande	Rio Grande do Sul	Brazil	S BRA	P. B. Chaves
bCch-019	C. chinga	Santa Vitória do Palmar	Rio Grande do Sul	Brazil	S BRA	P. B. Chaves
bCch-020	C. chinga	Uruguaiana	Rio Grande do Sul	Brazil	S BRA	J. Koenemann
bCch-022	C. chinga	Osório	Rio Grande do Sul	Brazil	S BRA	M. Tavares
bCch-023	C. chinga	Anita Garibaldi	Santa Catarina	Brazil	SB-AG	C. B. Kasper
bCch-024	C. chinga	Campo Belo do Sul	Santa Catarina	Brazil	SB-AG	C. B. Kasper
bCch-025	C. chinga	Campestre da Serra	Rio Grande do Sul	Brazil	SB-AG	C. B. Kasper
bCch-026	C. chinga	Alfredo Wagner	Santa Catarina	Brazil	SB-AG	J. Cheren
bCch-027	C. chinga	São Cristóvão do Sul	Santa Catarina	Brazil	SB-AG	J. Cheren
bCch-029	C. chinga	Triunfo	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper
bCch-030	C. chinga	Soledade	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper
bCch-031	C. chinga	Campestre da Serra	Rio Grande do Sul	Brazil	SB-AG	C. B. Kasper
bCch-034	C. chinga	Campo Belo do Sul	Santa Catarina	Brazil	SB-AG	C. B. Kasper, M. Piccoli (BAESA)

Table 1. (continued)

ID	Putative Species	City	State/Department/Region	Country	Population (this study)	Collector
bCch-035	C. chinga	Capão Alto	Santa Catarina	Brazil	SB-AG	C. B. Kasper, M. Piccoli (BAESA)
bCch-036	C. chinga	Campo Belo do Sul	Santa Catarina	Brazil	SB-AG	C. B. Kasper, M. Piccoli (BAESA)
bCch-037	C. chinga	Bom Jesus	Rio Grande do Sul	Brazil	SB-AG	C. B. Kasper, M. Piccoli (BAESA)
bCch-038	C. chinga	Anita Garibaldi	Santa Catarina	Brazil	SB-AG	C. B. Kasper, M. Piccoli (BAESA)
bCch-039	C. chinga	Capão Alto	Santa Catarina	Brazil	SB-AG	C. B. Kasper, M. Piccoli (BAESA)
bCch-040	C. chinga	Campo Belo do Sul	Santa Catarina	Brazil	SB-AG	C. B. Kasper, M. Piccoli (BAESA)
bCch-041	C. chinga	Piratini	Rio Grande do Sul	Brazil	S BRA	F. Mazim
bCch-042	C. chinga	Piratini	Rio Grande do Sul	Brazil	S BRA	F. Mazim
bCch-043	C. chinga	Cachoeira do Sul	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper
bCch-044	C. chinga	Rosário do Sul	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper
bCch-048	C. chinga	Rio Grande	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper
bCch-049	C. chinga	Rio Grande	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper
bCch-050	C. chinga	Cerrito	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper
bCch-051	C. chinga	Pedro Osório	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper
bCch-052	C. chinga	Pedro Osório	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper
bCch-053	C. chinga	Tapes	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper
bCch-054	C. chinga	Pedro Osório	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper
bCch-055	C. chinga	Arroio Grande	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper
bCch-056	C. chinga	Arroio Grande	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper, G. N. Cavalcanti, M. Fontoura-Rodrigues
bCch-057	C. chinga	Osório	Rio Grande do Sul	Brazil	S BRA	H. Figueiró (Fundação Zoobotânica RS)
bCch-058	C. chinga	Barra de Valizas	Rocha	Uruguay	URU	M. Fontoura-Rodrigues, M. Reck, D. Dal'Bosco
bCch-059	C. chinga	Barra de Valizas	Rocha	Uruguay	URU	M. Fontoura-Rodrigues, M. Reck, D. Dal'Bosco
bCch-060	C. chinga	Santa Vitória do Palmar	Rio Grande do Sul	Brazil	S BRA	M. Fontoura-Rodrigues, M. Reck, D. Dal'Bosco
bCch-061	C. chinga	Arroio Grande	Rio Grande do Sul	Brazil	S BRA	F. Mazim
bCch-062	C. chinga	Cristal	Rio Grande do Sul	Brazil	S BRA	F. Mazim
bCch-063	C. chinga	Canguçu	Rio Grande do Sul	Brazil	S BRA	F. Mazim
bCch-064	C. chinga	Arroio Grande	Rio Grande do Sul	Brazil	S BRA	F. Mazim
bCch-065	C. chinga	Barra do Ribeiro	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper

Table 1. (continued)

ID	Putative Species	City	State/Department/Region	Country	Population (this study)	Collector
bCch-066	C. chinga	Tapes	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper
bCch-067	C. chinga	Osório	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper
bCch-068	C. chinga	Cristal	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper
bCch-069	C. chinga	Tapes	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper
bCch-070	C. chinga	Osório	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper
bCch-071	C. chinga	Encruzilhada do Sul	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper
bCch-072	C. chinga	Cristal	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper
bCch-073	C. chinga	Santo Antônio da Patrulha	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper
bCch-074	C. chinga	Pantano Grande	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper
bCch-075	C. chinga	Encruzilhada do Sul	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper
bCch-076	C. chinga	Canguçú	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper
bCch-077	C. chinga	lbirubá	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper
bCch-078	C. chinga	Cachoeira do Sul	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper, M. Fontoura-Rodrigues
bCch-079	C. chinga	Cachoeira do Sul	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper, M. Fontoura-Rodrigues
bCch-080	C. chinga	Alegrete	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper, M. Fontoura-Rodrigues
bCch-081	C. chinga	Alegrete	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper, M. Fontoura-Rodrigues
bCch-082	C. chinga	Cuatro Bocas	Corrientes	Argentina	E ARG	C. B. Kasper, M. Fontoura-Rodrigues
bCch-083	C. chinga	Los Conquistadores	Entre Rios	Argentina	E ARG	C. B. Kasper, M. Fontoura-Rodrigues
bCch-084	C. chinga	Federal	Entre Rios	Argentina	E ARG	C. B. Kasper, M. Fontoura-Rodrigues
bCch-085	C. chinga	Federal	Entre Rios	Argentina	E ARG	C. B. Kasper, M. Fontoura-Rodrigues
bCch-086	C. chinga	Bovril	Entre Rios	Argentina	E ARG	C. B. Kasper, M. Fontoura-Rodrigues
bCch-087	C. chinga	Pareditas	Mendoza	Argentina	C/N ARG	C. B. Kasper, M. Fontoura-Rodrigues
bCch-088	C. chinga	Pareditas	Mendoza	Argentina	C/N ARG	C. B. Kasper, M. Fontoura-Rodrigues
bCch-089	C. chinga	El Nehuil	Mendoza	Argentina	C/N ARG	C. B. Kasper, M. Fontoura-Rodrigues
bCch-090	C. chinga	Coronel Dorrego	Buenos Aires	Argentina	C/N ARG	C. B. Kasper, M. Fontoura-Rodrigues
bCch-091	C. chinga	Coronel Dorrego	Buenos Aires	Argentina	C/N ARG	C. B. Kasper, M. Fontoura-Rodrigues
bCch-092	C. chinga	Coronel Dorrego	Buenos Aires	Argentina	C/N ARG	C. B. Kasper, M. Fontoura-Rodrigues
bCch-093	C. chinga	Coronel Dorrego	Buenos Aires	Argentina	C/N ARG	C. B. Kasper, M. Fontoura-Rodrigues

Table 1. (continued)

ID	Putative Species	City	State/Department/Region	Country	Population (this study)	Collector
bCch-094	C. chinga	Benito juarez	Buenos Aires	Argentina	C/N ARG	C. B. Kasper, M. Fontoura-Rodrigues
bCch-095	C. chinga	Alzaga	Buenos Aires	Argentina	C/N ARG	C. B. Kasper, M. Fontoura-Rodrigues
bCch-096	C. chinga	Cachari	Buenos Aires	Argentina	C/N ARG	C. B. Kasper, M. Fontoura-Rodrigues
bCch-097	C. chinga	Ciudad de la Costa	Canelones	Uruguay	URU	C. B. Kasper, M. Fontoura-Rodrigues
bCch-098	C. chinga	José İgnácio	Maldonado	Uruguay	URU	C. B. Kasper, M. Fontoura-Rodrigues
bCch-099	C. chinga	José Ignácio	Maldonado	Uruguay	URU	C. B. Kasper, M. Fontoura-Rodrigues
bCch-100	C. chinga	Santa Vitória do Palmar	Rio Grande do Sul	Brazil	S BRA	C. B. Kasper, M. Fontoura-Rodrigues
bCch-101	C. chinga	Gualegay	Entre Rios	Argentina	E ARG	J. Pereira
bCch-102	C. chinga	?	Cordoba/Buenos Aires	Argentina	C/N ARG	R. Palacios
bCch-103	C. chinga	?	Cordoba/Buenos Aires	Argentina	C/N ARG	R. Palacios
bCch-104	C. chinga	?	Cordoba/Buenos Aires	Argentina	C/N ARG	R. Palacios
bCch-105	C. chinga	?	Cordoba/Buenos Aires	Argentina	C/N ARG	R. Palacios
bCch-106	C. chinga	Tapes	Rio Grande do Sul	Brazil	S BRA	P. B. Chaves
bCch-107	C. chinga	Castillos	Rocha	Uruguay	URU	P. B. Chaves
bCch-108	C. chinga	La Barra	Maldonado	Uruguay	URU	M. Favarini
bCse-001	C. semistriatus	São Roque	Minas Gerais	Brazil	C BRA	CENAP
bCse-002	C. semistriatus	Formiga	Minas Gerais	Brazil	C BRA	J. May
bCse-003	C. semistriatus	Formiga	Minas Gerais	Brazil	C BRA	F. Rodrigues
bCse-004	C. semistriatus	Piumhí	Minas Gerais	Brazil	C BRA	J. May Jr.
bCse-005	C. semistriatus	Três Marias	Minas Gerais	Brazil	C BRA	F. Rodrigues
bCse-006	C. semistriatus	Piumhí	Minas Gerais	Brazil	C BRA	J. May Jr.
bCse-007	C. semistriatus	São Roque de Minas	Minas Gerais	Brazil	C BRA	J. May Jr.
bCse-008	C. semistriatus	Batalha	Piauí	Brazil	C BRA	G. N. Cavalcanti
bCse-009	C. semistriatus	José de Freitas	Piauí	Brazil	C BRA	G. N. Cavalcanti
bCse-010	C. semistriatus	Cabeceiras	Piauí	Brazil	C BRA	G. N. Cavalcanti
bCse-011	C. semistriatus	Cabeceiras	Piauí	Brazil	C BRA	G. N. Cavalcanti
bCse-012	C. semistriatus	Pirapora	Goiás	Brazil	C BRA	F. Grazziotin, A. Garda
bCse-014	C. semistriatus	Soledade de Minas	Minas Gerais	Brazil	C BRA	C. B. Kasper, T. G. Oliveira, M. Tsuchiya, M. Fontoura-Rodrigues
bCse-015	C. semistriatus	Cristalina	Goiás	Brazil	C BRA	F. Jerep, T. Carvalho

Table 1. (continued)

ID	Putative Species	City	State/Department/Region	Country	Population (this study)	Collector
bCse-016	C. semistriatus	Três Marias	Minas Gerais	Brazil	C BRA	G. N. Cavalcanti
bCse-017	C. semistriatus	Cristino Castro	Piauí	Brazil	C BRA	G. N. Cavalcanti
bCse-019	C. semistriatus	Ribeiro Gonçalves	Piauí	Brazil	C BRA	C. B. Kasper
bCse-020	C. semistriatus	Barão de Cocais	Minas Gerais	Brazil	C BRA	D. Saraiva
bCse-021	C. semistriatus	Curvelo	Minas Gerais	Brazil	C BRA	D. Saraiva
bCse-022	C. semistriatus	Três Marias	Minas Gerais	Brazil	C BRA	D. Saraiva
bCse-023	C. semistriatus	Três Marias	Minas Gerais	Brazil	C BRA	D. Saraiva
bCse-024	C. semistriatus	Curvelo	Minas Gerais	Brazil	C BRA	D. Saraiva
bCse-026	C. semistriatus	Iguatú	Ceará	Brazil	C BRA	G. N. Cavalcanti
bCse-027	C. semistriatus	Valença	Piauí	Brazil	C BRA	G. N. Cavalcanti
bCse-301	C. semistriatus	Mineiros	Goiás	Brazil	C BRA	L. Silveira
bCse-302	C. semistriatus	Valença	Piauí	Brazil	C BRA	G. N. Cavalcanti
bCse-303	C. semistriatus	Mineiros	Goiás	Brazil	C BRA	L. Silveira, A. Jacomo, M. Furtado, C. Kashivakura
bCse-304	C. semistriatus	Mineiros	Goiás	Brazil	C BRA	L. Silveira, A. Jacomo, M. Furtado, C. Kashivakura
bCse-306	C. semistriatus	Mineiros	Goiás	Brazil	C BRA	L. Silveira, A. Jacomo, M. Furtado, C. Kashivakura
bCse-307	C. semistriatus	Mineiros	Goiás	Brazil	C BRA	L. Silveira, A. Jacomo, M. Furtado, C. Kashivakura
bCse-308	C. semistriatus	Mineiros	Goiás	Brazil	C BRA	L. Silveira, A. Jacomo, M. Furtado, C. Kashivakura
bCse-309	C. semistriatus	Mineiros	Goiás	Brazil	C BRA	L. Silveira, A. Jacomo, M. Furtado, C. Kashivakura
bCse-310	C. semistriatus	Mineiros	Goiás	Brazil	C BRA	L. Silveira, A. Jacomo, M. Furtado, C. Kashivakura
bCse-311	C. semistriatus	Mineiros	Goiás	Brazil	C BRA	L. Silveira, A. Jacomo, M. Furtado, C. Kashivakura
JV-M04	C. chinga	Curicó	Maule	Chile	CCHI	J. Vianna
JV-Cc09	C. chinga	Santo Domingo	Valparaíso	Chile	CCHI	J. Vianna
JV-Cc10	C. chinga	Puente Iñaque	Los Rios	Chile	CCHI	J. Vianna
JV-Cc13	C. chinga	Los Vilos	Coquimbo	Chile	CCHI	J. Vianna
JV-Cc11	C. chinga	Paso Puyehua	Los Lagos	Chile	CCHI	J. Vianna
JV-Cc12	C. humboldtii	Puerto Aisén	Aisén	Chile	SCHI	J. Vianna
AF-ASK8137	C. semistriatus	Merida	Yucatán	Mexico	CSE	A. Ferguson
AF-ASK7394	C. leuconotus	McCulloch	Texas	USA	CLE	A. Ferguson
AF-ASK8134	C. leuconotus	San Francisco del Mar	Oaxaca	Mexico	CLE	A. Ferguson

Table 2. Genetic diversity observed in mitochondrial DNA fragments sampled in multiple Conepatus sp. populations. The total fragment length analyzed, in base pairs, is given beside each fragment name.

	ND5 (642 bp)					cytb (631 bp)					7a (629 bp)					Overall (1,902 bp)				
Population	N	S	h	Hd	$\begin{gathered} \mathrm{Pi} \\ (\%) \end{gathered}$	N	S	h	Hd	$\begin{gathered} \mathrm{Pi} \\ (\%) \\ \hline \end{gathered}$	N	S	h	Hd	$\begin{gathered} \mathrm{Pi} \\ (\%) \end{gathered}$	N	S	h	Hd	$\begin{gathered} \mathrm{Pi} \\ (\%) \end{gathered}$
$\begin{aligned} & \text { [US]+[SB- } \\ & \text { AG] } \end{aligned}$	76	7	7	0.69	0.21	36	10	8	0.64	0.16	17	3	4	0.49	0.09	16	15	11	0.93	0.18
C/N ARG	14	34	11	0.97	1.86	9	24	8	0.97	1.49	7	20	4	0.81	1.45	7	72	6	0.95	1.65
E ARG	6	2	3	0.60	0.11	5	2	3	0.70	0.16	4	2	3	0.83	0.16	4	5	4	1.00	0.13
C BRA	31	9	7	0.50	0.18	6	1	2	0.33	0.05	6	4	4	0.80	0.25	5	9	4	0.90	0.21
C CHI	5	6	4	0.90	0.47	0	-	-	-	-	0	-	-	-	-	0	-	-	-	-
Overall	133*	63	32	0.87	2.39	56	52	21	0.84	1.93	41	36	17	0.87	1.58	32	216	29	0.98	5.37

Number of individuals sampled (N), number of segregating sites (S), observed number of haplotypes (h), haplotype diversity (Hd) and nucleotide diversity (Pi).
Populations: Uruguayan Savannas + Southern Brazil Altitude Grasslands ([US]+[SB-AG]), Central/Northern Argentina (C/N ARG), Eastern Argentina (E ARG), Central Brazil (C BRA) and Central Chile (C CHI).
*The single sample from Southern Chile was included only in the overall statistics.

Table 3. Pairwise fixation indices estimated among Conepatus sp . populations.

	SB-AG	US	C/N ARG	E ARG	C BRA
mtDNA					
$F_{\text {st }}$					
US	0.251***	-	-	-	-
C/N ARG	0.768***	$0.833^{* * *}$	-	-	-
E ARG	0.988***	0.921***	0.536***	-	-
C BRA	0.965***	0.926***	$0.564^{* *}$	0.924***	-
C CHI	0.968***	0.919***	0.539***	0.909***	0.916***
Microsatellites					
$F_{s t}$					
US	0.228***	-	-	-	-
C/N ARG	0.143***	0.148***	-	-	-
E ARG	0.355***	0.35***	0.24***	-	-
C BRA	$0.207 * * *$	$0.129^{* * *}$	0.113***	0.31 ***	-
$R_{s t}$					
US	0.196*	-	-	-	-
C/N ARG	$0.227^{* *}$	0.279***	-	-	-
E ARG	$0.721^{* * *}$	0.320*	0.586***	-	-
C BRA	0.463***	0.539***	$0.466^{* *}$	0.78***	-
$D_{\text {est }}$					
US	0.368	-	-	-	-
C/N ARG	0.378	0.246	-	-	-
E ARG	0.463	0.195	0.416		-
C BRA	0.378	0.183	0.23	0.383	-

$\mathrm{D}_{\text {est }}$ analysis does not output statistical significance tests.
Statistical significance for $\mathrm{F}_{\text {st }}$ and $\mathrm{R}_{\text {st }}$ tests: * $\mathrm{p}<0.05$; ** $\mathrm{p}<0.01$; *** $\mathrm{p}<0.001$.
Populations: Southern Brazil Altitude Grasslands (SB-AG), Uruguayan Savannas (US), Central/Northern Argentina (C/N ARG), Eastern Argentina (E ARG), Central Brazil (C
BRA) and Central Chile (C CHI).
Comparisons with the Central Chile populations were carried out only with mtDNA (ND5) because microsatellite data were not generated for that population.

Table 4. Support values and age estimates for each node displayed on Figure 2b. The support values provided are Posterior Probabilities (PP), calculated with Beast, and Bootstrap support (BS) calculated with RaxML. Node ages were estimated with Beast, in million years ago, and are shown as the mean followed by the 95% credibility interval boundaries.

Node	Node Name	Support		Node Age (MYA)		
		PP	BS	Mean	Lower 95\%	Upper 95\%
1	Mephitidae	NP	NP	6.86	5.07	9.25
2	Spilogale + Mephitis	1.0	100	5.09	3.42	7.09
3	Conepatus	1.0	100	3.18	2.04	4.51
4	C. leuconotus + C. semistriatus	0.76	-	2.87	1.75	4.18
5	South American Clade	1.0	100	0.84	0.5	1.22
6	S Brazil* + Uruguay	1.0	100	0.1	0.05	0.16
7	Argentina** + C Brazil	0.99	70	0.5	0.3	0.73
8	E Argentina	1.0	100	0.06	0.02	0.12
9	C Brazil	1.0	99	0.1	0.04	0.17
10	C Chile	1.0	100	0.18	0.06	0.32
11	(Argentina + C Brazil) + C Chile)	0.61	-	NP	NP	NP
12	(Argentina $+C$ Brazil) $+C$ Chile) $+S$ Chile	0.53	-	NP	NP	NP

Not Significant: - ; Not Performed: NP
Abbreviations: S, Southern; C, Central; E, Eastern.

* Including Southern Brazil Altitude Grasslands
** Including Eastern Argentina

Table 5. Statistical neutrality tests performed with distinct Conepatus $s p$. populations. P values for each test are provided next to each result.

Population	N	Tajima's D		Fu and Li's D*		Fu and Li's F^{*}		Fu's Fs	
		Value	p	Value	p	Value	p	Value	p
$\begin{gathered} \text { [US]+[SB- } \\ \text { AG] } \end{gathered}$							>	.	
	76	0.622	0.308	-0.463	> 0.10	-0.696	0.10	6.039	0.01*
							>	-	
C/N ARG	14	0.501	0.744	0.635	> 0.10	0.687	0.10	0.919	0.307
		-					>	-	
E ARG	6	1.131	0.155	-1.155	> 0.10	-1.195	0.10	0.858	0.081
		-					>	-	
C BRA	31	1.571	0.041*	-0.981	> 0.10	-1.359	0.10	2.329	0.065
							>	-	
C CHI	5	0.286	0.667	0.286	>0.10	0.296	0.10	0.331	0.301

*Statistically significant value ($\mathrm{p}<0.05$).
Populations: Uruguayan Savannas + Southern Brazil Altitude Grasslands ([US]+[SB-AG]), Central/Northern Argentina (N/C ARG), Eastern Argentina (E ARG), Central Brazil (C BRA) and Central Chile (C CHI).

Table 6. Diversity indices of eight microsatellite loci assessed across five populations surveyed in this study.

Population						Multiplex 1														
	Meph42-73 (F)					Meph22-14 (F)					Meph42-15 (H)					Meph42-25 (N)				
	N	A	S	H_{0}	H_{e}	N	A	S	H_{0}	H_{e}	N	A	S	H_{0}	He_{e}	N	A	S	H_{0}	H_{e}
SB-AG	15	2	158-164	0.467	0.480	9	4	270-280	1.000	0.732	14	1	193	0.0	0.0	15	6	221-253	0.733	0.703
US	30	2	158-164	0.167	0.305	19	11	256-280	0.842	0.910	33	1	193	0.0	0.0	30	17	221-259	0.900	0.946
C/N ARG	13	5	158-172	0.769	0.720	10	7	254-276	0.700	0.779	13	1	193	0.0	0.0	12	13	211-259	0.833	0.946
E ARG	5	2	170-172	0.200	0.200	4	4	268-276	0.750	0.821	5	1	193	0.0	0.0	5	6	233-247	0.600	0.778
C BRA	16	5	156-164	0.625	0.780	14	9	264-282	1.000	0.884	17	1	193	0.0	0.0	18	9	211-249	0.444*	0.843
Overall	79	8	156-172	0.418	0.673	56	15	254-282	0.875	0.900	82	1	193	0.0	0.0	80	24	211-259	0.738	0.944

Table 6. (continued)
Multiplex 2

Population	Meph22-26 (F)																			
						Meph22-70 (N)					Meph22-89 (F)					Meph42-67 (H)				
	N	A	S	H_{0}	H_{e}	N	A	S	H_{0}	H_{e}	N	A	S	H_{0}	H_{e}	N	A	S	H_{0}	H_{e}
SB-AG	9	3	253-259	0.667	0.503	9	3	198-206	0.444	0.569	9	1	168	0.000	0.000	15	2	235-237	0.667	0.497
US	26	8	251-267	0.885	0.779	22	2	196-198	0.000	0.089	11	4	154-184	0.091	0.403*	32	2	235-237	0.063	0.062
C/N ARG	11	9	245-267	0.727	0.887	7	9	198-232	0.857	0.934	2	2	156-162	0.500	0.500	12	2	235-237	0.250	0.228
E ARG	5	3	251-257	0.600	0.711	5	3	184-196	0.000	0.622	0	0	-	0.000	0.000	5	1	235	0.000	0.000
C BRA	12	8	245-261	0.667	0.844	17	3	198-202	0.353	0.314	0	0	-	0.000	0.000	17	3	233-237	0.353	0.392
Overall	63	12	245-267	0.762	0.851	60	14	184-232	0.267	0.554	22	6	154-184	0.091	0.366	81	3	233-237	0.259	0.266

Sample size (N), observed number of alleles (A), size range of the PCR fragment (S), observed heterozygosity (Ho) and expected heterozygosity (He)
Populations: Southern Brazil Altitude Grasslands (SB-AG), Uruguayan Savannas (US), Central/Northern Argentina (C/N ARG), Eastern Argentina (E ARG), and Central Brazil (C BRA).
The letter in parentheses next to each microsatellite locus represents the fluorophore employed for the multiplex approach: F-6-FAM, N - NED, H - HEX.
*Departure from HW-Equilibrium detected and statistically significant after Bonferroni Correction.

Table 7. Mean likelihood (Ln P(D)) and likelihood variance (Var[LnP(D)]) values across 15 iterations for each K, as assessed with the software Structure (see text for details).

K	$\operatorname{Ln} P(D)$	$\operatorname{Var}[\operatorname{LnP}(\mathrm{D})]$
1	-1561.05	33.94
2	-1472.80	103.23
3	-1425.49	226.07
4^{*}	-1374.43	249.97
5	-1379.21	379.84
6	-1492.71	646.39
7	-1503.57	717.15
8	-1474.85	702.66
9	-1509.25	788.84
10	-1566.61	898.10

Table 8. Distribution of genetic assignment of each Conepatus population to the genetic clusters (C1-C5) inferred with the software Structure.

Population	$K=4$				$\mathrm{K}=5$				
	C1	C2	C3	C4	C1	C2	C3	C4	C5
SB-AG	0.891	0.038	0.043	0.029	0.843	0.043	0.045	0.045	0.023
S BRA	0.115	0.503	0.317	0.064	0.067	0.476	0.160	0.262	0.036
URU	0.165	0.469	0.286	0.080	0.099	0.386	0.191	0.272	0.053
C/N ARG	0.042	0.041	0.706	0.211	0.029	0.043	0.675	0.093	0.160
E ARG	0.009	0.948	0.033	0.010	0.007	0.012	0.008	0.968	0.005
C BRA	0.041	0.060	0.104	0.795	0.034	0.075	0.112	0.049	0.731

Bold: the highest values of genetic content of each Conepatus population.
Italic: values of genetic content higher than 10%.
Populations: Southern Brazil Altitude Grasslands (SB-AG), Southern Brazil, excluding SB-AG (S BRA), Uruguay (URU), Central/Northern Argentina (C/N ARG), Eastern Argentina (E ARG), and Central Brazil (C BRA).

Artigo Científico

Taxonomic revision of Conepatus (Carnivora: Mephitidae) based on molecular phylogenetics, morphological comparisons and distributional patterns

Manoel Ludwig da Fontoura-Rodrigues, Carlos Benhur Kasper, Gitana Nunes Cavalcanti, Diego Castillo, Kristofer Michael Helgen, Eduardo Eizirik

Taxonomic revision of Conepatus (Carnivora: Mephitidae) based on molecular phylogenetics, morphological comparisons and distributional patterns

Manoel Ludwig da Fontoura-Rodrigues'; Carlos Benhur Kasper²; Gitana Nunes Cavalcanti; Diego Castillo ${ }^{3}$; Kristofer Michael Helgen ${ }^{4}$; Eduardo Eizirik ${ }^{1,5}$
${ }^{1}$ Faculdade de Biociências, PUCRS. Av. Ipiranga 6681, prédio 12. Porto Alegre, RS 90619-900, Brazil.
${ }^{2}$ Centro de Ciências Biológicas e da Saúde, Centro Universitário Univates. Rua Avelino Tallini, 171. Lajeado, RS 95900-000, Brazil.
${ }^{3}$ Grupo de Ecología Comportamental de Mamíferos, Universidad Nacional del Sur. Avenida Colón, 80. Bahía Blanca, Buenos Aires 8000, Argentina.
${ }^{4}$ National Museum of Natural History, Smithsonian Institution. Division of Mammals, PO Box 37012, MRC 108. Washington, DC 20013-7012, USA.
${ }^{5}$ Instituto Pró-Carnívoros. Av. Horácio Neto, 1030, Casa 10, Parque Edmundo Zanoni, Atibaia, SP 12940-970, Brazil.

Corresponding author:
Manoel Ludwig da Fontoura-Rodrigues. Faculdade de Biociências, PUCRS. Av. Ipiranga 6681, prédio 12. Porto Alegre, RS 90619-900, Brazil. Fax: 55-51-3320-3612. Email: mlfontoura.rodrigues@gmail.com

Running Title: Taxonomic revision of Conepatus

Abstract

Conepatus is one of the least studied Neotropical mammalian genera, whose current taxonomic and geographic structure is poorly defined. It therefore requires prompt taxonomic revision in order to provide the basis for detailed descriptive and comparative studies on the biology, ecology and evolution of the species contained in this group. Since modern taxonomic concepts involve an understanding of the evolutionary divergence among populations, morphological diagnosis and distributional delimitation, we focused on these three aspects to assess and revise the genus' taxonomy. In order to do so, we initially performed a detailed distributional assessment of the genus as a whole, to serve as basic layer. We then conducted an analysis of population differentiation based on 29 craniodental variables and previously collected molecular data. Finally, we compared some of the identified populations in terms of differences in general body measurements, to test if the population structure found with more detailed approaches can also be detected by inspecting the general appearance of the individuals. We found at least 10 distinct evolutionary units in Conepatus, in contrast to the four species that are currently accepted. Most of them are highly associated to a particular geographic region, so that their specific range can be clearly delimited. General body measurements are clearly associated with population disjunctions, making them suitable for the initial characterization of additional populations. We suggest that all 10 evolutionary units identified here should be recognized taxonomically, and discuss conceptual and nomenclatural aspects that can guide such proposition.

Keywords: conservation - craniodental measurements - evolution - ESUs - hog-nosed skunks

Introduction

Although mammals are often considered to be a well-known group within the Tree of Life, many taxa contained in this class remain poorly understood. Even among orders such as the Carnivora, which have been the target of numerous phylogenetic investigations, there are several taxa for which even basic taxonomic questions are not adequately solved (Patterson, 2001). Such uncertainties include aspects such as species delimitation, geographic distribution and diagnostic morphological traits. This lack of knowledge can seriously harm the efficacy of conservation efforts, since it hampers a proper evaluation of conservation status and the design of adequate action plans. Since mammals are often among the most affected vertebrates in impacted
environments (Schipper et al., 2008), resolving such basic issues are a priority in the context of performing adequate assessments of threat and making conservation-related decisions.

Several cases of such paucity of basic knowledge affect Neotropical taxa, including carnivoran genera such as Conepatus Gray, 1837 (Carnivora: Mephitidae), which comprises the hog-nosed skunks (Wozencraft, 2005). This genus presents one of the largest distributions among the Carnivora, inhabiting several biomes in South America, Central America and southern North America (Figure 1). Despite being common in many of these areas, very little is known about the basic biology of these animals, including their behavior, ecology and geographic distribution (Oliveira, 2006). Moreover, the lack of evolutionary studies targeting these animals has traditionally hampered a proper systematic assessment of the group, leading to important taxonomic uncertainties. Until recently, the taxonomic arrangement of Conepatus consisted in a five-species division: C. mesoleucus and C. leuconotus in North America; C. semistriatus in Central and northern South America, as well as in a disjunct area located in Central Brazil; and C. chinga and C. humboldtii in South America (Wozencraft, 1993). The two North American species, formerly separated mainly by size and color patterns, were recently synonymized under C. leuconotus (Dragoo et al., 2003). Regarding the South American species, it was only recently that their evolutionary history began to be investigated using modern phylogenetic approaches, performed on the basis of molecular and morphological characters (Schiaffini et al. 2013; Fontoura-Rodrigues et al. [in prep.] [ver capítulo II desta tese]). The study by Schiaffini et al. (2013) focused on populations from southern South America, using mtDNA sequences and morphological data (skull, mandible and pelage features), and failed to identify clear-cut differences between C. chinga and C. humboldtii, leading those authors to question the validity of their specie-level status. In contrast, the study by Fontoura-Rodrigues et al. (in prep.), based on mtDNA and nuclear microsatellite data, identified several distinct evolutionary units in Conepatus, which occur in different regions of South America and whose phylogeographic pattern challenges the currently accepted taxonomic structure of the genus. Since these authors did not present a formal taxonomic reevaluation, there is a need for further assessment of the identified phylogroups, so as to define at what level they should be recognized, and how to treat them from a nomenclatural perspective. Such reassessment must be in accordance with the taxonomic history of the genus, following the form and priority order of the names previously proposed by original authors.

Similarly to what happened to several other Neotropical taxa, most Conepatus species were described by European naturalists from the XVIII to the XX centuries, most
of them based on a few or even a single specimen. The British naturalist Oldfield Thomas alone described more than ten different species from several South American countries (e.g. Thomas, 1898, 1900, 1902, 1905). The first major taxonomic revisions were conducted by Cabrera (1958) and Kipp (1965), who proposed the synonymization of several previously described species and established the basis for the modern taxonomic disposition mentioned above. However, the arrangement employed by most authors today is a mosaic of these early reviews, and does not stem from a direct evaluation based on a broad comparison of primary data. Most importantly, it is now well established that modern phylogenetic approaches, based on morphological and/or molecular data, are important to accomplish a more accurate taxonomic assessment. The study by Dragoo et al. (2003) showed that the traditional surveys that identified most taxonomic units in Conepatus - based mainly on color patterns and body size of a few individuals - are not appropriate or sufficient. Therefore, a modern taxonomic proposition must be designed based on modern tools and concepts, such as the Evolutionarily Significant Units (ESUs) (Moritz, 1994; for a review see Fraser \& Bernatchez, 2001), which are usually based on genetic analyses. At the same time, modern morphological comparisons, often based on several different craniometrical measurements and several individuals, can also reveal population differentiation by taking into account a wider range of intraspecific variation and discern a more robust signal coming from a large number of variables (e.g. Huggenberger et al., 2002; Bornholdt et al., in press). This approach has already been utilized in the genus to show the lack of internal structure in the Uruguayan population (Van Gelder, 1968), and also in the recent study by Schiaffini et al. (2013). In addition to population structure, the modern application of the ESU concept usually incorporates two other components: local adaptation (inferred from morphological diagnostic characters and/or ecological features) and allopatry (Eizirik et al., 2006). Moreover, in some cases geographic units initially identified as distinct ESUs may in fact warrant species-level recognition upon further scrutiny, and may or may not bear the same properties. Since cryptic species and sympatric speciation are found in nature, such features cannot be interpreted as clearly determinant, but their presence is often important to substantiate a solid taxon description. Therefore, whenever possible, morphological traits and distributional patterns should be investigated alongside the characterization of population distinctiveness based on molecular tools.

Regarding the geographic range of the genus, several uncertainties still persist. Although a major consensus exists pointing to savannas and other open environments as the main habitat type for the genus, several records from forested environments challenge this view (e.g. Cáceres, 2004; Oliveira et al., 2007). So far, no comprehensive review has been conducted on this topic, which includes museum data and original
publication records; moreover the reports on the geographic range of some particular populations are clearly outdated. For example, the Conepatus population occurring in central/northern Brazil has long been considered to be restricted to the northeastern region (the Caatinga biome) by many authors. Only recently did Dragoo (2009) include central Brazil (the Cerrado biome) as an area of occurrence of that group, although he did not provide a precise characterization of its distribution in this region. Many records for central and northeastern Brazil are available, and therefore a precise distribution delimitation is necessary in order to better characterize that population. A similar situation is the uncertain occurrence area of Conepatus in southern Brazil. This population is known to occur in the Pampas region (e.g. Cabrera, 1958) as well as in an isolated altitude grasslands biome, locally called 'Campos de Cima da Serra'. However, no described distribution delimits these particular occurrence areas, which is required in order to better characterize this population. Finally, the occurrence area of the genus in other South American countries, such as Chile, Colombia and Venezuela, must also be delimited more precisely, which would support a more complete taxonomic assessment.

As discussed above, a proper taxonomic review must rely on population structure, detailed geographic distribution and morphological diagnosis. Therefore, the objectives of this study were to (i) draw a detailed characterization of the genus' geographic occurrence, with precise distributional limits; (ii) integrate the inferences on genetic structure reported by Fontoura-Rodrigues et al. (in prep.) with a novel assessment of craniodental measurements to assess the evolutionary distinctiveness of geographic units identified in Conepatus; (iii) use general body measurements of four specific populations to test whether the large-scale population structure can be detected by external morphological traits; and (iv) combine the inferences derived from all data types to suggest a taxonomic revision for Conepatus. C. leuconotus was not included in the structure analyses, as this taxonomic unit has already been revised by Dragoo et al. (2003). We follow his taxonomic considerations regarding that species in the final section.

Material and Methods

Assessment of Geographic Distribution

In order to characterize the occurrence areas of Conepatus at a detailed level, we gathered two types of records bearing the geographic origin of individuals: (i) museum collection databases; and (ii) original data published in scientific journals. In the case of publications, we incorporated only direct visualization, photograph or track records, without considering indirect records (such as interviews) or citations to other papers. As for museum records, we accessed the online database of 37 North American mammal
collections through the MaNIS portal (http://manisnet.org - Stein \& Wieczorek, 2004). We also consulted the mammal collections of the following institutions, through their online databases or direct contact with the in-charge curators: Fundação Zoobotânica do Rio Grande do Sul, Porto Alegre, Brazil; the London's Natural History Museum, UK; Berlin's Museum für Naturkunde, Germany; and Paris' Muséum National d'Histoire Naturelle, France. The minimum precision cutoff for each record was defined as city/municipality for South American countries, Mexico and United States; and state-level origin for Central American countries. Records were located with the help of the Google Maps tool (http://maps.google.com/maps) and then plotted onto a map of the Americas presenting a simplified scheme of major vegetation types, based on Dinerstein et al. (1995): moist forests; dry forests, xerofitics and desert environments; savannas; and flooded grasslands. A precise distributional map was then drawn on the basis of exact record points, also employing the range of biomes in which the genus occurs to predict its likely overall distribution. Therefore, if a particular biome presented records that covered most of its area, the predicted distribution was drawn to include its totality.

Molecular data

One of the main bases for our taxonomic revision was the genetic structure and phylogeny described by Fontoura-Rodrigues et al. (in prep). That study suggested the existence of six distinct ESUs, distributed as follows: (i) Central Chile; (ii) Southern Chile (iii) Northern/Central Argentina; (iv) Northeastern Argentina; (v) Central Brazil; and (vi) Southern Brazil/Uruguay. By performing additional analyses on the same data set, as well as comparing the results among data sets, we sought to assess whether these ESUs might warrant formal taxonomic recognition.

Using the mitochondrial DNA data generated by Fontoura-Rodrigues et al. (in prep.), we investigated specific phylogenetic configurations that allowed an assessment of different taxonomic arrangements. In order to do that, we employed a hypothesistesting approach utilizing Bayes factors, as described and implemented in Mr.Bayes (Ronquist \& Huelsenbeck, 2003) to compare the suitability of three distinct scenarios of evolutionary relationships. Two such scenarios corresponded to currently accepted taxonomic arrangements (Wozencraft, 2005), and a third referred to the phylogenetic disposition of a particular branch in the phylogenetic tree reported by FontouraRodrigues et al. The first scenario tested the current taxonomic postulation that central Brazilian Conepatus populations are part of the Central American C. semistriatus clade. For such, we designed a constrained group of central Brazil population and the Mexico C. semistriatus sample. In the second scenario, we tested the postulation that C. humboldtii and C. chinga are two reciprocally monophyletic clades. In order to do so, we
enforced a phylogenetic constraint putting the Chilean C. humboldtii sample as a basal lineage in relation to all other sampled populations. Finally, the third scenario involved a constraint to test the position of the southern Brazilian/Uruguayan population as the most basal lineage relative to all other South American clades, an arrangement recovered by Fontoura-Rodrigues et al. (in prep.) but which received low support in their tree. For each of the three tests, we conducted two phylogenetic searches, one employing a constraint enforcing the specific scenario of interest and another one employing a similar but negative constrain (i.e. excluding the arrangement proposed by the positive constraint). The suitability of each alternative hypothesis was verified in terms of the harmonic mean of the marginal likelihood of the phylogenetic search enforcing it. This value is expressed in log units, and a difference of 3-5 units is considered to be strong evidence in favor of a given hypothesis, while >5 units is considered to be very strong evidence (Kass and Raftery, 1995). Run parameters included 100,000 MCMC steps and assumption of the HKY + G (4 groups) substitution model (based on the results reported by Fontoura-Rodrigues et al. [in prep.]).

Morphological data

Two separate morphological surveys were conducted. First, the population structure of Conepatus was assessed through a detailed craniodental panel of measurements taken from several individuals representing distinct geographic regions. A second survey was conducted based on general body measurements, a kind of information traditionally described by field researchers, to test if the population structure found with molecular markers and craniodental characters is reflected on external morphological differentiation in Conepatus. All statistical analyses were performed with IBM SPSS Statistics v. 21.0 (IBM, 2012).

Morphological data - Population structure

For the first survey, 29 independent craniodental measurements were taken from Conepatus individuals deposited in the mammalian collections of two institutions: Fundação Zoobotânica do Rio Grande do Sul, Porto Alegre, Brazil; and the National Museum of Natural History, Smithsonian Institution, Washington D. C., USA. A list with all measurements names, codes and descriptions is provided in Table 1. Skulls were evaluated regarding developmental stage and integrity, and only intact adult specimens (i.e. with complete permanent dentition and fusion of the skull bone sutures) with known geographic origin were included in the following analyses. All measurements were taken by the first author. Table 2 provides museum codes, geographic origin and general information regarding the 48 specimens utilized for this survey. Since a large number of
specimens bore no associated sex information, individuals were assembled in a single analysis group so as to maximize the power of the geographic assessment power, even though sexual dimorphism has already been described for some Conepatus populations (Dragoo, 2009).

Normality of all 29 measurements was tested to verify the need for any transformation. As all variables presented no significant departure from a normal distribution, no transformation was performed (Field, 2005). Multivariate statistical tests were then conducted in order to assess the occurrence of any geographic clustering. An exploratory survey was conducted with a Principal Component Analysis (PCA) of the covariance matrix, plotting the first two components (PC1 and PC2) in a dispersion graph to visually identify the presence of clusters. Based on this assessment a Discriminant Function Analysis (DFA) was performed, in order to statistically test the validity of the putative groups. Due to a cluster overlap possibly caused by spurious similarity (see Results section for details) we conducted two additional DFAs, in order to address two specific questions: (i) is there a population disjunction between Central America and central/northern South American populations?; and (ii) are there discontinuities among South America populations?

Morphological data - External Differentiation among populations

For the second survey, general body measurements were obtained from individuals of four distinct geographic regions. Measurements taken were: total body length (TLgth), tail length (Tail), hind foot length (HFoot), ear length (Ear) and total weight (Wght). Two proportions were also included: tail length/total length (T/TL) and total weight/head and body length (W/HB). Population 1, from Southern Brazil, was sampled in the municipality of Arroio Grande, Rio Grande do Sul state ($32^{\circ} 13.8^{\prime}$ S, $53^{\circ} 4.8^{\prime} \mathrm{W}$). A total of 18 individuals (seven males and 11 females) was included. Population 2, from central Brazil, was sampled in the Emas National Park, Goiás state ($17^{\circ} 10.2^{\prime} \mathrm{S}, 52^{\circ} 31.8^{\prime}$), comprising 10 individuals (eight males and two females). Population 3, from central Argentina, comprised 25 individuals (11 males and 14 females) sampled in two nearby localities in the Buenos Aires province. Finally, Population 4 comprised 13 individuals (five males and eight females) sampled in Northern Venezuela, including the Falcon, Monagas and Zulia States. Measurement data were provided upon request by the authors of the following original publications: population 1 - Kasper et al. (2012); population 2 - Cavalcanti (2010); population 3 Castillo et al. (2011). Population 4 was sampled by the Smithsonian Venezuelan Project, and the measurement data were obtained directly from the National Museum of Natural History online database; measurements of one extra individual available in Allen \&

Carriker (1911) were included. All individuals included sex information, so analyses were conducted separately for males and females due to the previous report of cases of sexual dimorphism in Conepatus (Dragoo, 2009).

Statistical treatment was similar to that of the first morphological survey. Variables were initially tested for normality. As some of them presented departure from a normal distribution, variables were log-transformed, thus reaching normality. An exploratory analysis was performed with a PCA to test the presence of clusters, and to assess whether they matched the four sampled populations. Subsequently, a DFA was performed to statistically test the clusters identified in the PCA.

Results

Distribution areas

All the compiled records are shown on Table 3, which includes information regarding source institutions/publications, collector/author, geographic origin, and year of collection. A total of 364 records from 19 institutions and 272 records from 54 publications were compiled, resulting in a final number of 636 distinct geographic records. Several additional records were discarded from both museum and publication sources due to redundancy in geographic location. To characterize the genus' distribution more accurately, we employed buffer circles with a diameter of ~ 50 kilometers to represent each record. When two or more records overlapped due to adjacent origins, we only plotted one of them. Also, when the reported location could not be reliably ascertained, the record was discarded. As a consequence, the final number of distinct geographic records plotted on the map was 295 (Figure 2). A map with the resulting distribution of Conepatus is shown on Figure 3.

The general distribution pattern indicates that Conepatus is present in almost all grassland, savanna, desert, xeric and dry forested environments of South and Central America, as well as southern North America. The only type of vegetation from which the genus seems to be absent is dense moist forests, despite a few records in such environments. This occupation pattern results in a distribution that includes a large portion of Central and South America, encompassing many different biomes. Conepatus seems to be absent only from a few major biomes in these continents, namely the Atlantic Forest, Amazon Forest, 'North Colombia - Panama' moist forests and the Atacama Desert. At the same time, some potential discontinuities could be noted, as between Central/Northern Chile and Argentina, Central and South America and also Northern and Southern Colombia. These absence areas could be related to a lack of sampling effort, or represent real population disjunctions. In this context, results from the
population structure analyses can help with the interpretation of these distribution patterns.

Finally, five records were considered doubtful, but were still plotted on the map (red circles - Figure 2) due to the relevance of their geographic origins in terms of potential impacts on the general distributional pattern: (i) Tierra del Fuego, in southernmost Patagonia; (ii) the Brazilian Pantanal flood plain; (iii) Joinville, in Santa Catarina State, southern Brazil; (iv) Serra do Mar, Paraná State, southern Brazil; and (v) Ilha de Maracá, Roraima, northern Brazil.

Molecular data

Bayes Factor results consistently refuted two taxonomic arrangements that are currently accepted in Conepatus, but did not clearly resolve the phylogenetic uncertainty tested in the third scenario (Table 4). First, the difference between the harmonic means of the marginal likelihood of the run with the C. semistriatus constraint (where the monophyly of the samples from Mexico and Central Brazil is enforced) was 38.07 units lower than the scenario with the opposite constraint. Since a difference larger than 5 units is considered to be a strong signal in favor of a given hypothesis, it is clear that the constrained scenario is significantly worse. Second, the scenario where C. chinga is constrained to present reciprocal monophyly with C. humboldtii was 5.69 units lower than the scenario with the negative constraint. Again, this result indicates strong evidence against this separation in two lineages, as currently accepted. Finally, the scenario in which the southern Brazil population was tested as the most basal South American lineage had weak support (1.75 units higher than the alternative constraint), so that this assessment was not conclusive.

Morphological data - Population structure

Data regarding the population structure assessed with the first morphological survey showed some robust tendencies regarding population differentiation. The PCA plot of the first two principal components (Figure 4A) showed that individuals from nearby geographic origins tended to form clusters, indicating the existence of morphological consistency uniting some geographic populations. Clusters that could be visually identified were: (1) Central America, (2) Venezuela/Northern Colombia, (3) Ecuador/Peru and (4) Uruguay + Southern Brazil + Southern/Central Argentina. Furthermore, we noted that some of these geographic clusters showed a clear divergence, while others showed some degree of overlap. In order to facilitate the visualization of the clustering patterns, we attempted to minimize the potential noise caused by any spurious (e.g. plesiomorphic) character sharing. To do so, we divided the
results of the PCA analysis into different plots. Each plot shows a specific scenario of hypothesis testing: Figure 4B shows only the clusters identified in South America (i.e. clusters 2, 3 and 4), and Figure 4C shows only the clusters of Northern South America and Central America (i.e. clusters 1, 2 and 3). Clusters 1 and 4 were never included in the same plot due to the deep genetic separation found by Fontoura-Rodrigues et al. (in prep.) between the lineages occurring in these two regions. When these sets of populations are thus assessed separately, it became easier to visually conclude that there is very little overlap between distinct geographical clusters in the PCA plot. Regarding the PCA parameters, the first principal component (PC1) explained 72.1% of the total variation, while the second (PC2) explained 7.23\%, totalizing 79.33\% (Table 5). The main contributors to PC1 were the variables Bas, Zyg, WaCan, Mast and IOrb, while LMoL, LMoW, UPML, JaH and UMoL were the main contributors to PC2. These results indicate that skull size is the main driver of PC1, while PC2 mostly reflects variance in dental characters.

Results from the DFA were mostly consistent with those from PCA. The plot of CV1 against CV2 showed a trend for cluster separation, although it was not as straightforward as the PCA plot (Figure 4D). Canonical variates (CV) 1 (86.55\%) and 2 (10.2\%) together accounted for 96.75% of the discriminating power (Table 5). CV1 was mostly influenced by the variables Zyg and CrH, while CV2 was more correlated with the variables CrH, Walnc, WaCan, and CaW. Several of the 29 craniodental variables showed significant differentiation among groups (Table 6), indicating a consistent trend of morphological distinction among putative geographic clusters. The analysis of predicted group membership showed a considerable level of correspondence between the original and final cluster assignment (79.2\% - Table 7A). However, the assignment of group 1 (Southern Brazil - Argentina - Uruguay) presented very poor levels of concordance (14.3\%), with many individuals clustering together with group 2 (EcuadorPeru). On the other hand, when populations 1 and 4 (Central America) were not analyzed together, correspondence levels of both DFA assignments increased substantially (92.7% when groups 1,2 and 3 are included, and 85.3% when groups 2,3 and 4 are included - Table 7B and 7C). This pattern indicates that some character sharing between groups 1 and 4 (possibly caused by symplesiomorphy or convergence, given the large geographic separation of these groups) might be biasing the original analysis at some level. Still, most of the population structure pattern was also clearly discerned in the original analysis, with the distinction between populations 1 and 2 being the only result that was not straightforward. Altogether, these results support the inference that there is consistent and significant differentiation in craniodental morphology among Central and South American populations of Conepatus.

Morphological data - External differentiation among populations

Results from the PCA and DFA indicate that the general external morphology is affected by population discontinuities. Plots of the PC1 against PC2 for both males and females (Figures 5A and 5B) showed that predicted populations tend to form clusters, with little or no overlap between them. The main case of overlap involved the southern vs. central Brazilian populations, which do not seem to be closely related, based on the mtDNA analysis reported by Fontoura-Rodrigues et al. (in prep.). Therefore, this overlap may be caused by spurious (e.g. plesiomorphic or convergent) character sharing. On the other hand, the PCA results can be used to shed light three distinct evolutionary hypotheses. First, current taxonomic understanding assumes that Venezuelan and Central Brazilian populations belong to the same species (C. semistriatus), as should also be the case for southern Brazil and Central Argentina (C. chinga). In contrast, the phylogenetic results reported by Fontoura-Rodrigues et al. (in prep.) indicate that the central Brazilian population is closely related to the Argentinean one. Assessing these three scenarios in the light of the PCA results, it is possible to note that general body morphology supports the distinction between Venezuela and Central Brazil, and also between southern Brazil and central Argentina. Finally, the PCA results indicated that, in spite of being closely related as inferred by the mtDNA results, central Brazilian and central Argentinean populations can be distinguished by general body measurements. With respect to the PCA parameters, PC1 explained 48.65% and 56.25% of the variance in males in females, respectively. PC2 explained 34.14% and 23.49%, totalizing 82.79 and 79.74% of the total variance in males in females, respectively (Table 8). In the case of males, Tlgth and Tail were the main contributors to PC1, while Tail and T/TL were the main drivers of PC2. As for females, Tail and HFoot were the two most important variables for PC1 and PC2 was explained mainly by Tlgth and Tail. Wgth was also an important parameter for the PC1 of both males and females. Although the identification of any clear pattern is difficult here, probably due to the small number of variables, it is possible to note that tail length is the most important variable explaining the variance in both males and females. The male PC1 is driven mostly by size, while the PC2 is more related to form. PC1 and PC2 in females are both related to size, with the hind foot length being particularly important to PC1 and the total length to PC2.

The DFA results also corroborate the existence of the predicted geographic units (Figures 5C and 5D). All variable means were significantly distinct between populations (Table 9), indicating that traditional body measurements can distinguish the predicted populations. Canonical variates (CV) 1 and 2 together corresponded to 97% and 97.8% of the total variance for males and females, respectively (Table 8). In the case of males,

CV1 was driven mainly by Tlgth and Tail, corresponding to 63.9% of the variance. The main contributors to CV2 were Wgth and T/TL, with 33.1% of the variance. As for females, CV1 was mainly explained by Tlgth and HFoot (56.5\%) while Tail and HFoot were the main contributors to CV2 (41.3\%). Altogether, these PCA and DFA results indicate that geographic population structure, as identified by molecular data and craniodental characters, also induces perceptible differentiation in traditional body measurements usually taken in field surveys.

Discussion

Geographic Distribution

The general pattern of Conepatus distribution is mostly congruent with what could be predicted from the literature, including known aspects of the genus' biology, which postulates that hog-nosed skunks are highly associated with open environments (e.g. Dragoo, 2009). Some important additions and reconsiderations, however, can be gleaned from our analysis. Foremost, it is the first time that a precise distributional map is drawn for Brazil, a country that contains a portion of the genus' range, spanning at least three distinct major biomes. Many authors have considered only the Caatinga biome, in northeastern Brazil, as an occurrence area for Conepatus (e.g. Eisenberg \& Redford, 1999; IUCN, 2012). It is clear, however, that this population also occupies the Cerrado, a biome that encompasses a large area of Central Brazil. Also, the range of the southern Brazilian population was drawn more precisely, and includes two distinct biomes: the Uruguayan Savannas (part of the Pampas biome) and an altitude grassland biome locally called "Campos de Cima da Serra". A finer distribution was also drawn for the northern portion of South America, including Ecuador, Colombia and Venezuela. Some authors have included the coast of Ecuador and Colombia in the genus' distribution (Figure 1), a region that is mostly covered by dense forest. However, we could find no confirmed record of Conepatus for those areas, which is concordant with the observed pattern of these organisms being absent from that kind of environment.

On a broader context, the overall presence of Conepatus in dense forests could be assessed in several areas. Based on sporadic records of hog-nosed skunks in such areas, some researchers have proposed that it is possible that Conepatus may also inhabit biomes such as the Atlantic and Amazon Forests, in addition to savannas and dry forests (e.g. Oliveira et al., 2007). However, our database shows that very few records are located in moist forests, and even those data points come from sites that are very close to open environments. A potential argument to dispute our conclusion is a possible lack of studies in such dense vegetation environments, such as the Amazon Forest. However, other well-known environments, such as the Atlantic Forest, present very few
records. Furthermore, the few records located inside moist forests can have direct relation with two factors. First, large areas originally covered with dense vegetation are currently being severely modified by human activities, which turn forests into plantation areas or other open environments. The Brazilian Atlantic Forest is restricted to only 11$16 \%$ of its original cover (Ribeiro et al., 2009), and many of the records located in this biome could represent recently cleared areas. This phenomenon has already been recorded for another typical savanna-dwelling species, the maned wolf (Chrysocyon brachyurus), which seems to have recently expanded its range from the Cerrado into the Atlantic Forest borders (Queirolo et al., 2011). Second, Conepatus is described to be very tolerant to human disturbance. Many authors recorded hog-nosed skunks in farms or near urban centers, being even common in such areas (Bateman \& Fleming, 2012; Kasper et al., 2012). Combined, the deforestation and the tolerance of these animals to human-impacted areas can lead to the presence of Conepatus in regions of the South America that were originally densely forested. Nevertheless, it is important to note that Central America's individuals seem to be indeed present in moist as well as in dry forests. This pattern may indicate distinct habits of this population, which needs to be further investigated.

Some doubtful records were identified and plotted due to the potential relevance of the implicated information. Each of these regions/biomes should be further investigated in order to better assess the presence or absence of the genus. In the map provided on Figure 3, the potential occurrence areas derived from the presence of Conepatus in such geographic points are presented. Hereafter all five records are discussed in detail.

Tierra del Fuego, in southernmost Patagonia, has already been mentioned as a region where skunks are absent (Osgood, 1943), and we only found a single record, considering both museums and literature sources. This specimen is deposited in the USNM of Washington DC, with catalog number M-36928, but no precise collection location is provided except for "Tierra del Fuego", Argentina. Therefore, the presence of the genus in this island is still uncertain.

The Brazilian Pantanal is a flood plain located among savannas and dry forests. Although some authors cite the presence of the genus in this biome (Cáceres et al., 2008), no direct record or precise location could be retrieved. Therefore, it is not possible at present to conclude if the genus occurs throughout this area (perhaps at very low densities), or only on the edges of this biome, or even if it is present in the Pantanal at all.

Very few of the compiled records are located in the Brazilian Atlantic Forest, and due to the deforestation process it is possible that all of them represent cases induced
by the tolerance level of these animals to human-impacted areas. However, two of these records are located in a densely forested area. The first one is a museum record from Berlin's Museum für Naturkunde, with catalog number 61677. The only geographic information of the specimen collection is "Joinville", which is the name of a well-known Brazilian city. However, due to the lack of any other information, it is not appropriate to consider this record as a precise occurrence point. The second record consists of the sighting of an individual in the Serra do Mar Mountains, Paraná State (Cáceres, 2004), which is in fact close to the city of Joinville and could indicate a distribution patch. However, this is the only record of a Conepatus individual in such a dense forested area, and no photographic evidence or methodological detail was provided. This does not in itself imply that the record is not correct, but such outlier observation should be confirmed by additional studies before it could be conclusively accepted. Therefore, the presence of Conepatus in densely forested areas of the Atlantic Forest remains undocumented.

Finally, the most interesting record is located in the Maracá Fluvial Island, in Roraima State, Brazil. This island is covered with dense Amazon Forest and savanna patches, near a large patch of the Amazonian Savannas (see map in Figure 2). This is one of the most enigmatic biomes of South America, since very few descriptive studies have been conducted so far in such areas. From a vegetational perspective, the Amazonian Savannas seem to be linked to the Cerrado Biome (Ratter et al., 1997), which could also lead to faunal similarities. However, the exact mammal composition of these patches is still poorly known, and the presence of Conepatus has never been confirmed. Barnett \& da Cunha (1994) reported the only Conepatus record for this biome, which could indicate the existence of the most isolated and perhaps relict population of Conepatus, implying the need for immediate research attention. However, the authors did not provide any methodological details for this record, preventing any precise conclusion at this time.

Finally, regarding the biomes from which Conepatus is absent, it is clear that the genus has a restricted occurrence in the densely forested areas of Central and South America. However, in addition to the Atlantic, Amazon, North Colombia and Central America moist forests, Conepatus is apparently absent from the Atacama desert. It is possible that the extreme conditions of such an environment limit its occupation by this adaptable genus. A final note regarding the general pattern of Conepatus distribution is the presence of individuals on a very broad range of altitude, from zero to above 4,000 meters above sea level. Together with the wide variety of vegetation occupied by Conepatus, this data reinforces the remarkable ecological plasticity of the hog-nosed skunks.

Population structure

On a broad perspective, our results corroborate and extend the conclusions of Fontoura-Rodrigues et al. (in prep.). In that study, the authors investigated the genetic structure of Conepatus in the central/southern portion of South America (south of the Amazon Forest), and showed that this genus is highly prone to evolve population discontinuities. The detailed craniodental survey conducted in the present study is in accordance with this pattern, and shows that northern populations of Conepatus (Peru, Ecuador, Colombia, Venezuela and Central America) also present a disjunct structure. It is important to mention that our sampling panel was limited in terms of geographic distribution and number of individuals, enabling only large-scale structural patterns to be identified. Nevertheless, the strong morphological clusters identified with clear geographical correlation, even when investigated with a limited sampling, indicate that the pattern is not spurious, but rather consistent. Only one population disjunction (Ecuador-Peru versus Uruguay-Southern Brazil-Argentina) could not be confirmed with the DFA, but the overall PCA and the complementary partitioned DFA indicate that these populations are distinct. In fact, a possible reason for the lack of resolution regarding the southern cluster is that its seven individuals are likely representatives of three different populations, as described by the previous genetic assessment. Another obstacle to a clearer resolution regarding that cluster is its apparent morphological similarity, in terms of craniodental measurements, to the Central American cluster. This overlap is most likely spurious, since molecular data indicate that these populations have been separated for around 3.2 million years. Therefore, analyzing all results of the craniodental survey, it is possible to identify three additional Conepatus populations in relation to the six described by Fontoura-Rodrigues et al.: (vii) Ecuador-Peru; (viii) Venezuela-Northern Colombia; and (ix) Central America. The fourth cluster identified (Uruguay-Argentina-Southern Brazil) seems to represent distinct local populations, and based on the present results it is possible to infer only that they are distinct from Ecuador-Peru cluster. A final population of Conepatus that will be considered here is the one revised by Dragoo et al. (2003): (x) C. leuconotus.

Plotting this general pattern of population structure against the occurrence map of the genus, it is possible to associate some of the population disjunctions with distribution discontinuities, enabling the proposition of an approximate geographic delimitation for each unit. First, the Central American cluster is probably separated from the South American populations by dense forests that cover most of Panama, as well as the northern region of Colombia. Along Central America, the limits of this population seem to be the distribution of C. leuconotus and also some densely forested areas in Nicaragua
and Honduras. The existence of two different taxonomic units in Central America seems clear, also being detected by Fontoura-Rodrigues et al. (in prep.). The occurrence area of C. leuconotus also seems to be well established (Dragoo et al., 2003). However, a specific study aiming to understand the exact barriers that separate these units, including an investigation regarding possible sympatric areas and an in-depth morphological comparison, should be conducted in order to better characterize these populations. Regarding northern South America, the Venezuela-North Colombia population seems to be separated from the Ecuador-Peru cluster by a distributional discontinuity. This gap, however, could be caused by lack of sampling effort, since the specific biome from where Conepatus seems to be absent (Magdalena Dry Forests, Colombia) presents three records in its northern portion (Figure 2). A detailed survey should be conducted in that region in order to assess the exact occurrence areas, possible barriers and detailed population structure of those populations. It is worth mentioning, though, that other authors have already noticed some level of differentiation between southern and northern Colombia hog-nosed skunks, indicating that the candidate barrier that separates these two clusters is probably located between these two Colombian regions (Ramírez-Chaves \& Noguera-Urbano, 2010). Finally, the Ecuador-Peru cluster is clearly limited by the Amazon Forest on its western portion, but the barriers that separate it from the southern South American populations (i.e. Argentina, Uruguay, and Brazil), are not clear. No individuals from Bolivia, Paraguay and North Argentina could be included in this survey, and as this region is located exactly between those clusters, it is probably critical to understand this separation. A specific survey should be conducted in that region, not only to understand the separation of those clusters, but also to characterize the populations that inhabit that particular area, since Bolivia and Paraguay are amongst the least studied areas with respect to hognosed skunks.

Extending the combined analysis of detailed distribution against population structure to the ESUs identified in the genetic assessment by Fontoura-Rodrigues et al. (in prep.), it is possible to notice some interesting patterns. Regarding the central Chile population, it seems clear that Conepatus is not present in the highest portions of the Andes Cordillera, which likely explains its separation from the Argentinean individuals. However, the southern portion of the Andes is not so high, and due to the distribution of Conepatus in region, it seems plausible that southern Chilean animals might be able to cross the mountains and maintain gene flow with Argentinean individuals. This would be in accordance to current taxonomic understanding, which predicts that C. humboldtii occupies both the Chilean and Argentinean Patagonia (Wozencraft, 2005; Dragoo, 2009), but this assumption should be taken with caution. Again, a specific survey should
be conducted to better understand the disjunction between central and southern Chilean populations, as well as to characterize the population structure of the Chilean and Argentinean Patagonia hog-nosed skunks.

A final point that is worth mentioning is that the central Brazilian and central Argentinean populations, although clearly differentiated, seem to be in contact in terms of their distribution, which raises the question of what could be the main barrier that separates them. Once again, Paraguay and northern Argentina seem to be key regions to be investigated in order to better understand this issue.

Major morphological differentiation among populations

Regarding the morphological assessment based on general body measurements, the results are highly concordant with the structure pattern found with molecular markers and detailed craniodental approaches. Even employing a few variables, multivariate analyses were able to detect significant differences among all populations, which indicates that population disjunctions are driving external morphological differentiation. It is important to mention that our study did not include individuals of all populations detected in the structure surveys, preventing the conclusion that all of them can be distinguished by such measurements. However, the observed concordance increases the support for the detected pattern. At the same time, it also shows that this traditional panel of variables, which are usually described by field researchers and easily comparable, can be a useful tool for the investigation of population discontinuities. We recommend that, when possible, field assessments should include and report this type of data.

Molecular data

The hypotheses tested with the use of Bayes factors are conclusive in discarding two of the most important current taxonomic arrangements of Conepatus. First, the understanding that central Brazilian hog-nosed skunks are part of the C. semistriatus diversity was strongly refuted. The good support for the alternative scenario, in which that population was found to be closely related to Argentinean C. chinga (FontouraRodrigues et al., in prep.), already constituted strong evidence that the traditional taxonomic disposition was wrong, which is now further corroborated by our results. The second test showed strong evidence that C. chinga and C. humboldtii are not reciprocally monophyletic. The most likely scenario is that C. humboldtii is part of the ' C. chinga' diversity, which also has important taxonomic consequences. The third test (the ‘Southern Brazil-Uruguay’ group as a basal lineage relative to all South American populations) did not show significant results in favor of any specific hypothesis, leaving
this issue still unresolved. This indicates that our dataset has no power to determine this phylogenetic arrangement with precision, probably due to the recent and rapid radiation of the genus in South America. A deeper survey, utilizing a larger number and diversity of molecular markers, should therefore be conducted in order to better characterize the internal hierarchical arrangement of South American groups. With respect to taxonomic consequences, central Brazilian Conepatus must be removed from C. semistriatus, and a new name should be allocated to this population unit. Also, either C. humboldtii must be included in C. chinga or, alternatively, all the evolutionary clades of C. chinga presenting similar levels of divergence must be elevated to the species level.

Taxonomic revision

Based on the results of the detailed distribution, population structure and morphological differentiation, several evolutionary units could be identified. Most of them have clear geographic delimitations and were detected by more than one independent approach (i.e. mitochondrial DNA, microsatellites, craniodental morphological survey and/or general body measurements). Also, our specific Bayes factor tests assessing the current taxonomic organization indicate that a major rearrangement should be conducted. Based in these results, we suggest a new taxonomic arrangement for Conepatus (Table 10, Figure 6). Scientific name proposals follow the major review of Cabrera (1958) in relation to synonymizations and geographic origin of taxon types. Basically, whenever a taxonomic unit was identified and geographically delimited, the oldest taxon reported by Cabrera for any locality within that area was employed to name the specific epithet. A 'splitter' approach was adopted, and each evolutionary unit was considered to constitute a different species. The reasons for this approach were twofold. First, the age of the basal diversification of the South American group is ca. 0.85 million year ago (MYR), a split time commonly associated with the separation of taxonomic units in species or even groups of species. This is the case of the South American foxes (six species in the genus Lycalopex, with a coalescence time of ca. 1 MYR - Perini et al., 2010) and some Neotropical cats (coalescence time of Leopardus geoffroyi and L. guigna is ca. 0.74 MYR - Johnson et al., 2006). The second reason is mostly practical. Conepatus has recently invaded South America and radiated, occupying several biomes in that continent. Combined, the large occurrence area and the recent and complex evolutionary history of the genus make a detailed and conclusive phylogenetic approach very difficult to achieve in the near future, which could cause several taxonomic units to remain poorly named. In addition, the apparent tendency of these animals to evolve geographically differentiated populations raises the possibility of additional subdivisions being found as more detailed surveys are conducted. Naming every robust evolutionary
unit as a species makes them stable to whichever phylogenetic configuration becomes consolidated at higher hierarchical levels, and at the same time prevents possible taxonomic subdivisions nested within them to be named as 'sub-subspecies'. Still, as several geographic locations were not sampled in detail for this study, and distribution patterns still need further information, the taxonomic arrangement proposed is open to reconfigurations and reviews. Nevertheless, it could be taken as a working basis for future taxonomic studies focusing on Conepatus.

Concluding remarks

The genus Conepatus is only beginning to be better understood. The lack of studies regarding its evolution, ecology, taxonomy and biogeography has been an impediment for broad comparative studies, and much of the genus' diversity seems to be still unknown. Only recently a few studies started to describe the detailed ecology and morphology of these animals at specific locations (Cavalcanti, 2010; Castillo et al., 2011; Kasper et al., 2012), but given the broad occurrence area of the genus, it is still only the beginning. Combined with the genetic assessment of Fontoura-Rodrigues et al. (in prep.), this study starts to shed some light on the general population structure and natural history of Conepatus as a whole, and it is clear that our results raise more questions than complete answers. They can be used, however, as a guide for future surveys, since they establish some large-scale and clear patterns.

Conepatus is a highly structured genus, presenting several and even unexpected population discontinuities. The flow of individuals seems to be limited by mountains, rivers and dense vegetation cover, and therefore further population structure surveys should be as detailed as possible, as almost all regions of South America present such elements in abundance. Traditional body measurements are likely to reflect these population disjunctions, being potentially good markers to identify them in initial, exploratory investigations. On the other hand, detailed craniodental surveys seem to be highly effective in the identification of population structure, and as skull material of Conepatus is relatively abundant in several mammalian collections around the world, this approach can be further utilized to improve the knowledge regarding the population structure of the genus.

The taxonomic proposal we put forth is based on solid results that strongly indicate population isolation and differentiation, most of them confirmed by more than one approach, including molecular (mtDNA and/or microsatellites) and/or morphological (craniodental panel and/or general body measurements) data. Also, the geographic patterns seem robust as well, since most distributional limits are readily identifiable. However, it is important to note that not all approaches were conducted with all
populations, which should be performed as soon as possible to confirm or revise the arrangement proposed here. Much still needs to be done, and this taxonomic organization will certainly need adjustments, improvements and also criticism, in order to become more accurate and informative over time.

Acknowledgements

We would like to thank all Mammalian Collections and respective curators who provided data and support when requested. Also, we would like to say thanks for Renata Bornholdt for the inestimable help with statistical analyses and discussion of morphological results. MLFR was supported by a fellowship from CAPES, Brazil. The study was supported by FAPERGS, Brazil.

References

Alberico M, Cadena A, Hernández-Camacho J, Muñoz-Saba Y. 2000. Mamíferos (Synapsida: Theria) de Colombia. Biota colombiana 1(1).

Allen JA \& Smith HH. 1904. Report on mammals from the district of Santa Marta, Colombia, collected by Mr Herbert H Smith: with field notes by Mr Smith. Bulletin of the AMNH v20, article 35.

Allen JA \& Carriker MA. 1911. Mammals from Venezuela collected by Mr Ma Carriker Jr, 19091911. Order of the Trustees, American Museum of Natural History.

Allen JA, Chapman FM, Miller LE, Richardson WB, Allen AA, Cherrie GK, Boyle HS. 1916. List of mammals collected in Colombia by the American Museum of Natural History expeditions, 19101915. Order of the Trustees, American Museum of Natural History.

Alves TR, Mendonça L, Confessor M, Vieira W, Lopez, L. 2009. Hunting strategies used in the semi-arid region of northeastern. Brazil Journal of Ethnobiology and Ethnomedicine 5(1): 12.

Alves TR, Fonseca RC, Engel VL. 2012. Medium and large sized mammalians and their relation to habitat patches at the Botucatu cuesta, state of São Paulo, Brazil. Iheringia Série Zoologia 102(2): 150-158.

Aris ID, de Castro MWL, Ruesta PV. 2008. Relaciones entre los pobladores rurales y los carnívoros altoandinos del distrito de anco, centro-sur del perú relationships between rural settlers and highland carnivores in the district of anco, center-south of Peru. Ecología Aplicada 7(1-2): 43-48.

Barbarán FR. 2004. Usos mágicos, medicinales y rituales de la fauna en la Puna del Noroeste Argentino y Sur de Bolivia. Contribuciones al manejo de vida silvestre en Latinoamérica 1(1): 126.

Barnett AA, Da Cunha AC. 1994. Notes on the small mammals of Ilha de Maracá, Roraima State, Brazil. Mammalia 58(1): 131-138.

Bateman PW \& Fleming PA. 2012. Big city life: carnivores in urban environments. Journal of Zoology 287(1): 1-23.

Bisbal FJ. 1998. Mamíferos de la Península de Paría, estado Sucre, Venezuela y sus relaciones biogeográficas. Interciencia 23(3): 176-181.

Bocchiglieri A, Mendonça AF, Henriques RPB. 2010. Composição e diversidade de mamíferos de médio e grande porte no Cerrado do Brasil central. Biota Neotropical 10(3): 169-176.

Bornholdt R, Helgen K, Koepfli KP, Oliveira L, Lucherini M, Eizirik E. 2012. Taxonomic revision of the genus Galictis (Carnívora: Mustelidae): species delimitation, morphological diagnosis, and refined mapping of geographical distributio. Zoological Journal of the Linnean Society. In press.

Bruna EM, Guimarães JF, Lopes CT, Duarte P, Gomes L, Belentani SCS, Vasconcelos HL. 2010. Mammalia, Estação Ecológica do Panga, a Cerrado protected area in Minas Gerais state, Brazil. Check List 6(4): 668-676.

Cabrera AL. 1958. Catálogo de los Mamíferos de América Del Sur. Revista del Museo Argentino de Ciencias Naturales 'Bernardino Rivadavia'. Buenos Aires: Instituto Nacional de Investigación de las Ciencias Naturales.

Cáceres NC. 2004. Occurrence of Conepatus chinga (Molina) (Mammalia, Carnivora, Mustelidae) and other terrestrial mammals in the Serra do Mar, Paraná, Brazil. Revista Brasileira de Zoologia 21(3): 577-579.

Cáceres NC, Carmignotto AP, Fischer E, Santos CF. 2008. Mammals from Mato Grosso do Sul, Brazil. Check List 4(3): 321-335.

Câmara EMVC \& Oliveira LC. 2012. Mammals of Serra do Cipó National Park, southeastern Brazil. Check List 8(2): 355-359.

Castillo D, Lucherini MLM, Vidal ELVEL, Manfredi CMC, Casanave ECE. 2011. Spatial organization of Molina's hog-nosed skunk (Conepatus chinga) in two landscapes of the Pampas grassland of Argentina. Canadian Journal of Zoology 89(3): 229-238.

Cavalcanti GN. 2010. Biologia comportamental de Conepatus semistriatus (Carnivora, Mephitidae) em Cerrado do Brasil Central. Unpublished D. Phil. Thesis, Universidade Federal de Minas Gerais, Brazil.

Cherem JJ, Simões-Lopes, PC, Althoff S, Graipel ME. 2004. Lista dos mamíferos do estado de Santa Catarina, sul do Brasil. Mastozoología neotropical 11(2): 151-184.

Cruz MAOM et AL. 2005. Diversidade de mamíferos em áreas prioritárias para conservação da Caatinga. In: de Araújo FS, Rodal MJN, Barbosa MRV, eds. Análise das variações da biodiversidade do bioma caatinga: suporte a estratégias regionais de conservação. Brasília: Ministério do Meio Ambiente, 182-226.

Cueva XA, Morales N, Brown M, Peck M. 2010. Macro y mesomamíferos de la Reserva Comunitaria Santa Lucía, Pichincha-Ecuador. Serie Zoológica 6: 98-110.

Dinerstein E, Olson DM, Graham DJ, Webater AL, Primm SA, Bookbinder MP, Ledec G. 1995. A conservation assessment of the terrestrial ecorregions of Latin American and the Caribbean. Washington, D. C.: The World Bank.

Dragoo JW, Honeycutt RL, Schmidly DJ. 2003. Taxonomic status of white-backed hog-nosed skunks, genus Conepatus (Carnivora: Mephitidae). Journal of Mammalogy 84: 159-176.

Dragoo JW. 2009. Family Mephitidae (skunks). In: Wilson DE \& Mittermeier RA, eds. Handbook of the mammals of the world. Barcelona: Lynx Edicions, 532-563.

Eisenberg JF \& Redford K. 1999. Mammals of the Neotropics, Vol. 1, 2 and 3. Chicago: University of Chicago Press.

Eizirik E, Johnson WE, O'Brien SJ. 2006. Definindo unidades evolutivamente significativas e unidades de manejo para conservação de carnívoros neotropicais. In: Morato RG, Rodrigues

FHG, Eizirik E, Magini PR, Azevedo FCC, Marinho-Filho J, eds. Manejo e conservação de carnívoros neotropicais. São Paulo: IBAMA, 67-84.

Eizirik E, Murphy WJ, Koepfli KP, Johnson WE, Dragoo JW, Wayne RK, O’Brien SJ. 2010. Pattern and timing of diversification of the mammalian order Carnivora inferred from multiple nuclear gene sequences. Molecular Phylogenetics and Evolution 56: 49-63.

Falcão FC, Guanaes DHA, Paglia A. 2012. Medium and large-sized mammals of RPPN Estação Veracel, southernmost Bahia, Brazil. Check List 8(5): 929-934.

Faúndez PV. 2012. Mamíferos terrestres de la Región de Atacama, Chile Comentarios sobre su distribución y estado de conservación. Gayana 76(1): 22-37.

Field A. 2005. Discovering statistics with SPSS, $2^{\text {nd }}$ ed. London, Thousand Oaks and New Delhi: Sage Publications.

Fraser DJ \& Bernatchez L. 2001. Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Molecular Ecology 10(12): 2741-2752.

Freitas EB. 2010. Levantamento das populações de mamíferos e aves em um fragmento de Caatinga no alto sertão Sergipano. Unpublished D. Phil. Thesis, Universidade Federal de Sergipe.

Geise L, Pereira LG, Bossi DEP, Bergallo HG. 2004. Pattern of elevational distribution and richness of non volant mammals in Itatiaia National Park and its surroundings, in southeastern Brazil Brazilian. Journal of Biology 64(3B): 599-612.

Gómez-Puerta LA, Ticona DS, López-Urbina MT, González AE. 2009. The Andean hog-nosed skunk Conepatus chinga Molina, 1782 as a new definitive host for Spirometra erinacei Faust, Campbell Kellog, 1929. Veterinary parasitology 160(3): 334-336.

Gray JE. 1837. Description of some new or little known Mammalia, principally in the British Museum collection. Magazine of Natural History 1: 577-587.

Herrera L, d'Andrea PS, Xavier SCC, Mangia RH, Fernandes O, Jansen AM. 2005. Trypanosoma cruzi infection in wild mammals of the National Park 'Serra da Capivara'and its surroundings (Piauí, Brazil) an area endemic for Chagas disease Transactions of the Royal Society of Tropical. Medicine and Hygiene 99(5): 379-388.

Huertas BC \& Donegan TM. 2006. Proyecto YARÉ: Investigación y Evaluación de las Especies Amenazadas de la Serranía de los Yariguíes, Santander, Colombia. Colombian EBA Project Report Series 7.

Huggenberger S, Benke H, Kinze CC. 2002. Geographical variation in harbour porpoise (Phocoena phocoena) skulls: support for a separate non-migratory population in the Baltic Proper. Ophelia 56(1): 1-12.

IBM Corp. 2012. IBM SPSS Statistics for Windows, Version 21.0. Armonk: IBM Corp.
IUCN Commission on National Parks, \& Protected Areas. 1982. IUCN directory of neotropical protected áreas. USA: Tycooly Publishing.

IUCN 2012. IUCN Red List of Threatened Species, version 2012.2. <www.iucnredlist.org>. Downloaded on 25 February 2013.

Jayat JP, Barquez RM, Díaz MM, Martinez J. 1999. Aportes al conocimiento de la distribución de los carnívoros del noroeste de Argentina. Mastozoología Neotropical 6(1): 15-30.

Jiménez CF, Quintana H, Pacheco V, Melton D, Torrealva J, Tello G. 2010. Camera trap survey of medium and large mammals in a montanerainforest of northern Peru Revista peruana de biologia 17(2): $191-196$.

Johnson WE, Fuller TK, Arribillaga G, Franklin WL, Johnson KA. 1988. Seasonal changes in activity patterns of the Patagonian hognosed skunk (Conepatus humboldti) in Torres del Paine National Park, Chile. Revista Chilena de Historia Natural 61: 217-221.

Johnson WE, Eizirik E, Pecon-Slattery J, Murphy WJ, Antunes A, Teeling E, O'Brien SJ. 2006. The late Miocene radiation of modern Felidae: a genetic assessment. Science 311(5757): 73-77.

Kasper CB, Soares JB, Freitas TRO. 2012. Differential patterns of home-range, net displacement and resting sites use of Conepatus chinga in southern Brazil. Mammalian Biology-Zeitschrift für Säugetierkunde 77(5): 358-362.

Kass RE \& Raftery AE. 1995. Bayes factors. Journal of the american statistical association 90(430): 773-795.

Kipp VH. 1965. Beitrag zur Kenntnis der Gattung Conepatus Molina, 1782. Zeitschrift für Säugetierkunde 30: 193-232.

Lessa LG, Alves H, Geise L, Barreto RM. 2012. Mammals of medium and large size in a fragmented cerrado landscape in northeastern Minas Gerais state, Brazil. Check List 8(2): 192196.

Linares OJ. 1998. Mamíferos de Venezuela. Caracas: Sociedad Conservacionista Audubon de Venezuela.

Llanos-Cuentas EA, Roncal N, Villaseca P, Paz L, Ogusuku E, Perez, JE, Davies CR. 1999. Natural infections of Leishmania peruviana in animals in the Peruvian Andes. Transactions of the Royal Society of Tropical Medicine and Hygiene 93(1): 15-20.

Lyra-Jorge MC, Ciocheti G, Pivello VR. 2008. Carnivore mammals in a fragmented landscape in northeast of São Paulo State, Brazil. Biodiversity and Conservation 17(7): 1573-1580.

Moritz C. 1994. Defining'evolutionarily significant units' for conservation.TRENDS in Ecology and Evolution 9(10): 373-374.

Nunes AV, Moraes Scoss L, Mendes Lessa G. 2012. Composição e abundância relativa dos mamíferos terrestres de médio e grande porte do Parque Estadual da Serra do Brigadeiro, Minas Gerais, Brasil. Biotemas 25(3): 205-216.

Oliveira TG. 2006. Research in terrestrial Carnivora from Brazil: current knowledge and priorities for the new millennium. In: Morato RG, Rodrigues FHG, Eizirik E, Mangini PR, Azevedo FCC, Marinho-Filho J, eds. Manejo e conservação de carnívoros Neotropicais: I Workshop de pesquisa para a conservação. São Paulo: IBAMA, 39-45.

Oliveira TGD, Gerude RG, Silva Júnior JDS. 2007. Ocorrências inusitadas de mamíferos no estado do Maranhão. Boletim do Museu Paraense Emílio Goeldi Ciências Naturais 2(2): 23-32.

Osgood WH. 1943. The mammals of Chile. Field Museum of Natural History.
Pacheco LF, Lucero A, Villca M. 2004. Dieta del puma (Puma concolor) en el Parque Nacional Sajama, Bolivia y su conflicto con la ganadería. Ecología en Bolivia 39(1): 75-83.

Patterson BD. 2001. Fathoming tropical biodiversity: the continuing discovery of Neotropical mammals. Diversity and Distribution 7: 191-196.

Penido G \& da Silva ZAC. 2012. Checklist of large and medium-sized mammals of the Estação Ecológica Mata do Cedro, an Atlantic forest remnant of central Minas Gerais, Brazil. Check List 8(4): 712-717.

Perini FA, Russo CAM, Schrago CG. 2010. The evolution of South American endemic canids: a history of rapid diversification and morphological parallelism. Journal of evolutionary biology 23(2): 311-322.

Peters FB, Roth PRDO, Christoff AU. 2011. Feeding habits of Molina's hog-nosed skunk, Conepatus chinga (Carnivora: Mephitidae) in the extreme south of Brazil. Zoologia (Curitiba) 28(2): 193-198.

Pozo WE, Trujillo F. 2005. Lista anotada de la fauna de la Laguna Loreto, Reserva Ecológica Cayambe Coca, Ecuador. Serie Zoológica 1: 29-4.

Queirolo D, Moreira, JR, Soler LA, Emmons LH, Rodrigues FVH Pautasso ASA, ... Salvatori VR. 2011. Historical and current range of the Near Threatened maned wolf Chrysocyon brachyurus in South America. Oryx 45(2): 296-303.

Ramírez-Chaves HE \& Noguera-Urbano EA. 2010. Lista preliminar de los mamíferos (Mammalia: Theria) del departamento de Nariño, Colombia. Biota Colombiana (1-2): 117-140.

Ratter JA, Ribeiro JF, Bridgewater S. 1997. The Brazilian cerrado vegetation and threats to its biodiversity. Annals of Botany 80(3): 223-230.

Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM. 2009. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological conservation 142(6): 1141-1153.

Ronquist F \& Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12): 1572-1574.

Rumiz DI, Eulert CF. Arispe R. 1998. Evaluación de la diversidad de mamíferos medianos y grandes en el Parque Nacional Carrasco (Cochabamba-Bolivia). Revista Boliviana de Ecología y Conservación Ambiental 4: 77-90.

Santos MFM, Pellanda M, Tomazzoni AC, Hasenack H, Hartz SM. 2004. Mamíferos carnívoros e sua relação com a diversidade de hábitats no Parque Nacional dos Aparados da Serra, sul do Brasil. Iheringia: série zoologia 94: 235-245.

Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, Katariya V, Hammond PS. 2008. The status of the world's land and marine mammals: diversity, threat, and knowledge. Science 322(5899): 225-230.

Stein BR \& Wieczorek JR. 2004. Mammals of the world: MaNIS as an example of data integration in a distributed network environment. Biodiversity Informatics 1: 14-22.

Telleria J, Bosseno MF, Tarifa T, Buitrago R, Martinez E, Torrez M, Brenière SF. 1999. Putative reservoirs of Leishmania amazonensis in a sub-Andean focus of Bolivia identified by kDNApolymerase chain reaction. Memórias do Instituto Oswaldo Cruz 94(1).

Thomas O. 1898. XXXVI.-Notes on various American mammals. The Annals and Magazine of Natural History 2(10): 318-320.

Thomas O. 1900. LXI.-New Peruvian species of Conepatus, Phyllotis, and Akodon. The Annals and Magazine of Natural History 6(35): 466-469.

Thomas O. 1902. XL.—On mammals collected at Cruz del Eje, Central Cordova, by Mr. PO Simons. The Annals and Magazine of Natural History 9(52): 237-245.

Thomas O. 1905. LXXX.-New Neotropical Molossus, Conepatus, Nectomys, Proechimys, and Agouti, with a Note on the Genus Mesomys. Annals and Magazine of Natural History, including Zoology, Botany, and Geology: SERIES 7 15(90): 584-591.

Tirira DG \& Boada CE. 2009. Diversidad de mamíferos en bosques de Ceja Andina alta del nororiente de la provincia de Carchi, Ecuador. Serie Zoológica 4(5): 1-24.

Travaini A, Delibes M, Ceballos O. 1998. Summer foods of the Andean hog-nosed skunk (Conepatus chinga) in Patagonia. Journal of Zoology 246(4): 457-460.

Van Gelder RG. 1968. The genus Conepatus (Mammalia, Mustelidae): variation within a population. American Museum Novitates 2322: 1-37.

Wozencraft WC. 1993. Order Carnivora. In: Wilson, DE, Reeder DM, eds. Mammal species of the world: a taxonomic and geographic reference. Washington and London: Smithsonian Inst. Press, 279-348.

Wozencraft WC. 2005. Order Carnivora. In: Wilson DE, Reeder DM, eds. Mammal species of the world. A taxonomic and geographic reference, Vol. 1, $3^{\text {rd }}$ ed. Baltimore: The Johns Hopkins University Press, 601-624.

Yahnke CJ, de Fox IG, Colman F. 1998. Mammalian species richness in Paraguay: the effectiveness of national parks in preserving biodiversity. Biological Conservation 84(3): 263-268.

Zapata SC, Travaini A, Martínez-Peck R. 2001. Seasonal feeding habits of the Patagonian hognosed skunkConepatus humboldtii in southern Patagonia. Acta Theriologica 46(1): 97-102.

Zapata-Ríos G, Araguillin E, Jorgenson JP. 2006. Caracterización de la comunidad de mamíferos no voladores en las estribaciones orientales de la Cordillera del Kutukú, Amazonía Ecuatoriana. Mastozoología neotropical 13(2): 227-238.

Table 1. Skull, jaw and teeth measurement names, codes and descriptions, utilized in the population differentiation survey. When applicable, measurements were taken on the left side of the skull and jaw.

Measurement Name	Code	Description
Basilar	Bas	From the anteriormost border of the foramen magnum to the internal plane of the first upper incisors
Condylobasal	CoBa	From the posteriormost parts of the occipital condyles to the anteriormost portions of te premaxillae
Zygomatic	Zyg	Greatest width across zygmoatic arches
Mastoid	Mast	Width across tips of the mastoid processes
Interorbital	IOrb	Least distance across frontal bones at the level of the frontomaxillary sutures
Postorbital	POrb	Least distance across frontal bones posterior to the postorbital projections
Palatilar	Palat	From one of the indentations at the posterior of the palatine bones to the internal plane of the first upper incisors
Facial Length	FaL	Least length from inside of orbit to the premaxillae between incisors
Nasal Retraction	Nas	From mid-point of frontal inflation to the front of nasals
Cranium Height	CrH	From between basi-sphenoid and basioccipital to the dorsal surface of the parietal bones
Cranium Width	CrW	Cranium maximum width measured above the mastoid processes
Bulla Lenght	BuL	From the anterior thin process to the end of the bulla convexity
Bulla Width	BuW	From the intern line of the bulla convexity to
Maxillary Tooth Row	MaTR	Lenght of the upper tooth row, from the last molar to the canine, measured in the aveoli
Width ac. Incisors	Walnc	Width across upper incisors
Width ac. Canines	WaCan	Width across upper canines
Width ac. Molars	WaMol	Width across upper molars
N Canine Length	CanL	Upper canine diameter
Canine Width	CanW	Upper canine width
Large Upper	UPML	Large upper premolar length
Premolar Lenght Large Upper Premolar Width	UPMW	Large upper premolar width
Upper Molar Length	UMoL	Upper molar length
Upper Molar Width	UMoW	Upper molar width
Jaw Height	JaH	From the dorsalmost point of the coronoid process of the mandible perpendicular to the line formed between the ventral portion of the ramus and the ventral portion of the angular process, in the plane of te ramus
Jaw Lenght	JaW	From the mandibular symphysis at the alveoli of the first incisors to the posteriormost portion of the angular process, in the plane of the ramus
Jaw Tooth Row	JaTR	Lenght of the upper tooth row, from the first molar to the canine, measured in the aveoli
Width ac. Lower Premolar	WaLPM	Width across lower premolars
Lower Molar Length	LMoL	Lower molar length
Lower Molar Width	LMoW	Lower molar width

Table 2. Collection information for all individuals utilized in the craniodental survey.

Code	Institution	Acronym	Scientific Name	Sex	Stage	Country	State	Collector
MC-001	FZBRS	MCN 1767	C. chinga	F	4	Brazil	Rio Grande do Sul	Rio Grande
MC-004	FZBRS	MCN 2588	C. chinga	U	4	Argentina	Cordoba	Cerro Los Gigantes

Table 2. (continued)

Code	Institution	Acronym	Scientific Name	Sex	Stage	Country	State	Locality	Collector	Year
MS-026	USNM	443285	C. s. semistriatus	F	4	Venezuela	Falcon	Cataparida	Smithsonian Venezuelan Project	1968
MS-027	USNM	443286	C. s. semistriatus	F	5	Venezuela	Falcon	Cataparida	Smithsonian Venezuelan Project	1968
MS-028	USNM	443289	C. s. semistriatus	F	4	Venezuela	Falcon	Cataparida	Smithsonian Venezuelan Project	1968
MS-029	USNM	443290	C. s. semistriatus	M	4	Venezuela	Falcon	Cataparida	Smithsonian Venezuelan Project	1968
MS-030	USNM	443291	C. s. semistriatus	M	4	Venezuela	Falcon	Cataparida	Smithsonian Venezuelan Project	1968
MS-031	USNM	443293	C. s. semistriatus	F	4	Venezuela	Falcon	Cataparida	Smithsonian Venezuelan Project	1968
MS-032	USNM	443294	C. s. semistriatus	F	5	Venezuela	Falcon	Cataparida	Smithsonian Venezuelan Project	1968
MS-033	USNM	443295	C. s. semistriatus	F	4	Venezuela	Falcon	Cataparida	Smithsonian Venezuelan Project	1968
MS-034	USNM	443296	C. s. semistriatus	F	4	Venezuela	Falcon	Cataparida	Smithsonian Venezuelan Project	1968
MS-035	USNM	443414	C. s. semistriatus	F	3	Venezuela	Falcon	Coro	Smithsonian Venezuelan Project	1968
MS-036	USNM	443576	C. s. semistriatus	M	5	Venezuela	Zulia	Encontrados	Smithsonian Venezuelan Project	1968
MS-037	USNM	324236	C. s. trichurus	M	3	Panama	Chiriqui	Bamdito	CO Handley Jr.	1962
MS-038	USNM	332037	C. s. trichurus	U	5	Panama	Chiriqui	El Volcan	E Tyson	1962
MS-039	USNM	335773	C. s. trichurus	M	3	Panama	Bocas del Toro	Sibube	CO Handley Jr.	1963
MS-040	USNM	363346	C. s. trichurus	M	5	Panama	Chiriqui	Progreso	Greenwell \& Fleming	1966
MS-041	USNM	8610/A6948	C. s. yucatanicus	U	4	Mexico		Merida	A Schott	1866
MS-042	USNM	108503	C. s. yucatanicus	M	3	Mexico	Yucatan	La Vega	Nelson \& Goldman	1901
MS-043	USNM	337832	C. s. yucatanicus	M	5	Nicaragua	Chontales	Villa Somoza	JN Clanton	1963
MS-044	USNM	338870	C. s. yucatanicus	F	4	Nicaragua	Jinotega	HCA La Trampa	MK Clark	1964
MS-045	USNM	361359	C. s. yucatanicus	F	4	Nicaragua	Rio San Juan	La Esperanza	MK Clark	1965

Code: assigned code (this study)
Institutions: Mammal collection where individuals are deposited.
Sex: Female, F; Male, M; Unknown, U.
Stage: young adult, 3; adult, 4; old adult, 5.
Country, State and Locality: information regarding collection point of each specimen.
Collector: specimen colector.
Year: year of collection.

Table 3A. General information regarding the geographic records collected from museum specimens to develop a detailed distributional map of Conepatus.

Rec\#	Institution	Acronym	Country	State/Province	Dec Lat	Dec Long	Locality 1	Locality 2	Collector	Year	Elevation
1	AMNH	M-41530	Argentina	Santiago del Estero			Santiago del Estero	Lavalle	Miller; Boyle		
2	AMNH	M-36928	Argentina	Tierra del Fuego					L. E. Miller		
3	AMNH	M-36932	Argentina	Entre Rios			Parana		L. E. Miller		
								100 kilometers northwest of			
4	AMNH	M-94317	Argentina	Chubut			Escalante	Comodoro Rivadavia			
5	AMNH	M-94328	Argentina	Chubut			Sarmiento	Colhue Huapi Lake			
6	AMNH	M-94330	Argentina	Chubut			Sarmiento	Colhue Huapi Lake			
7	AMNH	M-41529	Argentina	Tucuman			Tafi Viejo	Tafi	Miller; Boyle		
8	AMNH	M-25669	Argentina	Santa Cruz			Corpen Aike	Chico River	A. E. Colburn		
9	AMNH	M-260327	Bolivia	Santa Cruz	-18,27	-62,08	Cordillera	5 kilometers southeast of Tita	S. Anderson		295 m
10	AMNH	M-264464	Bolivia	Tarija	-21,26	-63,55	Gran Chaco	Tapuco	S. Anderson		1500 m
11	AMNH	M-247712	Bolivia	La Paz			Tamayo	5 kilometers east of Ulla Ulla	S. Anderson		4460 m
12	AMNH	M-39011	Bolivia	Cochabamba			Carrasco	Tujma River	W. D. Miller		8200 ft
13	AMNH	M-133945	Brazil	Goias			Anapolis		R. M. Gilmore		1000 m
14	AMNH	M-133946	Brazil	Mato Grosso do Sul			Maracaju		R. M. Gilmore		
15	AMNH	M-235994	Brazil	Rio Grande do Sul			Uruguaiana		A. Ximenez		
16	AMNH	M-235512	Brazil	Rio Grande do Sul			Rio Grande	Quinta	A. Ximenez		
17	AMNH	M-33290	Chile	Araucania			Cautin	Temuco, Maquegua	J. A. Wolffsohn		
18	AMNH	M-33291	Chile	Araucania			Cautin	Temuco, Maquegua	J. A. Wolffsohn		
19	AMNH	M-93324	Chile	Araucania			Malleco	Angol	D. S. Bullock		70 m
20	AMNH	M-130049	Chile	Magallanes			Punta Arenas		F. M. Chapman		
21	AMNH	M-38423	Colombia	Cundinamarca			Bogota	Las Balcillas	M. Gonzalez		
22	AMNH	M-38424	Colombia	Cundinamarca			Bogota	Las Balcillas	M. Gonzalez		
23	AMNH	M-15480	Colombia	Magdalena			Santa Marta	Playa Brava	A.E.E.		
24	AMNH	M-14632	Colombia	Magdalena			Santa Marta	Bonda	H. H. Smith		150 ft
25	AMNH	MS-3634	Costa Rica	Limon			Guacimo	Jimenez	G. K. Cherrie		
26	AMNH	M-135269	Costa Rica	San Jose			Escazu	Escazu	C. F. Underwood		3200 ft
27	AMNH	M-19205	Costa Rica	San Jose			Parrita	Pozo Azul	M. A. Carriker, Jr.		
28	AMNH	M-135270	Costa Rica	San Jose			Santa Ana	La Hondura	C. F. Underwood		2500 ft

Table 3A. (continued)

Rec\#	Institution	Acronym	Country	State/Province	Dec Lat	Dec Long	Locality 1	Locality 2	Collector	Year	Elevation
								Irazu Volcano, R. Jimenez			
29	AMNH	M-19206	Costa Rica	Cartago			Cartago	Ranch	M. A. Carriker, Jr.		
30	AMNH	M-141858	Costa Rica	San Jose			Alajuelita	Santa Teresa, Peralta	P. E. Crowe		
31	AMNH	MO-2794	Costa Rica	Limon			Guacimo	Jimenez			
32	AMNH	M-66719	Ecuador	Pichincha			Quito	Mount Antisana	H. E. Anthony		
33	AMNH	M-187838	Ecuador	Pichincha			Quito	25 miles south of Quito	R. G. Van Gelder		12000 ft
34	AMNH	M-67085	Ecuador	Bolivar			Guaranda	Sinchig	G. H. H. Tate		
35	AMNH	M-36466	Ecuador	Pichincha			Quito		W. B. Richardson		
36	AMNH	M-17201	Mexico	Veracruz-Llave			Paso Nuevo		A. E. Colburn		
37	AMNH	M-17202	Mexico	Veracruz-Llave			Paso Nuevo		A. E. Colburn		
38	AMNH	M-172190	Mexico	Veracruz-Llave			Catemaco	Lake Catemaco	D. Jennings		
39	AMNH	M-212835	Mexico	Yucatan			Opichen	Actun Spukil	R. T. Hatt		
40	AMNH	M-18900	Panama	Chiriqui			Boqueron		J. H. Batty		
								50 kilometers west southwest			
41	AMNH AMNH	M-238425	Paraguay Peru	Boqueron Ancash			Recuay	of Fortin Madrejon ${ }^{\text {Carpa, Cordillera Blanca }}$	P. Myers F. Vuilleumier		4050 m
43	AMNH	M-205889	Uruguay	Soriano			Cardona	3 kilometers east of Cardona	M. D. Tuttle		
44	AMNH	M-205837	Uruguay	Cerro Largo			Melo	6 kilometers southeast of Melo	J. C. Barlow		
45	AMNH	M-205838	Uruguay	Cerro Largo			Melo	6 kilometers southeast of Melo 20 kilometers northwest of	J. C. Barlow		
46	AMNH	M-205839	Uruguay	Cerro Largo				Paso del Dragon 6 kilometers north northwest	A. Langguth		
47	AMNH	M-205836	Uruguay	Artigas				of Belen 12 kilometers west southwest	R. G. Van Gelder		
48	AMNH	M-205869	Uruguay	Lavalleja			Zapican	of Zapican 22 kilometers southeast of	M. D. Tuttle		
49	AMNH	M-205873	Uruguay	Rocha			Lascano	Lascano	J. C. Barlow		

Table 3A. (continued)

Rec\#	Institution	Acronym	Country	State/Province	Dec Lat	Dec Long	Locality 1	Locality 2	Collector	Year	Elevation
								10 kilometers north of			
50	AMNH	M-205879	Uruguay	Tacuarembo			Tacuarembo	Tacuarembo	M. D. Tuttle		
								40 kilometers northwest of			
51	AMNH	M-205885	Uruguay	Tacuarembo			Tacuarembo	Tacuarembo	A. Ximenez		
								15 kilometers northwest of			
52	AMNH	M-205886	Uruguay	Tacuarembo			Tacuarembo	Tacuarembo	K. F. Koopman		
								10 kilometers north of			
53	AMNH	M-205888	Uruguay	Tacuarembo			Tacuarembo	Tacuarembo	M. D. Tuttle		
								10 kilometers north of			
54	AMNH	M-205887	Uruguay	Tacuarembo			Tacuarembo	Tacuarembo	K. F. Koopman		
								13 kilometers west southwest			
55	AMNH	M-205901	Uruguay	Treinta y Tres			Vergara	of Vergara	A. Langguth		
								15 kilometers northwest of			
56	AMNH	M-205899	Uruguay	Treinta y Tres				Tacuari River mouth	T. J. McIntyre		
								16 kilometers south southwest			
57	AMNH	M-205895	Uruguay	Treinta y Tres				of Tacuari River mouth	A. Ximenez		
								15 kilometers south of of			
58	AMNH	M-205859	Uruguay	Rio Negro				Paysandu, Negro stream	R. G. Van Gelder		
								80 kilometers northeast of			
59	AMNH	M-205900	Uruguay	Treinta y Tres				Treinta y Tres, Tacuari River	A. Langguth		
								20 kilometers southeast of			
								Melo, Tacuari River, Sierra de			
60	AMNH	M-205840	Uruguay	Cerro Largo			Melo	Vaz	S. Anderson		
								10 kilometers west of Tacuari			
61	AMNH	M-205898	Uruguay	Treinta y Tres				River mouth	J. C. Barlow		
								10 kilometers west of Tacuari			
62	AMNH	M-205897	Uruguay	Treinta y Tres				River mouth	S. Anderson		
63	AMNH	MO-605	United StatesA	Arizona			Pinal Co.				
64	AMNH	M-144821	Venezuela	Aragua			Girardot	Rancho Grande	C. W. Beebe		
65	AMNH	M-69609	Venezuela	Sucre			Sucre	Neveri	G. H. H. Tate		
66	AMNH	M-32073	Venezuela	Yaracuy			Bolivar	El Hacha, Bolivar R.R.	M. A. Carriker, Jr.		

Table 3A. (continued)

Rec\#	Institution	Acronym	Country	State/Province	Dec Lat	Dec Long	Locality 1	Locality 2	Collector	Year	Elevation
67	AMNH	M-21634	Venezuela	Merida			Libertador	Merida	S. B. Gabaldon		
68	AMNH	M-21635	Venezuela	Merida			Libertador	Merida	S. B. Gabaldon		
69	AMNH	M-135481	Venezuela	Guarico			Zaraza		A. Roe		60 m
70	AMNH	MO-605	United StatesA	Arizona			Pinal Co.				
								San Antonio, 18 mi. NW, Camp			
71	AMNH	4605	United StatesA	Texas	29,69	-98,57	Bexar	Bullis	WJ Hamilton, Jr.		
									Mearns \& F.		
72	AMNH	58867	Mexico	Sonora				Santa Cruz	Holzner		
73	AMNH	91357	Mexico	Sinaloa				Santa Cruz De Alaya	J. Taylor		
								San Antonio, 18 mi. NW, Camp			
74	CU	4605	United States	Texas	29,69	-98,57	Bexar	Bullis	WJ Hamilton, Jr.	1943	
75	FZBRS	2588	Argentina	Cordoba				Cerro los Gigantes	D. L. Guadagnin	1993	
76	FZBRS	1056	Brazil	Rio Grande do Sul				Quaraí	J.W.Thomé	1983	
77	FZBRS	1767	Brazil	Rio Grande do Sul				Rio Grande	Eduardo Borsatto	1986	
									Ana Maria Ribeiro		
78	FZBRS	2513	Brazil	Rio Grande do Sul				Guaiba	\& Jorge Ferigolo	1992	
79	FZBRS	2517	Brazil	Rio Grande do Sul				Barra do Quaraí	Edison V. Oliveira	1991	
80	FZBRS	2713	Brazil	Rio Grande do Sul				Santa Maria	Saul Milder		
81	FZBRS	3067	Brazil	Rio Grande do Sul				Aceguá	João Carlos Dotto	1999	
82	FZBRS	3068	Brazil	Rio Grande do Sul				Dom Feliciano	Kita (PUCRS)	2002	
83	FZBRS	3069	Brazil	Rio Grande do Sul				Rio Grande	Cibele Indrusiak	2001	
84	KU	2042	Argentina	Santa Cruz	-50,11	-69,50		NO LOCALITY	MARTIN H T		
85	KU	2684	Argentina	Santa Cruz	-51,56	-68,96		CAPE FAIRWEATHER	MARTIN H T	1905	
								TURRIALBA, 12 KM SE OF;			
86	KU	32245	Costa Rica	Cartago	9,95	-83,58		PILON DE AZUCAR PERALTA	WILLE A	1949	
								COATZACOALCOS, 14 KM SW			
87	KU	19274	Mexico	Veracruz	18,04	-94,53		OF	DALQUEST W W	1947	
88	KU	24546	Mexico	Veracruz	17,20	-94,77		JESUS CARRANZA, 35 KM SE OF	DALQUEST W W	1948	

Table 3A. (continued)

Table 3A. (continued)

Rec\#	Institution	Acronym	Country	State/Province	Dec Lat	Dec Long	Locality 1	Locality 2	Collector	Year	Elevation
113	MCZ	27341	Ecuador					east Ecuador, northwest side of	Ludovic		
								Mindo (?), altitude 11500 feet	Soederstrom		
								Boquete [VERBATIM	Wilmot W. Brown		
114	MCZ	10115	Panama					ELEVATION:4000]	Jr.		
								Boquete [VERBATIM	Wilmot W. Brown		
115	MCZ	10116	Panama					ELEVATION:4500]	Jr.		
									Samuel Walton		
116	MCZ	5257	Peru					Lake Titicaca	Garman		
									Samuel Walton		
117	MCZ	5258	Peru					Lake Titicaca	Garman		
									Samuel Walton		
118	MCZ	5259	Peru					Lake Titicaca, West shore	Garman		
119	MNHN	ZM-AC-A3150	Argentina					Buenos Aires	Orbigny (d')		
120	MNHN	ZM-AC-1995-188	Chile				Pce Magallanes	Cabeza del Mar	Pellé Eric	1994	
121	MNHN	ZM-MO-1932-2884	Ecuador					Mera, Rio Pastara	Dorst		
122	MNHN	ZM-MO-1872-57	Guatemala	Santa Cruz							
123	MNHN	ZM-MO-1957-1294	Peru	Pasco				Huaron			
124	MNHN	ZM-MO-1957-1296	Peru	Pasco				Huaron			
125	MNHN	ZM-MO-1957-1297	Peru	Puno			Checayani -Azaugaro		Dorst Jean		
126	MNHN	ZM-MO-1957-1298	Peru	Puno			Checayani -Azaugaro				
127	MNHN	ZM-MO-1970-301	Peru	Puno			Checayani -Azaugaro		Dorst Jean		
128	MNHN	ZM-MO-1970-302	Peru				Checayani				
129	MNHN	ZM-AC-A1988	Uruguay					Montevideo	Eydoux Fortuné		
130	MNHN	ZM-MO-1962-1643						Montevideo	Lasser F.		
								$6 \mathrm{KM} \mathrm{W} \mathrm{(BY} \mathrm{ROAD)}$			
								CARANDAYTI, 500 M ; 20D45'S,	Bolivian		
131	MSB	56102	Bolivia	Chuquisaca	-20,75	-63,18		63D07'W	Expedition 1985	1985	
								7 KM. S., 4 KM. E. CRUCE			
								VENTILLA 3950M; 19.08S	Bolivian		
132	MSB	57373	Bolivia	Oruro	-19,13	-66,12		66.07W	Expedition 1986	1986	

Table 3A. (continued)

Rec\#	Institution	Acronym	Country	State/Province	Dec Lat	Dec Long Locality 1	Locality 2	Collector	Year	Elevation
							TAPECUA, $1500 \mathrm{~m} ;$	Bolivian		
133	MSB	67084	Bolivia	Tarija	-21,43	-63,92	21D26'S,63D55'W.	Expedition 1991	1991	
								Bolivian		
								Expedition 1984,		
								Sydney A.		
134	MSB	210999	Bolivia	Santa Cruz			5 KM SE OF TITA, 0295 m .	Anderson	1984	
							5 KM NE ACOMAYO,			
135	MSB	50008	Peru	Huanuco	-9,73	-76,07	TINYAHUAYIN, 8400 FT	G. L. Graham	1982	
136	MSU	MR. 20038	Argentina	Buenos Aires Province	-37,73	-58,20	Partido Balcarce	Peter L. Dalby	1970	
							dead on road, Ruta 226,			
137	MSU	MR. 18700	Argentina	Buenos Aires Province	-37,73	-58,20	approx. Km 90, Partido Balcarce Crovetto Field, Km 67, Ruta	Peter L. Dalby	1970	
138	MSU	MR. 17865	Argentina	Buenos Aires Province	-37,78	-58,24	226, Partido Balcarce	Peter L. Dalby	1968	
139	MSU	MR. 6306	Chile	Malleco Province	-37,80	-72,72	Angol	Dillman S. Bullock		
140	MSU	MR. 6307	Chile	Malleco Province	-38,43	-72,23	30 km W Curacautin	John Keever Greer	1962	
141	MSU	MR. 9649	Chile	Cautin Province	-38,73	-72,60	Temuco	Dillman S. Bullock	1907	
142	MSU	MR. 6308	Chile	Malleco Province	-38,52	-71,37	Valley of Rio Lonquimay	John Keever Greer	1961	
143	MSU	MR. 6305	Chile	Malleco Province	-37,80	-72,72	Angol	Dillman S. Bullock		
							Parque Nacional, 27 km WNW			
144	MSU	MR. 6304	Chile	Malleco Province	-37,82	-72,98	Angol	John Keever Greer	1961	
							Parque Nacional, 27 km WNW			
145	MSU	MR. 6303	Chile	Malleco Province	-37,82	-72,98	Angol	John Keever Greer	1961	
								John R.		
146	MVZ	21934	Argentina	Provincia Santa Cruz	-50,01	-68,51	Santa Cruz	Pemberton	1915	
							Depto. Los Lagos, 3 km NW			
147	MVZ	159443	Argentina	Provincia Neuquen	-40,04	-70,85	Confluencia	Oliver P. Pearson	1980	

Table 3A. (continued)

Rec\#	Institution	Acronym	Country	State/Province	Dec Lat	Dec Long	Locality 1	Locality 2	Collector	Year	Elevation
								Depto. Zapala, Parque Nacional			
148	MVZ	159444	Argentina	Provincia Neuquen	-39,09	-70,32		Laguna Blanca	Oliver P. Pearson	1980	
149	MVZ	162288	Argenti		-41,2	-71		Depto. Pilcaniyeu, Estancia El Condor, 18 km SE Bariloche	Oliver P Pearson	1981	
								Depto. Pilcaniyeu, 22 km ESE			
150	MVZ	172241	Argentina	Provincia Rio Negro	-41,20	-71,06		Bariloche, Estancia El Condor	Oliver P. Pearson W. Clarke-	1985	790-790 m
151	MVZ	84332	Ecuador	Provincia Tungurahua	-1,40	-78,42		Runtun Hills, Banos Hacienda Calacala, 7 mi SW	MacIntyre	1938	2000-2000 m
152	MVZ	114775	Peru	Departamento Puno	-15,03	-69,93		Putina Hacienda Pairumani, 24 mi S	Carl B. Koford	1951	13000-13000 ft
153	MVZ	114776	Peru	Departamento Puno	-16,43	-69,67		llave	Carl B. Koford	1951	$13000-13000 \mathrm{ft}$
154	MVZ	114940	Peru	Departamento Puno	-16,88	-69,71		10 mi S Mazo Cruz Hacienda Pairumani, 24 mi S	Carl B. Koford	1951	
155	MVZ	114941	Peru	Departamento Puno	-16,43	-69,67		llave	Carl B. Koford	1951	$13000-13000 \mathrm{ft}$
156	MVZ	121177	Peru	Departamento Cajamarca	-6,90	-79,05		Hacienda Taulis	Wilhelm Koepcke	1952	2600-2600 m
157	MVZ	121178	Peru	Departamento Piura	-4,10	-81,02		near Mancora Lomas de Lachay, 22 km N and	Wilhelm Koepcke	1950	0-0 ft
158	MVZ	135823	Peru	Departamento Lima				11 km W Chancay Parinas, 7 km N and 15 km E	Carl B. Koford	1967	1000-1000 ft
159	MVZ	135824	Peru	Departamento Piura	-4,51	-81,13		Talara	Carl B. Koford	1967	
160	MVZ	141630	Peru	Departamento Lima	-13,08	-76,37		2 mi E Yauyos, Canete Valley	Oliver P. Pearson	1971	$8340-8340 \mathrm{ft}$
161	NHM	1902.2.5.3	Argentina	Mendoza	-31.00	-69,00		San Juan	Thomas	1902	
162	NHM	1902.1.1.11	Bolivia	Beni	-16,00	-66,00		Near Trinidad	Thomas	1902	
163	OMNH	15157	Argentina	Mendoza	-34,05	-67,97	Santa Rosa	Ñacuñán		1983	
164	OMNH	34537	Argentina	Catamarca	-27,70	-67,88	Tinogasta	34.6 km W Fiambalá (by road)		2006	

Table 3A. (continued)

Table 3A. (continued)

Rec\#	Institution	Acronym	Country	State/Province	Dec Lat	Dec Long	Locality 1	Locality 2	Collector	Year	Elevation
								ESTANCIA LA JOSEFINA, APPROX 50DEG 25'S, 71DEG			
183	UMMZ	157158	Argentina	Santa Cruz	-50,42	-71,90		54'W	R.W. STORER	1981	
184	UMMZ	77293	Ecuador	Imbabura	0,78	-78,30		IBARRA,CAROLINA	P. HERSHKOVITZ	1934	
185	UMMZ	80292	Mexico	Yucatán	20,68	-88,58		CHICHEN ITZA	ANGEL CHANG	1938	
								28.8KM BY RD W FORTIN			
186	UMMZ	124451	Paraguay	Chaco	-20,45	-60,10		MADREJON	P. MYERS	1976	
								28.8KM BY RD W FORTIN			
187	UMMZ	124452	Paraguay	Chaco	-20,45	-60,10		MADREJON	P. MYERS	1976	
188	USNM	172794	Argentina					Tello	A. Hrdlicka	1910	
								Azul, 40 Mi SE, Los Angeles			
189	USNM	331066	Argentina					Estancia	Lord \& Jellison	1962	
190	USNM	264479	Argentina				Patagonia	Gallegos	A. Colburn	1898	
191	USNM	172792	Argentina	Buenos Aires				Necochea, N Of	A. Hrdlicka	1910	
192	USNM	172791	Argentina					San Jose	A. Hrdlicka	1910	
193	USNM	171958	Argentina				Patagonia	San Blas, 20 Mi S	A. Hrdlicka	1910	
194	USNM	172793	Argentina					Tello	A. Hrdlicka	1910	
195	USNM	171957	Argentina				Patagonia	San Blas, 20 Mi S	A. Hrdlicka	1910	
196	USNM	271410	Bolivia	Cochabamba				Tiraque, 20 Mi S	R. Gilmore	1937	
									Collector		
197	USNM	391848	Chile	Santiago				Santiago	Unknown	1946	
									Collector		
198	USNM	391849	Chile	Tarapaca				Parinacota	Unknown		
									Collector		
199	USNM	391850	Chile	Tarapaca				Parinacota	Unknown		
200	USNM	281453	Colombia	Magdalena				Colonia Agricola De Caracolicito	P. Hershkovitz	1942	
201	USNM	281457	Colombia	Cesar			Valledupar District	Sierra Negra, Villanueva	P. Hershkovitz	1942	
202	USNM	281465	Colombia	La Guajira			Fonseca District	Las Marimondas, East Andes	P. Hershkovitz	1943	
203	USNM	281462	Colombia	Cesar			Valledupar District	Villanueva	P. Hershkovitz	1943	
204	USNM	281455	Colombia	Cesar			Valledupar District	El Orinoco, Rio Cesar	P. Hershkovitz	1942	

Table 3A. (continued)

Rec\#	Institution	Acronym	Country	State/Province	Dec Lat	Dec Long	Locality 1	Locality 2	Collector	Year	Elevation
205	USNM	281454	Colombia	Magdalena				Colonia Agricola De Caracolicito	P. Hershkovitz	1942	
206	USNM	281452	Colombia	Magdalena				Colonia Agricola De Caracolicito	P. Hershkovitz	1942	
207	USNM	281458	Colombia	Cesar			Valledupar District	Sierra Negra, Villanueva	P. Hershkovitz	1942	
208	USNM	281456	Colombia	Cesar			Valledupar District	El Orinoco, Rio Cesar	P. Hershkovitz	1942	
209	USNM	281464	Colombia	La Guajira			Fonseca District	Las Marimondas, East Andes	P. Hershkovitz	1943	
210	USNM	281460	Colombia	Cesar			Valledupar District	Sierra Negra, Villanueva	P. Hershkovitz	1942	
211	USNM	281461	Colombia	Cesar			Valledupar District	Villanueva	P. Hershkovitz	1943	
212	USNM	281459	Colombia	Cesar			Valledupar District	Sierra Negra, Villanueva	P. Hershkovitz	1942	
213	USNM	281463	Colombia	Cesar			Valledupar District	Villanueva Rio Palenque Science Center, 47 Km South Santo Domingo De	P. Hershkovitz Collector	1943	
214	USNM	568103	Ecuador	Pichincha				Los Colorados	Unknown Nelson \& E.	1979	
215	USNM	65762	Mexico	Veracruz				Catemaco	Goldman E. Nelson \& E.	1894	
216	USNM	63650	Mexico	Veracruz				Motzorongo	Goldman Nelson \& E.	1894	
217	USNM	65763	Mexico	Veracruz				Catemaco	Goldman	1894	
218	USNM	8610	Mexico					Merida	A. Schott Nelson \& E.	1866	
219	USNM	108503	Mexico	Yucatan				La Vega	Goldman E. Nelson \& E.	1901	
220	USNM	108502	Mexico	Quintana Roo				La Vega, Opposite Isla Cancun	Goldman	1901	
221	USNM	132512	Mexico	Veracruz				Perez	J. Friesser	1903	
222	USNM	337832	Nicaragua	Chontales				Villa Somoza	J. Clanton	1963	
223	USNM	361359	Nicaragua	Rio San Juan				La Esperanza	M. Clark	1965	
224	USNM	338870	Nicaragua	Jinotega				Hca La Trampa	M. Clark	1964	
225	USNM	332037	Panama	Chiriqui				El Volcan, 2 Mi NE	E. Tyson C. Handley \& F.	1962	
226	USNM	335773	Panama	Bocas Del Toro				Sibube	Greenwell	1963	

Table 3A. (continued)

Rec\#	Institution	Acronym	Country	State/Province	Dec Lat	Dec Long Locality 1	Locality 2	Collector	Year	Elevation
227	USNM	363346	Panama	Chiriqui			Progreso	F. Greenwell \& T.		
								Fleming	1966	
								C. Handley \& F.		
228	USNM	324236	Panama	Chiriqui			Cerro Punta, Bamdito	Greenwell	1962	
229	USNM	176320	Peru				Huarochiri, Near	A. Hrdlicka		
230	USNM	172857	Peru				Chicama Valley	A. Hrdlicka	1910	
231	USNM	194322	Peru	Cusco			Chospyoc, Huarocondo River	E. Heller	1915	
232	USNM	194324	Peru	Cusco			Orca, Near Calca	E. Heller	1915	
							Occobamba Valley,			
233	USNM	194319	Peru	Cusco			Tocopoqueu	E. Heller	1915	
							Matchu Picchu, San Miguel			
234	USNM	194323	Peru	Cusco			Bridge	E. Heller	1915	
235	USNM	194320	Peru	Cusco			Occobamba Valley	E. Heller	1915	
							Rocha, 15 Mi N Of San Vicente			
236	USNM	259436	Uruguay				De Castillos	C. Sanborn	1926	
237	USNM	296626	Venezuela	Monagas			Caicara	F. Smith	1952	
								Smithsonian		
								Venezuelan		
238	USNM	372745	Venezuela	Yaracuy	10,62	$-68,40$	Yaracuy, 19 Km NW Urama	Project	1965	
								Smithsonian		
							Capatarida, 6 Km SSW	Venezuelan		
239	USNM	443295	Venezuela	Falcon	11,17	-70,62	Capatarida	Project	1968	
								Smithsonian		
							Encontrados, 39 Km WNW, El	Venezuelan		
240	USNM	443576	Venezuela	Zulia	9,18	-72,70	Rosario	Project	1968	
								Smithsonian		
								Venezuelan		
241	USNM	443289	Venezuela	Falcon	11,17	-70,62	Capatarida	Project	1968	
								Smithsonian		
								Venezuelan		
242	USNM	443414	Venezuela	Falcon	11,83	-69,98	Coro, 49 Km N And 34 Km W	Project	1968	

Table 3A. (continued)

Rec\#	Institution	Acronym	Country	State/Province	Dec Lat	Dec Long Locality 1	Locality 2	Collector	Year	Elevation
								Smithsonian		
							Capatarida, 5.5 Km NE,	Venezuelan		
243	USNM	443290	Venezuela	Falcon	11,17	-70,62	Orocodones	Project	1968	
								Smithsonian		
							Maturin, 47 Km SE, Hato Mata	Venezuelan		
244	USNM	388244	Venezuela	Monagas	9,32	-62,93	De Bejuco	Project	1966	
								Smithsonian		
							Maturin, 47 Km SE, Hato Mata	Venezuelan		
245	USNM	388241	Venezuela	Monagas	9,32	-62,93	De Bejuco	Project	1966	
							Black River, 5 Mi Above Mouth			
246	USNM	209149	United States	Arizona			Of White Creek	H. Jackson		
							Blue River, 12 M S , Cosper			
247	USNM	205376	United States	Arizona			Ranch	E. Goldman		
248	USNM	205828	United States	Arizona			Blue River, Cosper Ranch	E. Holt		
249	USNM	61878	United States	Arizona			Fort Huachuca	E. Weibel		
250	USNM	214352	United States	Arizona			Fort Whipple, 3 MiN	H. Jackson		
251	USNM	203906	United States	Arizona			Graham Mountains, Ash Creek	E. Holt		
252	USNM	21839	United States	Arizona			Huachuca Mountains	R. Lusk		
253	USNM	A37285	United States	Arizona			La Osa, SW Of Laosa	E. Mearns		
254	USNM	214351	United States	Arizona			Mcmillenville, 8 MiN	W. Taylor		
							Nantan Plateau, Near Sawmill, 25 Mi NE Rice, San Carlos			
255	USNM	222830	United States	Arizona			Indian Reservation	W. Taylor		
							Prieto Plateau, Raspberry			
256	USNM	205829	United States	Arizona			Creek, 3 Mi W, Cosper Ranch	E. Holt		
257	USNM	167890	United States	Arizona			Tucson, 15 mi S	H. Brown		
258	USNM	272467	United States	Arizona			Tucson, 36 Mi SE	A. Trowbridge		
							Animas Valley, Cloverdale			
259	USNM	167999	United States	New Mexico			Ranch	H. Hotchkiss		

Table 3A. (continued)

Rec\#	Institution	Acronym	Country	State/Province	Dec Lat	Dec Long Locality 1	Locality 2	Collector	Year	Elevation
260	USNM	130092	United States	New Mexico			Capitan Mountains, SW Slope	J. Gaut		
261	USNM	530904	United States	New Mexico			Carlsbad Cave Carlsbad Cave, In Walnut	V. Bailey		
262	USNM	244450	United States	New Mexico			Canyon	V. Bailey		
263	USNM	158890	United States	New Mexico			Dry Creek Gila National Forest, Diamond	E. Goldman		
264	USNM	151219	United States	New Mexico			Creek Gila National Forest, E Diamond	H. Hotchkiss		
265	USNM	159331	United States	New Mexico			Creek	H. Hotchkiss		
266	USNM	167688	United States	New Mexico			Hillsboro Jicarillo Mountains, NW	E. Goldman		
267	USNM	130670	United States	New Mexico			Foothills	J. Gaut		
268	USNM	167689	United States	New Mexico			Lake Valley	E. Goldman		
269	USNM	147417	United States	New Mexico			Mimbres River, Head	V. Bailey		
270	USNM	147418	United States	New Mexico			Mimbres River, Head	V. Bailey		
271	USNM	248368	United States	New Mexico			Pinon, Near Sacramento River San Andreas Mountains, N	E. Wright		
272	USNM	120050	United States	New Mexico			Slope Salinas Peak San Andreas Mountains, Sheep	J. Gaut		
273	USNM	119857	United States	New Mexico			Mountain Summit	J. Gaut Collector		
274	USNM	248214	United States	Oklahoma			Kenton 15 MI SW LOBO, WHITE TANK	Unknown		
275	USNM	11764	United States	TEXAS	30,70	-104,92	EVANS RANCH Big Bend National Park, Day	PACKARD, RL		
276	USNM	274475	United States	Texas			Canyon Big Bend National Park, Emery	J. Bankston		
277	USNM	274476	United States	Texas			Peak	J. Bankston		
278	USNM	136551	United States	Texas			Big Thicket, Sour Lake, 7 Mi NE	J. Gaut		

Table 3A. (continued)

Rec\#	Institution	Acronym	Country	State/Province	Dec Lat Dec Long Locality 1	Locality 2	Collector	Year	Elevation
279	USNM	108764	United States	Texas		Boquillas	V. Bailey		
280	USNM	A45131	United States	Texas		Brownsville	F. Armstrong		
281	USNM	116178	United States	Texas		Chesos Mountains	V. Bailey		
282	USNM	140360	United States	Texas		Cleveland, 12 Mi W Davis Mountains, 15 Mi E Of	J. Gaut		
283	USNM	117648	United States	Texas		Valentine	V. Bailey		
284	USNM	119013	United States	Texas		Devil'S River, 13 Mi Below Juno Eagle Pass, 50 Mi SE, Blocker	V. Bailey		
285	USNM	24575	United States	Texas		Rancho	C. Streator		
286	USNM	349999	United States	Texas		Fort Davis	V. Bailey		
287	USNM	119014	United States	Texas		Juno, $13 \mathrm{Mi} \mathrm{S}$,	M. Cary		
288	USNM	126241	United States	Texas		Langtry, 8 Mi S	J. Gaut		
289	USNM	24840	United States	Texas		Laredo	W. Lloyd		
290	USNM	24842	United States	Texas		Laredo, 6 Mi S	W. Lloyd		
291	USNM	186455	United States	Texas		Mason	I. Henry		
292	USNM	A31165	United States	Texas		Osman Canyon, Near Langtry	W. Lloyd		
293	USNM	244474	United States	Texas		San Angelo	S. Hill		
294	USNM	21659	United States	Texas		San Diego	T. Taylor		
295	USNM	274477	United States	Texas		Santa Elena Canyon	J. Bankston		
296	USNM	136533	United States	Texas		Sour Lake, 9 Mi NE	J. Gaut		
297	USNM	135098	United States	Texas		Tarkington	V. Bailey		
298	USNM	790	United States	Texas		West Texas	Pope		
299	USNM	9424	Mexico			Santa Efegenia	F. Sumichrast		
300	USNM	20898	Mexico			Hacienda Augostina	P. Jouy		
301	USNM	25555	Mexico	Nuevo Leon		Monterey	C. Streator		
302	USNM	25691	Mexico			Lampazos, 18 Mi W	W. Lloyd		
303	USNM	27556	Mexico	Tamaulipas		Mier	W. Lloyd		
304	USNM	33252	Mexico	Colima		Manzanillo, Near Armeria	E. Nelson		
305	USNM	33253	Mexico	Colima		Colima	E. Nelson		

Table 3A. (continued)

Rec\#	Institution	Acronym	Country	State/Province	Dec Lat Dec Long Locality 1	Locality 2	Collector	Year	Elevation
306	USNM	33254	Mexico	Colima		Hca Magdalena	E. Nelson		
307	USNM	34336	Mexico	Jalisco		Zapotlan	E. Nelson		
308	USNM	34407	Mexico	Jalisco		Etzatlan	E. Nelson		
309	USNM	35519	Mexico	San Luis Potosi		Hca La Parada	E. Nelson		
310	USNM	36172	Mexico	Mexico		Salazar	E. Nelson		
							Collector		
311	USNM	50833	Mexico	San Luis Potosi		Jeseu Maria, Mountains Near	Unknown		
312	USNM	52697	Mexico	Hidalgo		El Chico	E. Nelson		
							Collector		
313	USNM	58926	Mexico	Sonora		San Jose Mountain	Unknown		
							E. Nelson \& E.		
314	USNM	68172	Mexico	Oaxaca		Cerro San Felipe	Goldman		
							Nelson \& E.		
315	USNM	70621	Mexico	Guerrero		Acapulco, sea level	Goldman		
							Nelson \& E.		
316	USNM	73480	Mexico	Oaxaca		Huilotepec	Goldman		
							Nelson \& E.		
317	USNM	74678	Mexico	Guerrero		Ometepec, Near	Goldman		
							Nelson \& E.		
318	USNM	74685	Mexico	Oaxaca		Ilano Grande	Goldman		
							Nelson \& E.		
319	USNM	82262	Mexico	Jalisco		Ameca	Goldman		
							Nelson \& E.		
320	USNM	90983	Mexico	Zacatecas		Plateado	Goldman		
							Nelson \& E.		
321	USNM	90985	Mexico	Sinaloa		Rosario	Goldman		
							Nelson \& E.		
322	USNM	92117	Mexico	Zacatecas		Valparaiso Mountains	Goldman		
323	USNM	92980	Mexico	Puebla		Metlaltoyuca	E. Goldman		
324	USNM	95914	Mexico	Sonora		Camoa, Rio Mayo	E. Goldman		
							Nelson \& E.		
325	USNM	98334	Mexico	Chihuahua		Near	Goldman		

Table 3A. (continued)

Rec\#	Institution	Acronym	Country	State/Province	Dec Lat	Dec Long Locality 1	Locality 2	Collector	Year	Elevation
								Nelson \& E.		
326	USNM	126145	Mexico	Michoacan			Mount Tancitaro	Goldman		
327	USNM	132196	Mexico	Chihuahua			Colonia Garcia, 15 Mi W	J. Gaut		
328	USNM	510078	Mexico	Nayarit			Chacala	A. Gardner		
329	USNM	510079	Mexico	Nayarit			Estanzuela	A. Gardner		
330	USNM	A3377	Mexico				Durango, Rio Nasae	D. Couch		
331	USNM	A46058	Mexico	Sonora			Nogales, 10 Mi S	J. Loring		
								Nelson \& E.		
332	USNM	73481	Mexico	Oaxaca			Santa Domingo	Goldman		
333	UWBM	41382	Mexico	Veracruz	18,45	-95,21	Veracruz; San Andres	D. G. Kissenger	1953	
334	MFN	26788	Argentina				Rio St. Cruz	Konietzko		
335	MFN	48304	Argentina				Ossa Marino	Dade	1934	
336	MFN	45282	Argentina				Osso Marino	Flemming		
337	MFN	48304	Argentina				Osso Marino	Flemming	1933	
338	MFN	48305	Argentina				Osso Marino	Flemming		
339	MFN	64734	Brazil				Rio Grande do Sul	Hensel		
340	MFN	64735	Brazil				Rio Grande do Sul	Hensel		
341	MFN	64736	Brazil				Rio Grande do Sul	Hensel		
342	MFN	64737	Brazil				Rio Grande do Sul	Hensel		
343	MFN	64738	Brazil				Rio Grande do Sul	Hensel		
344	MFN	64739	Brazil				Rio Grande do Sul	Hensel		
345	MFN	64740	Brazil				Rio Grande do Sul	Hensel		
346	MFN	64741	Brazil				Rio Grande do Sul	Hensel		
347	MFN	64742	Brazil				Rio Grande do Sul	Hensel		
348	MFN	64743	Brazil				Rio Grande do Sul	Hensel		
349	MFN	64747	Brazil				Rio Grande do Sul	Hensel		
350	MFN	64748	Brazil				Rio Grande do Sul	Hensel		
351	MFN	64754	Brazil				Rio Grande do Sul	Hensel		
352	MFN	61668	Chile				Valdivia	Ohde	1899	
353	MFN	61676	Chile				Punta Arena			
354	MFN	64744	Guatemala				Finca la Providentia	H. Rolle		

Table 3A. (continued)

Rec\#	Institution	Acronym	Country	State/Province	Dec Lat Dec Long Locality 1	Locality 2	Collector	Year	Elevation
355	MFN	64745	Guatemala			Finca la Providentia	H. Rolle		
356	MFN	64749	Guatemala			Finca la Providentia	H. Rolle		
357	MFN	64750	Guatemala			Finca la Providentia	H. Rolle		
358	MFN	64751	Guatemala			Finca la Providentia	H. Rolle		
359	MFN	64752	Guatemala			Finca la Providentia	H. Rolle		
360	MFN	64753	Guatemala			Finca la Providentia	H. Rolle		
361	MFN	64746	Honduras			La Cumbre	Linnaea		
362	MFN	64755	Mexico			Campostela	Schlüter		
363	MFN	61559	Peru			Lauramarca	Garlepp		
364	MFN	61677				Joinville	Rolle		

Highlighted lines represent doubtful records.
Rec\#: Record number (this study).
Institution: Mammalian Collection consulted. Detailed information provided below.
Acronym: Code in collection.
Dec Lat: Decimal Latitude.
Dec Long: Decimal Longitude.
Country: Country where specimen was collected.
State/Province: State/Province where specimen was collected.
Locality 1 and 2: city, district, county, farm, park and any additional specific information of collection point.
Year: year of specimen collection.
Elevation: above sea level of the collection point, given in meters (m) or feet (ft).
Institution codes: AMNH - American Museum of Naural History, New York, US; CU - Cornell University Museum of Vertebrates, Ithaca, US; FZBRS - Fundação Zoobotânica do Rio Grande do Sul, Porto Alegre, Brazil; KU - University of Kansas Biodiversity Institute, Lawrence, US; LACM - Los Angeles County Museum of Natural History, Los Angeles, US; LSUMZ - Louisiana State University Museum of Natural Science, Baton Rouge, US; MCZ - Museum of Comparative Zoology, Harvard University, Cambridge, US; MNHN - Muséum National d'Histoire Naturelle, Paris, France; MSB - Museum of Southwestern Biology, University of New Mexico, Albuquerque, US; MSU - Michigan State University Museum, East Lansing, US; MVZ - Museum of Vertebrate Zoology, University of California, Berkeley, US; NHM - British Natural History Museum, London, UK; OMNH - Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, US; ROM - Royal Ontario Museum, Toronto, Canada; TTU - Museum of Texas Tech University, Lubbock, US; UMMZ - University of Michigan Museum of Zoology, Ann Arbor, US; USNM - National Museum of Natural History, Stithsonian Institute, Washington DC, US; UWBM - University of Washington Burke Museum, Seatle, US; MFN - Museum für Naturkunde, Berlin, Germany.

Table 3B. General information regarding the geographic records compiled from publications to develop a detailed distributional map of Conepatus.

Rec\#	Authors	Year	Country	State/Province	Coordinates	Locality/City/Park
365	Alberico et al	2000	Colombia	Cundinamarca		
366	Alberico et al	2000	Colombia	Magdalena		
367	Alberico et al	2000	Colombia	Nariño		
368	Alberico et al	2000	Colombia	Norte de Santander		
369	Allen et al	1916	Colombia			Balcillas near Bogotá
370	Allen \& Smith	1904	Colombia	Santa Marta		Bonda
371	Allen \& Smith	1904	Colombia	Santa Marta		Playa Brava
372	Allen \& Carriker	1911	Venezuela	Yaracuy		El Hacha
373	Alves et al	2009	Brazil	Paraiba	-7.068185-36.091752	Pocinhos
374	Alves et al	2012	Brazil	São Paulo	-22.832833-48.436369	
375	Aris et al	2008	Peru	Ayacucho		Anco
376	Barbarán	2004	Argentina	Jujuy		
377	Barbarán	2004	Argentina	W Salta		
378	Barnett \& Da Cunha	1994	Brazil	Roraima	3.409241-61.592518	
379	Bisbal	1998	Venezuela	Sucre	$10^{\circ} 41^{\prime}-62^{\circ} 37{ }^{\prime}$	
380	Bitetti	2009	Argentina	Corrientes	-28.6-57.817	
381	Bocchiglieri et al	2010	Brazil	Bahia	$-13^{\circ} 40^{\prime}-45^{\circ} 35^{\prime}$	Jaborandi
						Panga Ecologic
382	Bruna et al	2010	Brazil	Minas Gerais	$-19^{\circ} 10^{\prime}-48^{\circ} 23$	Station
383	Cáceres	2004	Brazil	Paraná	$-25^{\circ} 28^{\prime}-48^{\circ} 50^{\prime}$	
384	Cáceres et al	2008	Brazil	Mato Grosso do Sul		Pantanal
						Serra do Cipó
385	Câmara\& Oliveira	2012	Brazil	Minas Gerais	-19.344837-43.62417	National Park
386	Cherem et al	2004	Brazil	Rio Grande do Sul		Bom Jardim da Serra
387	Cherem et al	2004	Brazil	Rio Grande do Sul		Bom Retiro
388	Cherem et al	2004	Brazil	Rio Grande do Sul		São Joaquim
						RPPN Cantidiano
389	Cruz et al	2005	Brazil	Pernambuco	-8.428904-38.543368	Valgueiro
390	Cueva et al	2010	Ecuador	Pichincha	0.118-78.61	
391	Falcão et al	2012	Brazil	Bahia	$-16^{\circ} 18^{\prime} 00^{\prime \prime}-39^{\circ} 06^{\prime} 00^{\prime \prime}$	RPPN Estação Verace
392	Fáundez	2012	Chile		-28.166667-71	
393	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Viamão
394	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Cristal
395	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Pelotas
396	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Pedro Osório
397	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Arroio Grande
398	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Arroio Grande
						São Francisco de
399	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Paula
400	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Tainhas
401	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Lagoa Vermelha
402	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Vacaria
403	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Arambaré
404	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Camaquã
405	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Capão do Leão
406	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Cachoeira do Sul
407	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Rio Grande
408	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Rio Grande
						Santa Vitória do
409	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Palmar
410	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Uruguaiana
411	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Osório
412	Fontoura-Rodrigues et al	in prep	Brazil	Santa Catarina		Anita Garibaldi
413	Fontoura-Rodrigues et al	in prep	Brazil	Santa Catarina		Campo Belo do Sul
414	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Campestre da Serra
415	Fontoura-Rodrigues et al	in prep	Brazil	Santa Catarina		Alfredo Wagner
416	Fontoura-Rodrigues et al	in prep	Brazil	Santa Catarina		São Cristóvão do Sul
417	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Triunfo

Table 3B. (continued)

Rec\#	Authors	Year	Country	State/Province	Coordinates	Locality/City/Park
418	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Soledade
419	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Campestre da Serra
420	Fontoura-Rodrigues et al	in prep	Brazil	Santa Catarina		Campo Belo do Sul
421	Fontoura-Rodrigues et al	in prep	Brazil	Santa Catarina		Capão Alto
422	Fontoura-Rodrigues et al	in prep	Brazil	Santa Catarina		Campo Belo do Sul
423	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Bom Jesus
424	Fontoura-Rodrigues et al	in prep	Brazil	Santa Catarina		Anita Garibaldi
425	Fontoura-Rodrigues et al	in prep	Brazil	Santa Catarina		Capão Alto
426	Fontoura-Rodrigues et al	in prep	Brazil	Santa Catarina		Campo Belo do Sul
427	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Piratini
428	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Piratini
429	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Cachoeira do Sul
430	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Rosário do Sul
431	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Rio Grande
432	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Rio Grande
433	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Cerrito
434	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Pedro Osório
435	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Pedro Osório
436	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Tapes
437	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Pedro Osório
438	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Arroio Grande
439	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Arroio Grande
440	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Osório
441	Fontoura-Rodrigues et al	in prep	Uruguay	Rocha		Barra de Valizas
442	Fontoura-Rodrigues et al	in prep	Uruguay	Rocha		Barra de Valizas
						Santa Vitória do
443	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Palmar
444	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Arroio Grande
445	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Cristal
446	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Canguçu
447	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Arroio Grande
448	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Barra do Ribeiro
449	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Tapes
450	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Osório
451	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Cristal
452	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Tapes
453	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Osório
454	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Encruzilhada do Sul
455	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Cristal
456	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Patrulha
457	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Pantano Grande
458	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Encruzilhada do Sul
459	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Canguçú
460	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Ibirubá
461	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Cachoeira do Sul
462	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Cachoeira do Sul
463	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Alegrete
464	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Alegrete
465	Fontoura-Rodrigues et al	in prep	Argentina	Corrientes		Cuatro Bocas
466	Fontoura-Rodrigues et al	in prep	Argentina	Entre Rios		Los Conquistadores
467	Fontoura-Rodrigues et al	in prep	Argentina	Entre Rios		Federal
468	Fontoura-Rodrigues et al	in prep	Argentina	Entre Rios		Federal
469	Fontoura-Rodrigues et al	in prep	Argentina	Entre Rios		Bovril
470	Fontoura-Rodrigues et al	in prep	Argentina	Mendoza		Pareditas
471	Fontoura-Rodrigues et al	in prep	Argentina	Mendoza		Pareditas
472	Fontoura-Rodrigues et al	in prep	Argentina	Mendoza		El Nahuil
473	Fontoura-Rodrigues et al	in prep	Argentina	Buenos Aires		Coronel Dorrego
474	Fontoura-Rodrigues et al	in prep	Argentina	Buenos Aires		Coronel Dorrego
475	Fontoura-Rodrigues et al	in prep	Argentina	Buenos Aires		Coronel Dorrego
476	Fontoura-Rodrigues et al	in prep	Argentina	Buenos Aires		Coronel Dorrego

Table 3B. (continued)

Rec\#	Authors	Year	Country	State/Province	Coordinates	Locality/City/Park
477	Fontoura-Rodrigues et al	in prep	Argentina	Buenos Aires		Benito juarez
478	Fontoura-Rodrigues et al	in prep	Argentina	Buenos Aires		Alzaga
479	Fontoura-Rodrigues et al	in prep	Argentina	Buenos Aires		Cachari
480	Fontoura-Rodrigues et al	in prep	Uruguay	Canelones		Ciudad de la Costa
481	Fontoura-Rodrigues et al	in prep	Uruguay	Maldonado		José Ignácio
482	Fontoura-Rodrigues et al	in prep	Uruguay	Maldonado		José Ignácio
						Santa Vitória do
483	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Palmar
484	Fontoura-Rodrigues et al	in prep	Argentina	Entre Rios		Gualegay
				Cordoba/Buenos		
485	Fontoura-Rodrigues et al	in prep	Argentina	Aires		?
				Cordoba/Buenos		
486	Fontoura-Rodrigues et al	in prep	Argentina	Aires		?
				Cordoba/Buenos		
487	Fontoura-Rodrigues et al	in prep	Argentina	Aires		?
				Cordoba/Buenos		
488	Fontoura-Rodrigues et al	in prep	Argentina	Aires		?
489	Fontoura-Rodrigues et al	in prep	Brazil	Rio Grande do Sul		Tapes
490	Fontoura-Rodrigues et al	in prep	Uruguay	Rocha		Castillos
491	Fontoura-Rodrigues et al	in prep	Uruguay	Maldonado		La Barra
492	Fontoura-Rodrigues et al	in prep	Brazil	Minas Gerais		São Roque
493	Fontoura-Rodrigues et al	in prep	Brazil	Minas Gerais		Formiga
494	Fontoura-Rodrigues et al	in prep	Brazil	Minas Gerais		Formiga
495	Fontoura-Rodrigues et al	in prep	Brazil	Minas Gerais		Piumhí
496	Fontoura-Rodrigues et al	in prep	Brazil	Minas Gerais		Três Marias
497	Fontoura-Rodrigues et al	in prep	Brazil	Minas Gerais		Piumhí
498	Fontoura-Rodrigues et al	in prep	Brazil	Minas Gerais		São Roque de Minas
499	Fontoura-Rodrigues et al	in prep	Brazil	Piauí		Batalha
500	Fontoura-Rodrigues et al	in prep	Brazil	Piauí		José de Freitas
501	Fontoura-Rodrigues et al	in prep	Brazil	Piauí		Cabeceiras
502	Fontoura-Rodrigues et al	in prep	Brazil	Piauí		Cabeceiras
503	Fontoura-Rodrigues et al	in prep	Brazil	Piauí		Pirapora
504	Fontoura-Rodrigues et al	in prep	Brazil	Minas Gerais		Soledade de Minas
505	Fontoura-Rodrigues et al	in prep	Brazil	Goiás		Cristalina
506	Fontoura-Rodrigues et al	in prep	Brazil	Minas Gerais		Três Marias
507	Fontoura-Rodrigues et al	in prep	Brazil	Piauí		Cristino Castro
508	Fontoura-Rodrigues et al	in prep	Brazil	Piauí		Ribeiro Gonçalves
509	Fontoura-Rodrigues et al	in prep	Brazil	Minas Gerais		Barão de Cocais
510	Fontoura-Rodrigues et al	in prep	Brazil	Minas Gerais		Curvelo
511	Fontoura-Rodrigues et al	in prep	Brazil	Minas Gerais		Três Marias
512	Fontoura-Rodrigues et al	in prep	Brazil	Minas Gerais		Três Marias
513	Fontoura-Rodrigues et al	in prep	Brazil	Minas Gerais		Curvelo
514	Fontoura-Rodrigues et al	in prep	Brazil	Ceará		Iguatú
515	Fontoura-Rodrigues et al	in prep	Brazil	Piauí		Valença
516	Fontoura-Rodrigues et al	in prep	Brazil	Goiás		Mineiros
517	Fontoura-Rodrigues et al	in prep	Brazil	Piauí		Valença
518	Fontoura-Rodrigues et al	in prep	Brazil	Goiás		Mineiros
519	Fontoura-Rodrigues et al	in prep	Brazil	Goiás		Mineiros
520	Fontoura-Rodrigues et al	in prep	Brazil	Goiás		Mineiros
521	Fontoura-Rodrigues et al	in prep	Brazil	Goiás		Mineiros
522	Fontoura-Rodrigues et al	in prep	Brazil	Goiás		Mineiros
523	Fontoura-Rodrigues et al	in prep	Brazil	Goiás		Mineiros
524	Fontoura-Rodrigues et al	in prep	Brazil	Goiás		Mineiros
525	Fontoura-Rodrigues et al	in prep	Brazil	Goiás		Mineiros
526	Fontoura-Rodrigues et al	in prep	Brazil	Maule		Curicó
527	Fontoura-Rodrigues et al	in prep	Chile	Valparaíso		Santo Domingo
528	Fontoura-Rodrigues et al	in prep	Chile	Los Ríos		Puente Iñaque
529	Fontoura-Rodrigues et al	in prep	Chile	Coquimbo		Los Vilos
530	Fontoura-Rodrigues et al	in prep	Chile	Los Lagos		Paso Puyehua
531	Fontoura-Rodrigues et al	in prep	Chile	Aisén		Puerto Aisén
532	Fontoura-Rodrigues et al	in prep	Mexico	Yucatán		Merida
533	Fontoura-Rodrigues et al	in prep	United States	Texas		McCulloch

Table 3B. (continued)

Table 3B. (continued)

Table 3B. (continued)

Rec\#	Authors	Year	Country	State/Province	Coordinates	Locality/City/Park
622	Telleria et al	1999	Bolivia	La Paz		Inquisivi province
623	Thomas	1902	Bolivia			Choro
624	Thomas	1902	Bolivia			Cochabamba
						Esperanza, Mount
625	Thomas	1898	Bolivia			Sahama
626	Thomas	1905	Costa Rica			Boquete
627	Thomas	1900	Peru	Arequipo		Sumbay
628	Thomas	1900	Peru			Callao
629	Tirira \& Boada	2009	Ecuador	Carchi	$00^{\circ} 36^{\prime} \mathrm{N} 77^{\circ} 40^{\prime} \mathrm{W}$	
630	Tirira \& Boada	2009	Ecuador	Carcho	$00^{\circ} 34^{\prime} \mathrm{N} 77^{\circ} 42$	
					$70^{\circ} 30^{\prime}-71^{\circ} 30^{\prime} \mathrm{W}$;	
631	Travaini et al	1998	Argentina		$39^{\circ} 30^{\prime}-40^{\circ} 20^{\prime} \mathrm{S}$	
632	Yahnke et al	1998	Paraguay	Amambay		Cerro Cora Park
633	Yahnke et al	1998	Paraguay	Boquerón		Teniente Enciso Park
						Defensores del Chaco
634	Yahnke et al	1998	Paraguay	Chaco		Park
635	Zapata et al	2001	Argentina	Santa Cruz	$47^{\circ} 47^{\prime} \mathrm{S} 65^{\circ} 49^{\prime} \mathrm{W}$	
636	ZapataRios et al	2006	Ecuador		02 ${ }^{\circ} 35^{\prime}-77^{\circ} 46^{\prime}$	

Highlighted lines represent doubtful records.
Rec\#: Record number (this study), in continuity to Table 3A.
Authors: publication authors.
Year: year of publication.
Country: Country where specimen was collected.
State/Province: State/Province where specimen was collected.
Coordinates: geographical coordinates given in either latitude/longitude or decimal latitude/longitude system.
Locality/City/Park: district, county, farm, park and any additional specific information of collection point.

Table 4. Bayes factor results, expressed as the harmonic means of the marginal likelihood for each phylogenetic search, in log units. A difference of $3-5$ units is considered to be strong evidence in favor of a given hypothesis, while a difference of >5 units is considered to be very strong evidence (Kass and Raftery, 1995).

Run	C. semistriatus		C. humboldtii - C. chinga		Southern Brazil / Uruguay basal	
	Constrained	Not constrained	Constrained	Not constrained	Constrained	Not constrained
1	-6488.83	-6451.85	-6455.66	-6449.07	-6434.27	-6436.39
2	-6495.56	-6457.49	-6450.57	-6449.45	-6440.26	-6442.01
Total	-6494.87	-6456.8	-6454.97	-6449.28	-6439.57	-6441.32

C. semistriatus constraint: Central America and Central Brazil populations being monophyletic in relation to all other South America populations.
C. humboldtii - C. chinga constrain: Southern Chile sample being basal in relation to all other C. chinga populations.

Southern Brazil basal constrain: Southern Brazil/Uruguay population being basal in relation to all other South American populations.

Table 5. Structure matrix of the first and second functions of the PCA and DFA, conducted for the population differentiation assessment based on 29 craniodental variables. The eigenvalue and cumulative variance are presented for both analyses. Wilk's Lambda, Chi-square statistic, degrees of freedom, significance values and canonical correlation values are provided for DFA.

Variables	PCA		DFA	
	PC1	PC2	CV1	CV2
Bas	0.961	-0.141	-0.016	0.049
CoBa	0.764	-0.489	-0.018	0.041
Zyg	0.944	0.006	-0.004	0.062
Mast	0.915	-0.173	-0.010	0.021
IOrb	0.915	0.123	-0.016	0.123
POrb	0.664	0.254	0.007	0.065
Palat	0.827	0.142	-0.009	0.081
FaL	0.871	-0.192	-0.024	0.038
Nas	0.074	-0.494	-0.038	-0.095
CrH	0.472	-0.302	-0.013	-0.038
CrW	0.811	-0.160	-0.025	0.027
BuL	0.603	-0.226	-0.007	0.021
BuW	0.443	0.107	0.004	0.024
MaTR	0.861	0.182	-0.001	0.062
Walnc	0.797	0.064	-0.034	0.094
WaCan	0.919	0.098	-0.003	0.063
WaMol	0.890	0.203	0.008	0.117
CaL	0.665	-0.264	-0.009	0.000
CaW	0.677	-0.213	-0.007	0.024
UPML	0.525	0.386	0.041	0.087
UPMW	0.632	-0.090	-0.042	0.018
UMoL	0.431	0.376	-0.247	0.031
UMoW	0.656	0.352	-0.205	-0.090
JaH	0.819	0.277	0.049	-0.033
JaW	0.853	0.382	-0.055	0.022
JaTR	0.843	0.360	-0.002	-0.028
WaLPM	0.706	0.155	0.073	0.206
LMoL	0.655	0.484	-0.152	-0.144
LMoW	0.60	0.39	-0.067	-0.126
Wilk's Lambda	-	-	0.000	0.005
Chi-square statistic	-	-	128.78	62.11
d.f.	-	-	63	40
P-value	-	-	0.000*	0.014*
Canonical correlation	-	-	0.998	0.986
Eigenvalue	124.36	12.48	328.49	61.26
Cumulative variance (\%)	72.10	79.33	83.70	99.30

Highest contribution values for principal component and discriminant functions are presented in bold. Asterisks represent statistically significant values.

Table 6. Difference significance values of the variable means between groups in the DFA, conducted for the population structure investigation based on 29 craniodental variables.

Variable	Wilks' Lambda	F-value	P-value
Bas	0.718	2.746	0.068
CoBa	0.743	2.423	0.094
Zyg	0.786	1.901	0.160
Mast	0.829	1.440	0.259
IOrb	0.448	8.610	0.000^{*}
POrb	0.615	4.379	0.015^{*}
Palat	0.685	3.212	0.043^{*}
FaL	0.719	2.741	0.069
Nas	0.454	8.435	0.000^{*}
CrH	0.861	1.130	0.360
CrW	0.721	2.713	0.071
BuL	0.886	0.898	0.459
BuW	0.954	0.335	0.800
MaTR	0.779	1.987	0.147
Walnc	0.485	7.422	0.001^{*}
WaCan	0.784	1.931	0.155
WaMol	0.503	6.906	0.002^{*}
CaL	0.973	0.198	0.897
CaW	0.940	0.443	0.725
UPML	0.425	9.460	0.000^{*}
UPMW	0.538	5.999	0.004^{*}
UMoL	0.498	7.063	0.002^{*}
UMoW	0.358	12.573	0.000^{*}
JaH	0.671	3.437	0.035^{*}
JaW	0.646	3.837	0.024^{*}
JaTR	0.806	1.685	0.201
WaLPM	0.718	2.750	0.068
LMoL	0.538	6.007	0.004^{*}
LMoW	0.748	2.361	0.100
Asterisks represent statistically significant values			

Table 7. Results of the assignment tests performed by the DFA conducted for the population structure investigation based on 29 craniodental variables. Correspondence between original and predicted group membership is provided in form of number of individuals (count) and percentage. Table A refers to the survey conducted with all individuals and populations. Tables B and C refer to surveys in which a particular populations was not included (see text for details). Clusters: Southern Brazil, Argentina and Uruguay (S Bra-Arg-Uru); Peru and Ecuador (Peru-Ecuador); Venezuela and Northern Colombia (Ven-Col); Central America (C America).

Table A	Predicted Group Membership					
		S Bra-Arg-Uru	Peru-Ecuador	Ven-Col	C America	Total
Count	S Bra-Arg-Uru	1	4	0	2	7
	Peru-Ecuador	0	6	0	1	7
	Ven-Col	1	0	19	0	20
	C America	0	1	1	12	14
Percentage	S Bra-Arg-Uru	14.3	57.1	0.0	28.6	100.0
	Peru-Ecuador	0.0	85.7	0.0	14.3	100.0
	Ven-Col	5.0	0.0	95.0	0.0	100.0
	C America	0.0	7.1	7.1	85.7	100.0

79.2% of original grouped cases correctly classified.

Table B	Original Groups	Predicted Group Membership			Total
		Peru-Ecuador	Ven-Col	C America	
Count	Peru-Ecuador	6	0	1	7
	Ven-Col	0	20	0	20
	C America	1	1	12	14
Percentage	Peru-Ecuador	85.7	0.0	14.3	100.0
	Ven-Col	0.0	100.0	0.0	100.0
	C America	7.1	7.1	85.7	100.0

92.7\% of original grouped cases correctly classified.

Table C	Predicted Group Membership				
		S Bra-Arg-Uru	Peru-Ecuador	Ven-Col	Total
Count	S Bra-Arg-Uru	5	1	1	7
	Peru-Ecuador	1	6	0	7
	Ven-Col	0	2	18	20
Percentage	S Bra-Arg-Uru	71.4	14.3	14.3	100.0
	Peru-Ecuador	14.3	85.7	0.0	100.0
	Ven-Col	0.0	10.0	90.0	100.0

Table 8. Structure matrix of first and second functions of PCA and DFA, conducted for the morphological comparison survey based on general body measurements. The eigenvalue and cumulative variance are presented for both analyses. Wilk's Lambda, Chi-square statistic, degrees of freedom, significance values and canonical correlation values are provided for DFA. Results are given separately for males and females.

Variable	PCA				DFA			
	Males		Females		Males		Females	
	PC1	PC2	PC1	PC2	CV1	CV2	CV1	CV2
Tlgth	0.886	0.039	0.322	0.903	0.837	-0.133	0.534	-0.17
Tail	0.787	0.578	0.83	0.418	0.66	0.161	0.016	0.746
Hfoot	0.684	0.212	0.876	0.073	0.383	0.045	0.535	0.641
Wgth	0.743	-0.66	0.799	-0.147	0.176	0.974	0.392	0.117
T/TL	0.337	0.856	0.767	-0.162	0.296	0.819	0.498	0.124
W/HB	0.615	-0.705	0.764	-0.603	0.347	-0.263	0.471	-0.07
Wilsk's Lambda	-	-	-	-	0.047	0.253	0.046	0.224
Chi-square statistic	-	-	-	-	52	23.35	63.3	30.63
d.f.	-	-	-	-	12	6	15	8
P-value	-	-	-	-	0.000*	0.001*	0.000	0.000
Canonical Correlation	-	-	-	-	0.903	0.833	0.893	0.861
Eigen value	2.91	2.04	3.37	1.41	4.39	2.27	3.92	2.85
Cumulative variance	48.65	82.79	56.25	79.74	63.9	97.00	56.5	97.8

Highest contribution values for principal component and discriminant functions are presented in bold.
Asterisks represent statistically significant values.

Table 9. Difference significance values of the variable means between groups in the DFA, conducted for the morphological comparison survey based on general body measurements.

	Males					Females		
Variable	Wilks' Lambda	F	P-value		Wilks' Lambda	F	P-value	
TLgth	0.33	12.10	0.000^{*}		0.38	11.95	0.000^{*}	
Tail	0.24	19.02	0.000^{*}		0.30	16.93	0.000^{*}	
HFoot	0.60	4.03	0.02^{*}		0.52	6.81	0.000^{*}	
Wght	0.34	11.69	0.000^{*}		0.58	5.23	0.01^{*}	
T/TL	0.54	5.05	0.01^{*}		0.49	7.79	0.000^{*}	
W/HB	0.30	14.12	0.000^{*}		0.45	8.90	0.000^{*}	
Asterisks represent statistically significant values.								

Asterisks represent statistically significant values.

Table 10. Integrated taxonomic proposition based on molecular, morphological and distribution data. Scientific names follow Cabrera (1958). Dragoo (2009) was consulted for C. conepatl.

Population	Geographic range	Occurrence Biomes	Reference	Method supporting population distinctiveness	Scientific name	Author
i	Central Chile	Chilean Matorral	Fontoura-Rodrigues et al. (in prep.)	1	C. chinga	Molina, 1782
ii	Southern Chile (+ Southern Argentina?)	Patagonia	Fontoura-Rodrigues et al. (in prep.)	1	C. humboldtii	Gray, 1837
iii	Central/Northern Argentina	Chacos and Argentinean Pampas	Fontoura-Rodrigues et al. (in prep.)	1, 2, 4	C. suffocans	Illiger, 1815
iv	Entre Ríos + Corrientes Departments (Argentina)	Argentinean Pampas	Fontoura-Rodrigues et al. (in prep.)	1, 2	C. sp. nov.	-
v	Central Brazil	Cerrado and Caatinga	Fontoura-Rodrigues et al. (in prep.)	1, 2, 4	C. amazonicus	Lichtenstein, 1838
vi	Southern Brazil + Uruguay	Uruguayan Savannas (Pampas) and Campos de Cima da Serra	Fontoura-Rodrigues et al. (in prep.)	1, 2, 4	C. sp. nov.	-
vii	Southern Colombia + Equador + Peru	Andes Montane Vegetation and Peru's shore Deserts	This study	3	C. quitensis	Humboldt, 1812
viii	Northern Colombia + Venezuela	Llanos and Venezuelan/Colombian dry forests	This study	3, 4	C. semistriatus	Boddaert, 1785
ix	Eastern/Southern Central America	Savannas and dry forests of Central America	This study	3	C. conepatl	Gmelin, 1788
x	Southern North America + Western/Northern Central America	Deserts and dry forests of Southern USA, Mexico and Central America	Dragoo et al. 2003	1, 3	C. leuconotus	Lichtenstein, 1832

Figure 1. Geographic distributions of the four currently recognized Conepatus species, based on the map currently available in the IUCN Redlist (IUCN, 2012). Circles represent the approximate locality of the type for each species, following Cabrera (1958). Species code: C. humboldtii, horizontal stripes; C. chinga, dark gray; C. semistriatus, diagonal stripes; and C. leuconotus, light gray.

Figure 2. The 295 geographical records collected from museum specimen and publication records of Conepatus plotted on a vegetational map of the Americas. Each record is represented by a black circle of roughly 50 km in diameter. The five red circles represent doubtful records, plotted on the map due to the relevance of their geographical location. Vegetation types were divided as follows: dense forests, diagonal stripes; savannas and grasslands, light gray; dry forests, xerofitics and desert environments, dark gray; flood plains, white.

Figure 3. Predicted geographic distribution of Conepatus (in light gray) based on the 295 geographical records collected and plotted in figure 2. Dark gray areas represent biomes or regions from which doubtful records were collected, and therefore should not be included in the final distribution map until confirmed by further studies.

Figure 4. PCA (A, B and C) and DFA (D) plots derived from a database of 29 craniodental measurements. The PCA is presented in three different configurations: A - all individuals; B - only northern South American and Central American individuals; C - only South American individuals. PCA results are represented by the first principal component (PC1) plotted against the second one (PC2), with the respective percentages of variance explanation shown in parentheses. The DFA plot (D) is represented by the first canonical variate (CV1) plotted against the second one (CV2), with the respective percentage of discriminatory power shown in parentheses. Geographic origin codes are as follows: Southern Argentina, white pentagons; Central Argentina, white squares; Southern Brazil and Uruguay, black circles; Peru and Ecuador, white diamonds; Venezuela and Northern Colombia, black triangles; Central America, vertical crosses. When Southern Brazil, Uruguay and Argentina are unified in a single population, individuals are represented by diagonal crosses (Xs). No sex division was performed to conduct these analyses.

Figure 5. PCA (A and B) and DFA (C and D) plots regarding the survey with general body measurements. PCA plots are represented by the first principal component (PC1) against the second (PC2), with respective percentages of variance explanation between parentheses. The DFA plot is represented by the first canonical variate (CV1) plotted against the second (CV2), with respective percentage of the discriminatory power between parentheses. Geographic origin codes are as follows: Central Argentina, diagonal crosses (Xs); Southern Brazil, black circles; Venezuela, black triangles; Central Brazil, white squares. Figures A and C represent the male dataset, while figures B and D represent the female dataset.

Figure 6. Final taxonomic proposal plotted over the genus' distributional map. Different colors indicate distinct populations that may warrant species-level recognition. Numbers refers to population identification codes listed in Table 10. The area with diagonal stripes refers to a region from which population structure information could not be generated, precluding its taxonomic assessment.

Capítulo IV - Conclusões Gerais

O entendimento da história evolutiva e da estruturação populacional de Conepatus está apenas em seu início. O problema abordado por esta tese é complexo e extenso, com o agravante de ter sido pouquíssimo estudado até hoje. Como esperado, os resultados apresentados geram muitas questões adicionais, ao invés de preencher todas as lacunas existentes. Contudo, os dados gerados são bastante relevantes para o estudo de Conepatus, e poderão servir de base para futuras investigações complementares e revisões mais detalhadas.

Grande parte da história evolutiva do grupo permanece em aberto, mas alguns pontos começam a atingir um entendimento mais detalhado e robusto. Os resultados das análises filogenéticas e de datação realizadas neste estudo estão em concordância geral com o cenário evolutivo baseado nos registros fósseis e análises de datação publicadas anteriormente, como descrito no Capítulo 1. A estimativa de ponto para o nó Spilogale + Mephitis (5,09 MAA) é muito semelhante à da datação molecular de Eizirik et al. (2010), sugerindo que a coalescência destes gêneros no início do Plioceno (aproximadamente 5,2 MAA) é uma suposição robusta. Já para o nó (Spilogale + Mephitis) + Conepatus a estimativa do presente estudo é um pouco mais recente ($6,86 \mathrm{MAA}$) do que a de Eizirik et al. (2010) (9,2 MAA). Embora o intervalo de confiança de ambas as estimativas se sobreponham, a data mais recente parece estar mais de acordo com o registro fóssil conhecido até hoje. Mesmo considerando que a estimativa de Eizirik et al. (2010) não é mais antiga que o primeiro fóssil de Mephitidae conhecido para as Américas (Martinogale, 9,3 MAA), a posição filogenética de Martinogale parece basal e talvez até mesmo ancestral em relação aos gêneros que aparecem mais tardiamente no registro fóssil (Wang et al., 2005; Wang \& Castañeda, 2008). Este fato sugere uma coalescência posterior a 9,3 MAA para o grupo coroa dos mefitídeos do Novo Mundo, e nesse contexto a data de aproximadamente 7 MAA encontrada pelo presente estudo parece se encaixar melhor. Outra razão para acreditar que esta estimativa pode ser mais precisa do que a de Eizirik et al. (2010) é a de que o presente estudo baseia-se em mais pontos internos de
calibração fóssil, além de contar com uma amostragem mais completa dos grupos americanos de Mephitidae.

Já a data de invasão da América do Sul por Conepatus permanece em debate. A estimativa de ponto para a coalescência do gênero, considerando as amostras da América do Sul e do Norte, é de 3,18 MAA. Esta data é perfeitamente compatível com a entrada de Conepatus logo após o fechamento da ponte de terra, há $2,8 \mathrm{MA}$. A teoria da entrada precoce foi levantada pela descrição de um fóssil de 2,5 MA para a Argentina (e.g. Hunt, 1996). A idade precisa deste registro, contudo, é matéria de profundo debate entre paleontólogos, o que deixa a questão em aberto. Como discutido anteriormente, a presença do gênero na América Central desde 4,8 MAA (Wang \& Castañeda, 2008) e a cobertura vegetal campestre que se estendia desde a América Central até boa parte da América do Sul no período do fechamento do istmo (Woodburne, 2010) são evidências que apoiam a hipótese de que Conepatus tenha estado presente na primeira onda migratória totalmente terrestre, como sugerido por Marshall et al. já em 1982. A datação do presente estudo se soma a estas evidências indiretas, e apesar de não ter poder para dar uma resposta definitiva sobre o tema, faz com que a teoria da colonização precoce de Conepatus seja corroborada.

Por outro lado, a coalescência das linhagens sul-americanas, com estimativa de ponto para $0,84 \mathrm{MAA}$, não corrobora esta teoria, apesar de também não refutá-la. É possível que, ao adicionar-se amostras de pontos mais setentrionais da distribuição do gênero, como Colômbia e Venezuela, a data desta coalescência se aproxime do ponto de fechamento do istmo e assim seja mais um elemento apontando na direção da colonização precoce. Esta é uma questão em aberto e deverá ser abordada por futuros estudos. Alternativamente, como foi debatido no Capítulo II, a data relativamente recente de coalescência dos grupos sul-americanos pode estar ligada à dinâmica complexa de avanço e recuo dos ambientes campestres na América do sul nos últimos 3 MA , afetados diretamente pelos ciclos glaciais dos últimos 2 milhões de anos (Sigman \& Boyle, 2000; Pinheiro \& Monteiro, 2010). Mesmo tendo colonizado a América do Sul logo após o fechamento do istmo, Conepatus pode ter passado por dinâmicas de extinção e
recolonização dos ambientes campestres devido ao eventual encolhimento das savanas sul-americanas.

Analisando a estrutura populacional e níveis de variabilidade genética dos grupos daquele continente, o clado geográfico candidato a ter sido o centro de dispersão da atual diversidade é o da Argentina Central. Os resultados deste estudo indicam que uma das regiões colonizadas por indivíduos dessa população é a do atual Cerrado/Caatinga brasileiros. O grupo monofilético formado por todas as amostras do Brasil central está claramente colocado dentro da variabilidade do grupo argentino. Este, de fato, é um dos resultados mais importantes deste estudo, com consequências evolutivas e taxonômicas relevantes. Evolutivamente, a hipótese elegantemente levantada por Wang \& Castañeda (2008) em que a América do Sul teria recebido duas ondas migratórias de Conepatus, uma colonizando o sul do continente e outra o centro do Brasil, é refutada pelos presentes dados. É possível que o continente sul-americano tenha recebido mais de uma onda de migrantes do gênero, mas para isso ter acontecido ela deve estar presente em alguma das populações mais setentrionais não amostradas, ou ter sido extinta. Taxonomicamente, a população que habita o Cerrado/Caatinga deve ser retirada de C. semistriatus e colocada em C. chinga ou constituir uma terceira espécie.

De maneira geral, Conepatus é um grupo com alto grau de estruturação geográfica, o que é um dos resultados mais interessantes e diretos deste estudo. Dada a vasta distribuição deste grupo ao longo das Américas, era esperado que descontinuidades populacionais fossem detectadas. O cenário encontrado, contudo, não deixa de ser impressionante, principalmente por se tratar de uma investigação ainda inicial, pouco refinada. No mínimo 10 unidades, com aparente significativo grau de separação, compõem este gênero, sendo nove identificadas por este estudo e uma adicional já revisada na literatura (C. leuconotus - Dragoo et al., 2003). Muitas delas foram detectadas através de mais de uma abordagem independente, seja ela morfológica ou molecular. A congruência entre as diferentes abordagens na detecção da separação de algumas das populações, associada a um padrão generalizado de estruturação encontrado pelas diferentes ferramentas, indica que o gênero apresenta um grande potencial de
isolamento populacional. Foram detectados isolamentos causados pela presença de rios, montanhas e mesmo faixas de mata densa com relativamente baixa extensão. Estes resultados sugerem que estudos locais mais refinados possam encontrar ainda mais descontinuidades, o que significaria ainda outras unidades por ser descritas. Dentre os grupos de carnívoros que colonizaram a América do Sul a partir do fechamento do Istmo do Panamá, Conepatus parece representar a linhagem que mais se estruturou, com maior número de unidades identificadas do que os gêneros Leopardus (linhagem da jaguaritica Johson et al., 2006) e Lycalopex (raposas sul-americanas - Lindblad-Toh et al., 2005).

Outro ponto interessante que deve ser mencionado é o de que parece haver pouca sobreposição entre os grupos identificados, isto é, na maioria dos casos é possível identificar as barreiras geográficas/vegetacionais que delimitam as populações. Ao mesmo tempo, muito ainda necessita ser investigado sobre este aspecto, já que os limites de várias populações ainda precisam ser melhor entendidos, como aqueles do grupo que ocupa o centro da Argentina. De qualquer maneira, parece claro que a descontinuidade de hábitat e a presença de rios podem ser importantes barreiras, e estudos subsequentes devem atentar para tais elementos.

Conjuntamente com a estruturação populacional e a delimitação geográfica de boa parte das unidades encontradas, foi possível verificar que diferenças morfológicas em termos de medidas gerais do corpo (i.e. comprimento total, comprimento da cauda, peso, etc.) são detectáveis entre algumas populações. Este resultado inicialmente serve como respaldo às infrências obtidas com as análises de estruturação mais refinadas (i.e. utilizando ferramentas moleculares ou o painel de 29 medidas craniométricas). Mas ao mesmo tempo, a possibilidade de deteç̧ão de diferenças populacionais através deste tipo de caracteres ganha uma nova importância, por se tratarem de medidas usualmente realizadas por pesquisadores de campo. Desta maneira, são ótimos candidatos para estudos comparativos exploratórios, o que justifica a sugestão de que, sempre que possível, pesquisadores de campo realizem e publiquem este tipo de dado.

Analisadas em conjunto, estruturação populacional, delimitação geográfica e diferenciação morfológica detectável sugerem a existência de um padrão coerente para os
grupos encontrados. Apesar de estes três elementos não terem sido verificados para todas as 10 unidades, o que ressalta a necessidade de futuros estudos, pode ser notado um padrão geral que é consistente entre as diferentes populações. Todos os grupos identificados por análises detalhadas de estruturação populacional que foram posteriormente testados para existência de diferenças morfológicas gerais (i.e. medidas de corpo) apresentaram resultados que corroboraram a ideia de separação entre as populações. Não é possível afirmar que todas as nove unidades detectadas neste estudo apresentem padrões morfológicos gerais claramente diferenciáveis, uma vez que nem todas foram testadas para tal. Contudo, o padrão encontrado sugere que isto seja uma tendência, e assim este aspecto deve ser investigado em todas as populações para que comecem a ser melhor caracterizadas. Além disso, a união entre estes três elementos (estruturação populacional, delimitação espacial e diferenciação morfológica) indica que estes grupos apresentam plena justificativa para serem considerados ao menos Unidades Evolutivamente Significativas (UES) distintas (Eizirik, 1996; Eizirik et al., 2006), mas provavelmente se adequando a uma designação em nível de espécie. Neste sentido, e levando em consideração o conceito evolutivo de espécie e seus critérios associados (ver Capítulo I), na presente tese realizamos uma proposta taxonômica para o grupo, reconhecendo como espécies estas unidades evolutivas. Assim, em conjunto com a revisão já realizada por Dragoo et al. (2003), este estudo propõe a existência de 10 unidades taxonômicas distintas para Conepatus, sumarizadas na Tabela 10 e Figura 6 do Capítulo III.

A escolha por considerar cada população identificada como um táxon diferente, associada com a decisão de sugerir que todos os táxons sejam elevados ao nível de espécie, deve ser explicada, por se tratar de um potencial ponto de divergência entre os pesquisadores da área. Em primeiro lugar, cinco das nove populações foram detectadas através de mais de um método independente de investigação da estruturação geográfica (DNA mitocondrial, DNA microssatélite, morfometria do crânio ou morfologia geral): iii, iv, v, vi, e viii (ver Tabela 10, Capítulo III). Entre as quatro restantes, duas foram detectadas somente por DNA mitocondrial e duas somente pela análise craniométrica. Uma vez que
os dados de microssatélites corroboraram todas as repartições encontradas através do DNA mitocondrial, pode-se prever que as populações do Chile (i e ii) estejam diferenciadas das populações Argentinas também com a análise deste tipo de marcador.

A respeito das populações detectadas apenas através das análises craniais (vii e ix), é possível verificar que os dados de distribuição geográfica corroboram a hipótese de que estejam mesmo isoladas. A população da América Central (ix) parece estar separada daquelas da América do Sul por uma vasta área de floresta densa que cobre boa parte do Panamá e o norte da Colômbia, funcionando como uma barreira. Caso esta barreira de alguma maneira não fosse efetiva, seria esperado que a população do norte da Colômbia e Venezuela (viii) fosse aquela com maior chance de fluxo e, portanto, mais crítica para se testar este isolamento. É possível perceber que as populações viii e ix não apresentam praticamente qualquer sobreposição nas análises multivariadas (por exemplo, PCA), o que indica falta de conectividade entre as duas (ou seleção diferencial afetando os caracteres analisados).

Já a população do sul da Bolívia, Equador e Peru (vii) parece estar separada das populações do sul do continente com base nos resultados das análises morfométricas. Contudo, é difícil precisar os limites desta população e uma possível barreira que a separa do centro da Argentina, uma vez que a distribuição entre estas duas áreas parece ser contínua. Este ponto merece especial atenção de futuras pesquisas. Em relação ao seu limite norte, a população vii encontra-se possivelmente disjunta da população da Venezuela e norte da Colômbia (população viii), apesar de esta descontinuidade ainda carecer de uma melhor caracterização. Ainda assim, as análises multivariadas mais uma vez demonstram a total falta de sobreposição entre as duas, sugerindo a ausência de conectividade entre as populações também nesse caso.

É importante mencionar uma sobreposição significativa nas análises multivariadas entre as populações vii e ix. Contudo, este aparente compartilhamento de caracteres morfológicos dificilmente deve ser ocasionado por fluxo gênico, devido à disposição geográfica dos dois grupos. Uma explicação plausível para este fato é uma possível retenção de diversidade ancestral nas duas populações alopátricas, com deslocamento de
caracteres em uma terceira população, potencialmente simpátrica em relação às duas em algum momento da sua evolução (população viii). Assim, é possível que a população do norte da Colômbia e Venezuela tenha sofrido pressão seletiva (possivelmente aumentaram de tamanho, ver análise de PCA no Capítulo III) ao se adaptar para a exploração de um nicho distinto.

Finalmente, é preciso discutir os motivos que levaram à decisão de sugerir que todos os táxons identificados sejam elevados à categoria de espécie. A primeira razão diz respeito ao tempo de separação entre as linhagens. Através de uma análise das estimativas de datação para os diferentes grupos, presente no Capítulo II, é possível perceber que a divergência mais recente, que diz respeito à separação das populaçães do centro do Brasil e do centro da Argentina, ocorreu há aproximadamente 500 mil anos, enquanto a coalescência de todos os grupos é de aproximadamente $0,85 \mathrm{MA}$. Não há datas para a separação dos grupos setentrionais, uma vez que nenhuma amostra desta região foi obtida e incluída nas análises moleculares. Contudo, a forte diferenciação morfológica indica que os eventos de isolamento referentes à formação destas populações não deve ser consideravelmente mais recente. A fauna de mamíferos sulamericanos que migraram da América do Norte apresenta vários casos de separação igualmente recente entre espécies, como é o caso das raposas neotropicais (gênero Lycalopex). O tempo de coalescência de todas as seis espécies deste grupo (aproximadamente 1 MAA - Perini et al., 2010) se aproxima do tempo encontrado para as linhagens de Conepatus apenas da região sul do continente (0,84 milhão de anos). Outro caso próximo é a divergência entre o gato-do-mato-grande (Leopardus geoffroyi) e o gatoandino (L. guigna), de 0,74 MAA, ou mesmo da coalescência entre estas duas espécies e o gato-do-mato-pequeno (L. tigrinus), de 0,93 MAA (Johnson et al., 2006). Como esperado, o tempo de separação de várias espécies originadas pela radiação pós-invasão da América do Sul é recente, e não deve ser um impeditivo para que sejam tratadas como tal. Assim, o tempo de divergência parece não ser um impeditivo para que os táxons de Conepatus identificados sejam elevados à categoria de espécie.

Um segundo e importante motivo para esta sugestão diz respeito à necessidade urgente de uma organização taxonômica moderna para Conepatus. Como ficou evidente a partir das análises filogenéticas, o grupo apresenta uma história recente e complexa. Os grupos geográficos identificados apresentam alto valor de apoio estatístico, mas sua organização hierárquica ainda tem baixa resolução. A resolução deste aspecto possivelmente irá requerer uma abordagem multi-loco, talvez com o emprego de sequenciamento de DNA de nova geração (Shendure \& Ji, 2008), envolvendo vários indivíduos de cada população. Além disso, irá requerer uma amostragem ampla, envolvendo regiões onde o estudo dos mamíferos em campo ainda é precário. A organização e execução de tal desenho amostral demandará um esforço enorme, e possivelmente não poderá ser completamente realizada dentro de poucos anos. Enquanto isso, novos pesquisadores que desejem descrever populações locais precisarão de nomes adequados e de um entendimento da estruturação geográfica mais preciso do que o que está dsiponível atualmente. Adicionalmente, a aparente propensão do gênero ao isolamento reprodutivo (inferido a partir dos dados genéticos) e diferenciação geográfica provavelmente fará com que unidades adicionais sejam encontradas assim que cada uma das grandes populações regionais comece a ser analisada em maior detalhe. Diante do arranjo proposto por este estudo, tais subgrupos poderiam ser descritos como subespécies.

Caso a estratégia oposta fosse adotada, optando-se por um arranjo em que os táxons aqui descritos fossem considerados subespécies dentro de uma espécie mais ampla (e.g. manter os grupos do Chile, Argentina, Uruguai e Rio Grande do Sul sob C. chinga), eventuais subdivisões a serem identificadas não poderiam ser nomeadas taxonomicamente com base nos procedimentos usuais, pois seriam sub-subespécies. Tal arranjo reduziria muito o poder organizacional da taxonomia do grupo, que afinal é a finalidade primordial da taxonomia como disciplina. Problemas adicionais, apesar de menos importantes, seriam a possível confusão gerada em coleções e estudos já publicados a respeito. Este seria o caso, por exemplo, de se considerar a população do Brasil central como parte de C. chinga, uma vez que já existe uma população
classicamente chamada por este nome no sul do país. Chamar C. humboldtii de C. chinga humboldtii provavelmente também geraria muita confusão na literatura e em coleções científicas.

Dessa maneira, o arranjo taxonômico baseado em espécies distintas é mais simples, prontamente aplicável, menos sujeito a alterações por rearranjos filogenéticos de estudos futuros, e apresenta menor potencial de ocasionar confusões com os nomes classicamente atribuídos a várias populações. Adicionalmente, a elevação de populações locais ao nível de espécie, como a do próprio Rio Grande do Sul-Uruguai, possivelmente daria aos pesquisadores locais um maior incentivo para que tenham mais interesse em melhor caracterizá-las. Dessa maneira, o próprio estudo da evolução de Conepatus seria estimulado, permitindo que entendamos melhor a história não só do gênero como do Intercâmbio Americano de Fauna e dos campos sul-americanos. Obviamente, o arranjo aqui proposto deve ser encarado como um ponto de partida para novos e inúmeros estudos que critiquem, corroborem ou refutem as hipóteses taxonômicas e evolutivas aqui sugeridas, visto que vários aspectos foram apenas inicialmente caracterizados. Um dos pontos de maior urgência é o estudo das populações de Bolívia, Paraguai e norte da Argentina, caracterizando seus indivíduos e possíveis continuidades com outras populações. Além disso, esta é uma população central, sendo adjacente aos grupos do Chile, Peru, Argentina e Cerrado brasileiro, o que torna seu entendimento e delimitação importantes para a melhor caracterização de todas as populações mencionadas.

Referências

Cabrera AL. 1958. Catálogo de los Mamíferos de América Del Sur. Revista del Museo Argentino de Ciencias Naturales 'Bernardino Rivadavia'. Buenos Aires: Instituto Nacional de Investigación de las Ciencias Naturales.

Dragoo JW, Honeycutt RL, Schmidly DJ. 2003. Taxonomic status of white-backed hog-nosed skunks, genus Conepatus (Carnivora: Mephitidae). Journal of Mammalogy 84: 159-176.

Dragoo JW. 2009. Family Mephitidae (skunks). In: Wilson DE \& Mittermeier RA, eds. Handbook of the mammals of the world. Barcelona: Lynx Edicions, 532-563.

Eizirik E. 1996. Ecologia molecular, genética da conservação e o conceito de unidades evolutivamente significativas. Brazilian Journal of Genetics 19(4): 23-29.

Eizirik E, Johnson WE, O’Brien SJ. 2006. Definindo unidades evolutivamente significativas e unidades de manejo para conservação de carnívoros neotropicais. In: Morato RG, Rodrigues FHG, Eizirik E, Magini PR, Azevedo FCC, Marinho-Filho J, eds. Manejo e conservação de carnívoros neotropicais. São Paulo: IBAMA, 67-84.

Eizirik E, Murphy WJ, Koepfli KP, Johnson WE, Dragoo JW, Wayne RK, O’Brien SJ. 2010. Pattern and timing of diversification of the mammalian order Carnivora inferred from multiple nuclear gene sequences. Molecular Phylogenetics and Evolution 56: 49-63.

Hunt RM Jr. 1996. Biogeography of the order Carnivora. In: Gittleman JL, ed. Carnivore behavior, ecology, \& evolution, Vol. 2. Ithaca: Cornell University Press, 485-541.

Johnson WE, Eizirik E, Pecon-Slattery J, Murphy WJ, Antunes A, Teeling E, O'Brien SJ. 2006. The late Miocene radiation of modern Felidae: a genetic assessment. Science 311(5757): 73-77.

Lindblad-Toh K, Wade CM, Mikkelsen TS et al. (2005). Genome sequence, comparative analysis and haplotypes structure of the domestic dog. Nature 438: 803-819.

Marshall LG, Webb SD, Sepkoski JJ Jr, Raup, DM. 1982. Mammalian evolution and the Great American interchange. Science 215: 1351-1357.

Perini FA, Russo CAM, Schrago CG. 2010. The evolution of South American endemic canids: a history of rapid diversification and morphological parallelism. Journal of evolutionary biology 23(2): 311-322.

Pinheiro MHO \& Monteiro R. 2010. Contribution to the discussions on the origin of the cerrado biome: Brazilian savanna. Brazilian Journal of Biology 70(1): 95-102.

Shendure J \& Ji H. 2008. Next-generation DNA sequencing. Nature biotechnology 26(10): 11351145.

Sigman DM \& Boyle EA. 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407(6806): 859-869.

Wang X, Whistler DP, Takeuchi GT. 2005. A new basal skunk Martinogale (Carnivora, Mephitinae) from late Miocene Dove Spring Formation, California, and origin of new world mephitines. Journal of Vertebrate Paleontology 25(4): 936-949.

Wang X, Carranza-Castañeda O. 2008. Earliest hog-nosed skunk, Conepatus (Mephitidae, Carnivora), from the early Pliocene of Guajanato, Mexico and origin of South American skunks. Zoological Journal of the Linnean Society 154: 386-407.

Woodburne MO. 2010. The Great American Biotic Interchange: dispersals, tectonics, climate, sea level and holding pens. Journal of Mammalian Evolution 17: 245-264.

Anexo I: Normas para submissÃo de artigos científicos ao periódico Journal of Heredity

Disponível em 8 de março de 2013 em:

http://www.oxfordjournals.org/our_journals/jhered/for_authors/msprep_submission.html

AIMS AND SCOPE OF THE JOURNAL OF HEREDITY

The Journal features primary research in the following subject areas:

- Genomics and gene mapping
- Gene action, regulation and transmission
- Bioinformatics and computational genetics
- Molecular adaptation and selection
- Reproductive strategies and kinship analysis
- Quantitative genetics and Mendelian inheritance
- Molecular systematics and phylogenetics
- Population structure and phylogeography
- Conservation genetics and biodiversity

To be accepted for publication, a manuscript must make a significant contribution to one or more of these subject areas and be of general interest to the members of the American Genetic Association. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Primer notes are given low priority unless they are of particular interest or novelity.
The Journal publishes
(1) Articles: important original research
(2) Brief Communications: short communications on current research, important preliminary findings or new techniques
(3) Computer Notes: short communications on new computer programs and applications
(4) Letters: responses to papers previously published in Journal of Heredity

The Journal also publishes, by invitation, Book Reviews, Perspectives and Symposium Articles

PREPARATION OF THE MANUSCRIPT

Please read and follow these instructions carefully, doing so will ensure that the publication of your manuscript is as rapid and efficient as possible. The Publisher reserves the right to return manuscripts that are not prepared in accordance with these instructions.
Papers must be clearly written in English. Authors whose native language is not English should arrange to have their manuscripts written in idiomatic English before they are submitted for publication. Papers lacking proper English structure and usage will not be considered for publication and will be returned to the author without review. If you would like additional help with the quality of your written English, including grammar, spelling, and language usage, visit Oxford Journals Language Services.

General

Manuscripts should be prepared using a Word processing program, saved as a .doc (Word) or .rtf (rich-text format) file, and typed, double-spaced, with 1-inch margins on $81 / 2$-by-11-inch paper. There is no page limit, but it is recommended that original articles not exceed 16 typewritten pages plus tables and illustrations. Brief Communications are narrower in scope than articles, but must still be novel, important and of general interest. It is recommended that they do not exceed 12 pages of text and contain no more than 4 tables and figures combined.
Metric units should be used where applicable. Pages should be arranged and numbered consecutively in the following order:

- title page
- abstract with 3-6 keywords
- text
- funding
- acknowledgments (if desired)
- references
- figure and table legends
- figures and tables (separate files)

Title page

The title page (page 1) should contain the title of the article; all authors' complete first and last name(s) and affiliation(s) with complete addresses; e-mail addresses; and a running title. The title should concisely state the subject of the paper and the organism to which it relates, including common name; it should contain no more than 75 characters. A subtitle can be used when greater length is unavoidable.

Abstract

An abstract is required. It should consist of one paragraph of no more than 200 words that is complete without reference to the text. Sample sizes, types of markers and important indicators of effect size (e.g., Fst) must be included. Acronyms and complex abbreviations should not be used. References to literature, figures, and tables should not be included. Below the abstract, provide 3-6 keywords or short phrases that will assist in cross-indexing your article. Keywords should not include words from the title.

Text

The text should be readable, clear, and concise. First-person active voice is preferable to the impersonal passive voice. Authors are referred to the CSE Manual for Authors, Editors, and Publishers: Scientific Style and Format (7th ed.). Authors should also refer to recent articles in Journal of Heredity for general formatting. Standard nomenclature should be used for organisms for which formal rules have been established and published. Unfamiliar or new terms, as well as abbreviations, acronyms, and symbols, should be defined at first mention. Italics should not be used for emphasis. Footnotes should be avoided; descriptive material should be parenthetically included in the text. All tables and figures must be referred to in the text.

Funding

Details of all funding sources for the work in question should be given in a separate section following the Discussion entitled 'Funding'. A separate page is not necessary. These rules should be followed:

- The sentence should begin: 'This work was supported by ...'
- The full official funding agency name should be given, i.e. 'the National Cancer Institute at the National Institutes of Health' or simply 'National Institutes of Health' not 'NCI' (one of the 27 subinstitutions) or ' NCI at NIH^{\prime}. Grant numbers should be complete and accurate and provided in brackets as follows: '(grant number ABX CDXXXXXX)'
- Multiple grant numbers should be separated by a comma as follows: '(grant numbers $A B X$ CDXXXXXX, EFX GHXXXXXX)'
- Agencies should be separated by a semi-colon (plus 'and' before the last funding agency)
- Where individuals need to be specified for certain sources of funding the following text should be added after the relevant agency or grant number 'to [author initials]'.
An example is given here: 'This work was supported by the National Institutes of Health (P50 CA098252 and CA118790 to R.B.S.R.); and the Alcohol \& Education Research Council (hfygr667789).'
Oxford Journals will deposit all NIH-funded articles in PubMed Central. Seehttp://www.oxfordjournals.org/for_authors/repositories.html for details. Authors must ensure that manuscripts are clearly indicated as NIH-funded using the guidelines above. A full list of RIN-approved UK funding agencies may be found here.

Acknowledgements

An 'Acknowledgments' section may follow the Funding Section. It should not include the funding agencies.

References

References should be typed alphabetically on a separate page, double-spaced and unnumbered. They should be referred to in the text by the name(s) of the first author(s) and the year of publication in parentheses, e.g., (Able and Baker 1987b). Use the first author's name and "et al." when there are more than two authors. Use a semi-colon to separate multiple references, e.g., (Baker 2000; White, Black, Grey 2000; Able et al. 2002).

For works by the same author(s) in the same year, append a lowercase a, b, c, etc., to the year of publication. The reference list should contain all authors' names for up to 10 authors and conform to the following styles:

- Journal article
- Author AB, Author CD, Author EF. 1984. Title of article. J Hered. 60:128-132.
- Paper in a conference proceeding(s)
- Author AB, Author IJ, Author KL. 1985. Title of conference paper. In: Able ST, editor. Title of Symposium or Conference: subtitle; 2006 Jan 1-3, location of conference. City of publisher: Publisher. p. 100-112.
- Book Author GH, Author IJ. 1985a. Title of book. Rye (NY): Publisher's Name.
- Chapter in a book
- Author GH, Author IJ. 1985b. Title of a chapter: a subtitle. In: Able MN, Baker OP, editors. Title of book, 2nd ed. Philadelphia: Publisher's Name; p. 200-235.
- Thesis or dissertation
- Author MN. 1985. Title of thesis or dissertation [content designator]. Berkeley(CA): Name of University. 235 p.
- Internet sources
- Author CH. Date of publication. Title. [cited 2005 May 31]. Available from: http://www.jhered.oxfordjournals.org.
Only published references or references accepted for publication should be included in the reference list; such things as personal communications, unpublished data, manuscripts in preparation, etc., should be incorporated in the text in parentheses and include the initials and surname of the source, e.g., (OP Able, personal communication). When citing Internet sources, please provide a complete URL address and the date on which the page was accessed or updated. Authors are responsible for the accuracy of their references.

Tables and figures

Table legends and figure captions should be typed together on a separate page. They should define all symbols and abbreviations used in each figure.
To conserve space, tables and figures will be reduced in size when possible. Please ensure that all fonts used are large enough to be legible when reduced.

Figures

Journal of Heredity is happy to announce the inclusion of the Flexible Color Option. All figures submitted to the journal in color will be published in color online at no cost. Authors may choose to also publish their figures in color in the print journal for $\$ 600 / £ 350 / € 525$ per figure: you will be asked to approve this cost in an e-mail after your article is accepted, and will be issued an invoice at the time of publication. Authors who opt to publish black and white in print, should submit one figure caption that will work for both color and grayscale.
Figures should be supplied in an electronic format at a suitable size for printing with the following resolutions: 600 dots per inch (dpi) for line drawings; 300 dpi for halftones and color; 600 dpi for combinations. We prefer figure files to be submitted as .tif files.
Please note that unacceptable figures will delay publication. For useful information on preparing your figures for publication, go to http://cpc.cadmus.com/da.
If your .tif figure files are very large, you may include .doc, .pdf, .ppt or .jpg files in your initial submission. Please note in your cover letter that you will submit the final files upon acceptance of your manuscript.

SUBMISSION OF MANUSCRIPTS

All material to be considered for publication in the Journal of Heredity should be submitted in electronic form via the journal's online submission system. Full instructions for online submission can be found here or via the online submission site. If for exceptional reasons you are unable to submit your manuscript via the online submission system, please contact the editorial office.
Please ensure that all authors read and understand the submission instructions and fully answer all questions in the online form. Contact the Managing Editor with any queries.

SUPPLEMENTARY MATERIAL

All material to be considered as Supplementary Material (SupMat) must be submitted online at the same time as the main manuscript. Please indicate clearly the material intended as SupMat upon submission. Also ensure that the SupMat is referred to in the main manuscript at an appropriate point in the text. The file name for all SupMat should be in this format: File name: Author 1,_SupMat,_description (e.g., _table, _figure,_image)
Include the File name as a header for each SupMat table, figure, etc, followed by the article's Running Title and JHered. SupMat will be available online only and will not be copyedited, so ensure that it is clearly and succinctly presented, and that the style conforms with the rest of the paper. Also ensure that the presentation will work on any Internet browser. A maximum of 5 files is acceptable to make up the supplementary material unit for an article. The maximum size per file should not exceed 2 MB . Unlike figure files that will be typeset, supplementary figure files may be in any appropriate format (.doc, .jpg, etc). In addition to or instead of providing SupMat, authors are required to submit data underlying their accepted manuscript to a data repository such as Dryad, at no cost to the author. A link for depositing to Dryad will be provided in the acceptance letter from the Editor.

DATA ARCHIVING POLICY

The primary data underlying the conclusions of an article are critical to the verifiability and transparency of the scientific enterprise. With the advent of electronic archiving, these data can now be preserved in usable form for decades into the future. For this reason, Journal of Heredity has previously endorsed the principle of the Joint Data Archiving Policy (JDAP) in encouraging authors to archive primary data, in addition to nucleotide and protein sequences, in an appropriate public archive, on a voluntary basis. As of 1 January 2013, the public archiving of all primary data will be a mandatory requirement of publication in Journal of Heredity. For data other than nucleotide and protein sequences, suitable archives include Dryad, TreeBASE or the Knowledge Network for Biocomplexity.
Authors may elect to have the data publicly available at time of publication, or may opt to embargo access to the data for a period up to a year after publication. Exceptions may be granted at the discretion of the editor, especially for sensitive information, such as the location of endangered species. In adopting the JDAP, the AGA also recognizes the investment of individual researchers in generating and curating large datasets, and the right of 'first use' by the data providers. Consequently, we recommend that the investment of data providers be respected in secondary analyses or meta-analyses in a gracious collaborative spirit.

COPYRIGHT

It is a condition of publication that authors assign exclusive copyright to the AGA. In assigning copyright, authors may use their own material in other publications, provided that the Journal is acknowledged as the original place of publication, and both the editor and Oxford University Press are notified in writing and in advance.
Upon receipt of accepted manuscripts at Oxford Journals authors will be invited to complete an online copyright licence to publish form.
Please note that by submitting an article for publication you confirm that you are the corresponding/submitting author and that Oxford University Press ("OUP") may retain your email address for the purpose of communicating with you about the article. You agree to notify OUP immediately if your details change. If your article is accepted for publication OUP will contact you using the email address you have used in the registration process. Please note that OUP does not retain copies of rejected articles.
Work submitted for publication must be original, previously unpublished, and not under consideration for publication elsewhere. If previously published figures, tables or parts of text are to be included, he copyright-holder's permission must have been obtained prior to submission.

CONFLICT OF INTEREST

Oxford University Press requires declaration of any conflict of interest upon submission online. If the manuscript is published, conflict of interest information will be communicated in a statement in the published paper.

PROOFS

All manuscripts will undergo some editorial modification so it is important to check proofs carefully. PDF page proofs will be sent to the corresponding author for checking via email. To avoid delays in publication,
proofs should be checked and returned within 48 hours. Corrections should be returned by PDF annotation, e-mail, fax, or courier (FedEx or DHL) to the Production Editor. Extensive changes to the text may be charged to the author.

PAGE CHARGES

Page charges of one 10-page article per volume (about 25-30 manuscript pages) will be waived for authors who are members of the American Genetic Association. Cost of individual membership is currently $\$ 75$, student membership is $\$ 20$. Only one author of an accepted manuscript is required to be a member. Authors who wish to join the Association will receive membership forms and a page charge discount offer with their article proofs.
If authors are not AGA members, there will be a page charge of $\$ 60$ per published page. This charge also applies for >10 pages in member articles. If research funds are not available to meet publication or membership costs, the author should request a waiver from the editor once the paper is accepted for publication, specifying the reasons for lack of funds. All color figures in print will be charge $\$ 600 / £ 350 / € 525$ each. Cost of color figures cannot be waived. No paper will be rejected because of the lack of funds, but publication may be delayed if charges are not paid. Authors will receive a form with their page proofs showing the page charge and reprint prices.

OFFPRINTS

In addition to an AGA membership form, an offprint order form will accompany the proofs. Authors may purchase print and/or electronic offprints and journal copies at a discount (50\%) using this form. Please see offprint forms for complete ordering and pricing information.

OPEN ACCESS OPTION FOR AUTHORS

Journal of Heredity authors have the option, at an additional charge, to make their paper freely available online immediately upon publication, under the Oxford Open initiative. After the manuscript is accepted, as part of the mandatory copyright form required of all corresponding authors, authors will be asked to indicate whether or not they wish to pay to have the paper made freely available immediately. If the Open Access option is not selected, the paper will be published with standard subscription-based access and no charges will be incurred by the author.

COVER CONSIDERATION

A full-color illustration is featured on the cover of each issue, the cost of which is borne by the journal. Authors whose photo is used on the cover receive a complimentary PDF of the typeset cover for printing and distribution, and 3 hard-copy covers. The cover is available to any contributor whose manuscript is accepted for publication, providing the photographic material is of high quality. For electronic submission of potential cover images, please send the image at 350 dpi CMYK as both a .jpg and a .tif or .eps file to the editorial office; the .jpg will be used for evaluation only. Please look at recent Journal issues for examples of cover images.

PERMISSIONS FOR ILLUSTRATIONS AND FIGURES

Permission to reproduce copyright material, for print and online publication in perpetuity, must be cleared and if necessary paid for by the author; this includes applications and payments to DACS, ARS, and similar licensing agencies where appropriate. Evidence in writing that such permissions have been secured from the rights-holder must be made available to the editors. It is also the author's responsibility to include acknowledgements as stipulated by the particular institutions. Oxford Journals can offer information and documentation to assist authors in securing print and online permissions: please see the Guidelines for Authors section.

AUTHOR SELF-ARCHIVING/PUBLIC ACCESS POLICY

For information about this journal's policy, please visit our Author Self-Archiving policy page.

THE STEPHEN J. O'BRIEN AWARD

The Stephen J. O'Brien Award for the best student paper published in the Journal of Heredity the previous year will be awarded at the annual meeting of the AGA and will include a cash prize of $\$ 1,000$ and a 1-yr AGA membership and Journal subscription. The award honors Dr. O'Brien's many years as Chief Editor of the journal. Papers are eligible for the award if the first author was a registered student at the time of manuscript submission. Please tick the appropriate box on the online submission form if your manuscript is eligible.

Anexo II: Normas para submissÃo de artigos científicos ao Periódico Zoological Journal of the Linnean Society

Disponível em 25 fevereiro de 2013 em:
http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1096 3642/homepage/ForAuthors.html

Instructions for Authors

The Linnean Society publishes four periodicals: the Biological, Botanical and Zoological Journals, and The Linnean, the Society's newsletter and proceedings.
he Zoological Journal publishes papers on systematic and evolutionary zoology and comparative, functional and other studies where relevant to these areas. Studies of extinct as well as living animals are included.
Submissions to the Zoological Journal are now made on-line using ScholarOne Manuscripts. This includes any revised versions of previously submitted papers. To submit to the journal go to http://mc.manuscriptcentral.com/zoj. If this is the first time you have used the system you will be asked to register by clicking on 'create an account'. Full instructions on making your submission are provided. You should receive an acknowledgement within a few minutes. Thereafter, the system will keep you informed of the process of your submission through refereeing, any revisions that are required, and a final decision.

Conflict of Interest

The Zoological Journal of the Linnean Society requires that all authors disclose any potential sources of conflict of interest. Any interest or relationship, financial or otherwise, that might be perceived as influencing an author's objectivity is considered a potential source of conflict of interest. These must be disclosed when directly relevant or indirectly related to the work that the authors describe in their manuscript. Potential sources of conflict of interest include but are not limited to patent or stock ownership, membership of a company board of directors, membership of an advisory board or committee for a company, and consultancy for or receipt of speaker's fees from a company. The existence of a conflict of interest does not preclude publication in this journal.
It is the responsibility of the corresponding author to review this policy with all authors and to collectively list in a cover letter to the Editor, in the manuscript (under the Acknowledgement section), and in the online submission system ALL pertinent commercial and other relationships. Corresponding authors will be asked to confirm whether or not a conflict of interest exists as part of the submission process.

Copyright Transfer Agreement Form

Authors will be required to sign a Copyright Transfer Agreement Form (CTA) for all papers accepted for publication. Signature of the Copyright Transfer Agreement Form is a condition of publication and papers will not be put into production until a signed form has been received. (Government employees need to complete the Author Warranty sections, although copyright in such cases does not need to be assigned). After submission authors will retain the right to publish their paper in various media/circumstances (please see the form for further details). A copy of the form may be downloaded here.

OnlineOpen

OnlineOpen is a pay-to-publish service from Wiley-Blackwell that offers authors whose papers are accepted for publication the opportunity to pay up-front for their manuscript to become open access (i.e. free for all to view and download) via Wiley Online Library. Each Online Open article will be subject to a one-off fee of US $\$ 3000$ to be met by or on behalf of the Author in advance of publication. Upon online publication, the article (both full-text and PDF versions) will be available to all for viewing and download free of charge. For the full list of terms and conditions, see http://wileyonlinelibrary.com/onlineopen\#OnlineOpen_Terms.
Authors wishing to send their paper OnlineOpen will be required to complete the payment form available from our website at: https://authorservices.wiley.com/bauthor/onlineopen_order.asp (Please note this form is for use with OnlineOpen material ONLY.)

Prior to acceptance there is no requirement to inform an Editorial Office that you intend to publish your paper OnlineOpen if you do not wish to. All OnlineOpen articles are treated in the same way as any other article. They go through the journal's standard peer-review process and will be accepted or rejected based on their own merit.

Author material archive policy

All original hardcopy artwork for the three Linnean Society Journals will be returned to authors after publication. Please note that, unless specifically requested, Wiley-Blackwell will dispose of all electronic material and remaining hardcopy two months after publication. If you require the return of any of this material, you must inform the editorial office upon submission.

Offprints

A PDF offprint of the online published article will be provided free of charge to the corresponding author, and may be distributed subject to the Publisher's terms and conditions. Paper offprints of the printed published article may be purchased if ordered via the method stipulated on the instructions that will accompany the proofs.

Manuscript preparation

Authors should aim to communicate ideas and information clearly and concisely, in language suitable for the moderate specialist. Papers in languages other than English are not accepted unless invited. When a paper has joint authorship, one author must accept responsibility for all correspondence; the full postal address, telephone and fax numbers, and e-mail address of the author who is to check proofs should be provided. Please submit your manuscript in an editable format such as .doc or .rtf. If you submit your manuscript in a non-editable format such as PDF, this will slow the progress of your paper as we will have to contact you to request an editable copy.
Papers should conform to the following general layout:
Title page
This should include title, authors, institutions and a short running title. The title should be concise but informative, and where appropriate should include mention of family or higher taxon in the form: 'The Evolution of the Brown Rat, Rattus norvegicus (Rodentia: Muridae)'. A subtitle may be included, but papers in numbered series are not accepted. Names of new taxa should not be given in titles.

Abstract

This must be on a separate page. The abstract is of great importance as it may be reproduced elsewhere, and is all that many may see of your work. It should be about 100-200 words long and should summarize the paper in a form that is intelligible in conjunction with the title. It should not include references. The abstract should be followed by up to ten keywords additional to those in the title (alphabetically arranged and separated by hyphens) identifying the subject matter for retrieval systems.

Subject matter

The paper should be divided into sections under short headings. Except in systematic hierarchies, the hierarchy of headings should not exceed three. The Zoological Codes must be strictly followed. Names of genera and species should be printed in italic or underlined to indicate italic; do not underline suprageneric taxon names. Cite the author of species on first mention. Use SI units, and the appropriate symbols (mm, not millimetre; $\mu \mathrm{m}$, not micron., s , not sec; Myr for million years). Use the negative index ($\mathrm{m}-1, \mathrm{l}-1, \mathrm{~h}-1$) except in cases such as 'per plant'). Avoid elaborate tables of original or derived data, long lists of species, etc.; if such data are absolutely essential, consider including them as appendices or as online-only supplementary material. Avoid footnotes, and keep cross references by page to an absolute minimum. Please provide a full English translation (in square brackets) for any quoted matter that is not in English.

References

We recommend the use of a tool such as EndNote or Reference Manager for reference management and formatting. EndNote reference styles can be searched for here: http://www.endnote.com/support/enstyles.asp

Reference Manager reference styles can be searched for here: http://www.refman.com/support/rmstyles.asp
In the text, give references in the following forms: 'Stork (1988) said', 'Stork (1988: 331)' where it is desired to refer to a specific page, and '(Rapport, 1983)' where giving reference simply as authority for a statement. Note that names of joint authors are connected by ' $\&$ ' in the text. When papers are by three authors, use all names on the first mention and thereafter abbreviate to the first name et al. For papers by four or more authors, use et al. throughout.
The list of references must include all publications cited in the text and only these. Prior to submission, make certain that all references in the text agree with those in the references section, and that spelling is consistent throughout. In the list of references, titles of periodicals must be given in full, not abbreviated. For books, give the title, place of publication, name of publisher (if after 1930), and indication of edition if not the first. In papers with half-tones, plate or figure citations are required only if they fall outside the pagination of the reference cited. References should conform as exactly as possible to one of these four styles, according to the type of publication cited.
Burr FA, Evert RF. 1982. A cytochemical study of the wound-healing proteins in Bryopsis hypnoides. Cytobios 6: 199-215.
Gould SJ. 1989. Wonderful life: the Burgess Shale and the nature of history. New York: W.W. Norton. Dow MM, Cheverud JM, Rhoads J, Friedlaender J. 1987b. Statistical comparison of biological and cultural/history variation. In: Friedlaender J, Howells WW, Rhoads J, eds. Solomon Islands project: health, human biology, and cultural change. New York: Oxford University Press, 265-281. Gay HJ. 1990. The ant association and structural rhizome modifications of the far eastern fern genus Lecanopteris (Polypodiaceae). Unpublished D. Phil. Thesis, Oxford University.

Other citations such as papers 'in press' [i.e. formally accepted for publication] may appear on the list but not papers 'submitted' or 'in preparation'. These should be cited as 'unpubl. data' in the text with the names and initials of all collaborators. A personal communication may be cited in the text but not in the reference list. Please give all surnames and initials for unpublished data or personal communication citations given in the text.

In the case of taxonomic reviews, authors are requested to include full references for taxonomic authorities.

Give foreign language references in ordinary English alphabetic form (but copy accents in French, German, Spanish, etc.), if necessary transliterating in accordance with a recognized scheme. For the Cyrillic alphabet use British Standard BS 2979 (1958). If only a published translation has been consulted, cite the translation, not the original. Add translations not supplied by the author of the reference in square brackets.

Tables

Keep these as simple as possible, with few horizontal and, preferably, no vertical rules. When assembling complex tables and data matrices, bear the dimensions of the printed page ($225 \times 168 \mathrm{~mm}$) in mind; reducing typesize to accommodate a multiplicity of columns will affect legibility.

Illustrations

These normally include (1) half-tones reproduced from photographs, (2) black and white figures reproduced from drawings and (3) diagrams. Use one consecutive set of Arabic numbers for all illustrations (do not separate 'Plates' and 'Text-figures' - treat all as 'Figures'). Figures should be numbered in the order in which they are cited in the text. Use upper case letters for subdivisions (e.g. Figure 1A-D) of figures; all other lettering should be lower case.

1. Half-tones reproduced from photographs

Increasingly, authors' original images are captured digitally rather than by conventional film photography. In these cases, please use settings on your equipment for the highest possible image quality (minimum 300dpi).
Desktop technology now allows authors to prepare plates by scanning photographic originals and then labelling them using graphics programs such as Adobe Illustrator. These are acceptable provided:

Resolution is a minimum of 300 dpi at the final required image size. The labelling and any line drawings in a composite figure should be added in vector format. If any labelling or line drawings are embedded in the file then the resolution must be a minimum of 800 dpi . Please note that vector format labelling will give the best results for the online version of your paper.
3. Colour images are supplied in CMYK rather than RGB mode.
4. Electronic files are saved uncompressed as TIFF or EPS files.

In the case that it is not possible to provide electronic versions, please supply photographic prints with labelling applied to a transparent overlay or to a photocopy.
Grouping and mounting: when grouping photographs, aim to make the dimensions of the group (including guttering of 2 mm between each picture) as close as possible to the page dimensions of $168 \times 225 \mathrm{~mm}$, thereby optimizing use of the available space. Remember that grouping photographs of varied contrast can result in poor reproduction. If supplied as photographic prints, the group should be mounted on thin card. Take care to keep the surface of the prints clean and free of adhesive. Always provide overlays to protect the photographs from damage.
Lettering and numbering: If supplied as photogarphic prints, letters and numbers should be applied in the form of dry-transfer ('Letraset') letters, numbers, arrows and scale bars, but not measurements (values), to transparent overlays in the required positions, rather than to the photographs themselves; this helps to avoid making pressure marks on the delicate surface of the prints, and facilitates relabelling, should this be required. Alternatively, pencilled instructions can be indicated on duplicates or photocopies marked 'FOR LABELLING ONLY'. Self-adhesive labels should be avoided, but if they are used, they should not be attached directly to either photographs or overlays, but to photocopies, to indicate where they are to be positioned. Labelling will be inserted electronically by the typesetter in due course.
Colour: Online-only colour in figures is free of charge, however it is essential in these cases that the figure legends apply equally well to both printed greyscale and online colour versions, and do not specifically refer to the colour. Alternatively you can opt for paid full colour (see the Colour Work Agreement Form here)*, covering the full cost of reproduction, such that colour is used both in the hardcopy and online. In this case, legends may make reference to colour if necessary, such as for a key. If your paper is accepted and you have opted for paid full colour, we will need a completed Colour Work Agreement Form. Colour illustrations will be published free of charge provided that the colour is deemed essential by the Editor for interpretation of the figure.
*Please note that we are no longer able to accept electronic or scanned copies of Colour Work Agreement Forms. Please print out the form and return a signed hard copy to the production editor at the following address: Production Editor - Zoological Journal of the Linnean Society, Journals Content Management, Life Sciences, Wiley-Blackwell, John Wiley \& Sons, 9600 Garsington Road, Oxford, OX4 2DQ, UK Black and white figures reproduced from drawings
These should be scanned at a minimum resolution of 800 dpi and supplied in TIFF format. Please note that JPEG, Powerpoint and doc files are not suitable for publication. If is is not possible to provide electronic versions, the figures supplied should be in black ink on white card or paper. Lines must be clean and heavy enough to stand reduction; drawings should be no more than twice page size. The maximum dimensions of published figures are $168 \times 225 \mathrm{~mm}$. Scale bars are the most satisfactory way of indicating magnification. Take account of proposed reduction when lettering drawings; if you cannot provide competent lettering, it may be pencilled in on a photocopy.

Diagrams

In most instances the author's electronic versions of diagrams are used and may be re-labelled to conform to journal style. These should be supplied as vector format Encapsulated PostScript (EPS) files. Please note that diagrams or graphs will not reproduce well in the online version of your paper unless they are in vector format due to low maximum screen resolution.
Type legends for Figures in numerical order on a separate sheet. Where a 'key' is required for abbreviations used in more than one Figure, this should be included as a section of the main text.
Authors whose manuscripts contain large phylogenies, and who feel that these cannot be represented well in the standard page format, may opt to pay for fold-out pages as part of their article (see the Fold-Out Agreement Form here). Please note that fold-out pages will be included only with the Editor's agreement.
Authors wishing to use illustrations already published must obtain written permission from the copyright holder before submitting the manuscript. Authors may, in the first instance, submit good xerox or photographic copies of figures rather than the originals.
Detailed instructions on preparing illustrations in electronic form are available here.
Authors may be charged for alterations at proof stage (other than printer's errors) if they are numerous.

Supplementary Material

Authors wishing to submit material to be hosted as online supplementary material should consult the author guidelines here. Authors should note that the Editor may suggest that figures, tables, and lists not deemed necessary for the understanding of the paper should be published online as supplementary material.
Please follow these guidelines carefully:

- Include all parts of the text of the paper in a single .doc or .rtf file. The ideal sequence is: (1) Header (running heads; correspondence; title; authors; addresses; abstract; additional keywords, etc.). (2) Body of article. (3) Acknowledgements. (4) References. (5) Figure Legends. (6) Tables (for each table, the legend should be placed before the body of the table). (7) Appendices.
- Include all figure legends, and tables with their legends if available.
- Do not embed figures in the text file
- Do not use the carriage return (enter) at the end of lines within a paragraph.
- Turn the hyphenation option off.
- Specify any special characters used to represent non-keyboard characters.
- Take care not to use I (ell) for 1 (one), O (capital o) for 0 (zero) or $ß$ (German esszett) for $ß$ (beta).

Copyright

Authors receiving requests for permission to reproduce work published by the Linnean Society should contact Blackwell Publishing for advice.

Pre-submission English-language editing

Authors for whom English is a second language may choose to have their manuscript professionally edited before submission to improve the English. A list of independent suppliers of editing services can be found here. All services are paid for and arranged by the author, and use of one of these services does not guarantee acceptance or preference for publication.

Artigo Científico

Recent advances in the knowledge of Molina's Hog-nosed Skunk Conepatus chinga and Striped Hog-nosed Skunk C. semistriatus in South America

Carlos Benhur Kasper, Manoel L. da Fontoura-Rodrigues, Gitana Nunes Cavalcanti, Thales Renato O. de Freitas, Flávio H. G. Rodrigues, Tadeu Gomes de Oliveira, Eduardo Eizirik

Recent advances in the knowledge of Molina's Hog-nosed Skunk Conepatus chinga and Striped Hog-nosed Skunk C. semistriatus in South America

Carlos Benhur KASPER ${ }^{1}$, Manoel L. da FONTOURA-RODRIGUES ${ }^{2}$, Gitana Nunes CAVALCANTI ${ }^{3}$, Thales Renato O. de FREITAS ${ }^{1}$, Flávio H. G. RODGRIGUES ${ }^{3,5}$ Tadeu Gomes de OLIVEIRA ${ }^{4,5}$ and Eduardo EIZIRIK ${ }^{2,5}$

Abstract

Biological knowledge of South American hog-nosed skunks Conepatus remains scarce. Although common in several regions, even basic life-history aspects are poorly known, and important issues of taxonomy and biogeography are yet to be resolved. A better understanding of these species' evolutionary history, biology and ecology would provide a solid basis for conservation planning. Here we provide an overview of current research efforts targeting these issues in Molina's Hog-nosed Skunk Conepatus chinga and Striped Hognosed Skunk C. semistriatus. Preliminary data corroborating these species' evolutionary distinctiveness, and concerning distribution, habitat use, food habits, spatial ecology, life history, and reproductive biology are provided. We hope that these will serve as a basis for in-depth studies targeting these species and the role they play in Neotropical carnivore communities.

Keywords: conservation planning, distribution, ecology, life history, morphology, reproductive biology, taxonomy

Avances recientes en el conocimiento sobre Conepatus chinga y C. semistriatus en Suramérica

Abstract

Resumen

El conocimiento biológico sobre las mofetas de Suramérica aún permanece escaso. A pesar de ser comunes en muchas regiones, aún se conoce muy poco, incluso de aspectos básicos de su historia natural, y asuntos importantes todavía necesitan ser resueltos con respecto a su taxonomía y biogeografía. Por esta razón existe una necesidad urgente de llenar estos vacios y de tener un mejor entendimiento de la historia evolutiva, biología y ecología de estas especies, con el fin de proveer una base sólida para la planificación de su conservación. Aquí proveemos un vistazo a los esfuerzos de investigación actuales enfocados a estos aspectos relacionados con Conepatus chinga y C. semistriatus. Reportamos datos preliminares corroborando la distinción evolutiva entre estas dos especies y proveemos algunos datos sobre su distribución, uso de hábitat, hábitos alimenticios, ecología espacial y biología reproductiva. Esperamos que estos esfuerzos puedan servir como base para estudios más profundos enfocados en estas especies y en el rol que juegan en las comunidades de carnívoros neotropicales.

Palabras clave: biología reproductiva, distribución, ecología, historia de vida, morfología, planificación para conservación, taxonomía

Introduction

The family Mephitidae (skunks) comprises four genera, of which three occur exclusively in America: Mephitis, Spilogale and Conepatus. Conepatus (the hog-nosed skunks) is the only genus with species in both North (American Hog-nosed Skunk C. leuconotus and Striped Hog-nosed Skunk C. semistriatus) and South America (Molina's Hog-nosed Skunk C. chinga, C. semistriatus and Humboldt's Hog-nosed Skunk C. humboldtii); Mephitis and Spilogale occur exclusively in North America (Nowak 1999, Wozencraft 2005). In contrast to these two latter genera, Сопераtus has received little attention from researchers, especially for the three South American species. In the last few years, our research group initiated studies concerning basic behaviour, distribution and ecology of C. chinga (Fig. 1) and C. semistriatus in Brazil. Molecular approaches are being employed to clarify taxonomy, biogeography and evolutionary history of the genus. Here we report first results of these ongoing efforts and project the future steps.

Distribution, habitat use and taxonomy

One basic aspect is the geographic range of the two species. Ac-
cording to Redford \& Eisenberg (1992) and Eisenberg \& Redford (1999), C. chinga occurs from the northern region of Argentina to Uruguay, southern Bolivia, western Paraguay and central Chile. Recently, Cheida et al. (2006) and Cáceres (2004) reported it from the southern limits of Brazil to the Paraná (PR) and São Paulo (SP) states. However, records in the latter two states are rare, despite the fact that this region is one of the most studied in Brazil. Conspicuous, confirmed occurrence of C. chinga in Brazil is restricted to its southernmost states, Rio Grande do Sul (RS) and Santa Catarina (SC). The species's distribution in this region seems discontinuous, associated with two grassland regions historically separated by a broad patch of Atlantic Forest: the Brazilian Pampa in the southern part of RS and the Campos de Altitude region in Southern SC and northern RS. In sum, the species's occurrence seems strongly associated with Pampa and Chaco biomes, both characterised by open vegetation, cold temperatures and well-defined climatic seasons.

Use of forest areas by C. chinga is reported by Cáceres (2004) and Cheida et al. (2006) but is controversial. Cáceres (2004) suggested that its range is continuous along the mountains of the Serra do Mar, covered by dense Atlantic Forest. However, the record reported by Cáceres (2004), and many of our own records, suggest restriction to forest borders and to the Araucaria Forest, habitats

Fig. 1. Hog-nosed Skunks; on the left: Conepatus chinga (Photo: Benhur Kasper), on the right: C. semistriatus (Photo: Jan Schipper).
associated with grassland environments. In addition, it is possible that current fragmentation within forested regions is allowing the species's range to expand, a process also observed in species such as the Maned Wolf Chrysocyon brachyurus (R. de Paula verbally 2009). Thus, our view is that C. chinga is a grassland-dweller, not adapted to forested areas that may even bar its dispersal.

Regarding C. semistriatus, Eisenberg (1989) and Eisenberg \& Redford (1999) suggested a geographic range from Mexico to northern Colombia, northern Venezuela, Peru and northeastern Brazil. Regarding this latter country, Cheida et al. (2006) extended the species's distribution to SP and also reported occurrence in the Cerrado (central Brazil) and Caatinga (northeastern Brazil) biomes. In agreement, our own records include the states of Maranhão, Goiás, Minas Gerais, São Paulo, Piauí, Bahia and Distrito Federal, all of which encompass a large portion of the Cerrado and/or Caatinga biomes, where the species seems relatively abundant. As reported by Cheida et al. (2006), the species does not seem to use forested areas, although some individuals could use densely covered sites as refuges, mainly in the dry season (Ferreira 2008). Some records point to use of Cerrado patches inside the Amazonian Forest and to transitional regions between the Cerrado and the Atlantic Forest, where open vegetation areas can be found.

Therefore, extensive forests probably constitute a barrier for C. semistriatus as well, raising the hypothesis that C. semistriatus and C. chinga populations could have been historically isolated by the broad extension of Atlantic Forest that covers most of the land between the Cerrado and the grassland environments of RS and SC states. This may also be so for other open-environment carnivores, such as Pampas Fox Lycalopex gymnocercus (RS and SC grasslands) and Hoary Fox L. vetulus (Cerrado).

However, uncertainties concerning the total geographic and reproductive isolation between C. chinga and C. semistriatus still persist. It is still uncertain which species has been recorded in SP state. Furthermore, the distribution limits of C. semistriatus in Brazil are also unclear. As C. chinga is thought to occur in the southern region of Bolivia and Paraguay, the possibility of additional contact zones cannot be discarded. Consequently, there may be some sympatry and gene flow between these two recognised species. Indeed, taxonomic delimitation within this genus has few systematic studies to confirm the traditionally described species (Cabrera 1958, Kipp 1965, Wozencraft 2005). A recent phyloge-
netic overview showed that two North American Conepatus species previously recognised through morphology (C. leuconotus and C. mesoleucus) actually comprise a single species (Dragoo et al. 2003). Similar taxonomic confusion could be involved with other species in the genus and should be investigated.

To elucidate these issues, we are initiating phylogenetic and phylogeographic studies based on molecular data. Our preliminary results, employing nucleotide sequences spanning about 550 base pairs (bp) of the mitochondrial DNA NADH dehydrogenase 5 (ND5) gene from Conepatus individuals sampled in the grassland environments of RS and SC states, and also from three different points in the Cerrado, corroborate the recognition of two taxonomic entities. One clade, corresponding to C. chinga, seems to be restricted to the RS and SC grassland domains, while another, corresponding to C. semistriatus, was sampled only in the Cerrado field sites. The genetic distance between these two groups indicates that they diverged at least one million years ago. Additional genetic markers and more individuals have to be added to this survey to confirm the two clades and date their evolutionary divergence more precisely. Also, we aim to identify the limits of occurrence of both species and to investigate the possibility of any degree of gene flow, which is most likely in potential zones of sympatry. Furthermore, a broader taxonomic investigation of all Conepatus species, aiming to identify the number of valid taxa and to shed light on their evolution and phylogenetic relationships, is also of great interest for the design of adequate conservation strategies for this group, and may soon be feasible. For example, the validity of C. humboldtii demands investigation: there are no apparent ecological barriers between its range (Patagonian grasslands) and that of C. chinga.

Ecology

There is currently very little information on the ecology of South American skunks. Conepatus is a specialised feeder of arthropods, mainly insects on the vegetation and within the soil (Redford \& Eisenberg 1992). It is also an opportunistic predator, of small vertebrates and at carcasses of larger animals (Travaini et al. 1998, Donadio et al. 2004). Our field observations show that the foraging strategies of C. chinga and C. semistriatus mainly involve an active search for large insects such as beetles and larvae that live underground, digging the soil throughout almost their entire activ-
ity period. In some areas the consumption of vertebrates can be very important, as we observed for C. chinga in southeastern Brazil, where we have records of individuals feeding on fish (these being the first records of this item in their diets), amphibians, and eggs of both freshwater turtles and ground birds. Ingestion of eggs seems very frequent, with many turtle nests presenting characteristic signs of Molina's Hog-Nosed Skunk predation. In agreement, Gonçalves et al. (2007) noted that C. chinga is an important predator of nests of the turtle Trachemys dorbigni in southern Brazil. Regarding C. semistriatus, in addition to the high consumption of invertebrates (mainly beetles), some vertebrates have been recorded as being part of its diet as well. One individual was reported to feed on a dead bird, after attacking an owl nest. Silveira (1999) also reported the consumption of rodents and toads Bufo in the same region of the Cerrado.

Behavioural studies of both species are scarce. Rodrigues \& Auricchio (1994) described C. semistriatus as solitary and non-territorial, with many individuals living in the same area, and males and females appearing together only in the breeding season. Data from a capture effort in Bahia state (Brazil) support these observations, with many individuals caught in a small area, where they seemed to have resting dens. Also, two individuals were caught at one time, in one trap. Behavioural observations of C. chinga are also very few, but nest sharing seems to be rare.

Concerning abundance estimates of C. chinga, there are two distinct patterns in the two different environments occupied in Brazil. In the Pampas it is among the most common carnivores, preliminary data showing 1.5 individuals $/ \mathrm{km}^{2}$. Conversely, C. chinga in the Campos de Altitude region seems to be very sparse: 280 km of line transects yielded only one sighting, and a 450 trap-night effort only one capture. It is not clear which factors cause this extreme variation in abundance, but they may relate to food availability and/or climate. Although C. semistriatus seems relatively abundant in Cerrado and Caatinga, there are no precise abundance estimates.

Other issues being studied are the spatial structure of home ranges and the activity patterns of C. chinga. The first survey found a home range of $1.9 \mathrm{~km}^{2}$, shared by a male and a female, in Argentina (Donadio et al. 2001). Similarly, our preliminary observations indicate a mean home range of $1.9 \mathrm{~km}^{2}$ (0.8 to $2.45 \mathrm{~km}^{2}$) for four males, with females showing much smaller home ranges (mean $0.8 \mathrm{~km}^{2}$, range 0.3 to $1.2 \mathrm{~km}^{2}$), as measured for three individuals. The home ranges observed for C. chinga are much larger than those estimated for C. humboldtii $\left(0.074-0.16 \mathrm{~km}^{2}\right.$; Fuller et al. 1987) and C. semistriatus ($0.18-0.53 \mathrm{~km}^{2}$; Sunquist et al. 1989), although caution should be taken in comparisons due to the limited number of sample individuals so far. More detailed survey might drastically change these preliminary results, especially for C. semistriatus, because it is larger than C. chinga and could plausibly use a larger home range.

Concerning activity patterns, as reported by Donadio et al. (2001), C. chinga in southern Brazil is almost exclusively nocturnal. Our first data indicate that it leaves its resting site about 30 minutes before sunset, remaining active until approximately 30 minutes before sunrise. At night, the activity is almost continuous, with few resting moments. Daytime activity is negligible, generally involving sleeping all day in resting or den sites. In the same study, Donadio et al. (2001) cited use of burrows as cover, each generally reused a few times. Our observations identified 14 types of resting sites, divided into four larger groups: burrows in the soil;
under trunks and branches; within vegetation; and inside humanmade structures. It seems to use several types of cover present in its home range, with different degrees of reuse. Further, each individual seems to use a central area, with several resting sites around it. The reuse of some resting sites may be intense, especially in the breeding season, when we recorded use of the same den for more than a month. Observations on the activity patterns on C. semistriatus in Mesoamerica are reported by González-Maya et al. (2009).

The proximity of hog-nosed skunks to houses or other hu-man-made structures, along with high tolerance of people and domestic animals, seems strongly to affect their mortality rate. In our telemetry study focusing on C. chinga, of seven monitored individuals with home ranges near human dwellings, six died through human activity within six months of capture. Although usually not directly hunted or persecuted by farmers or other local people, the species is often killed by vehicles on roads and also by hunting dogs. In some roads of southernmost RS, C. chinga is one of the most frequent road-killed carnivores (F. Mazim verbally 2009). A similar situation may occur with C. semistriatus, which also seems to occupy human-modified landscapes and tolerates areas near town centres. The major observed threat is the high number of individuals killed on roads throughout the species's distribution. These data suggest that the species are very abundant in these areas; the impact of such mortality on populations is unknown.

Our observations indicate that C. chinga does not avoid the proximity of domestic dogs, nor of native wild canids such as Crab-eating Fox Cerdocyon thous and Pampas Fox. There is mortality from domestic dog attacks, but this overall proximity suggests no history of strong intraguild predation between these skunks and canids. This observation seems also to fit C. semistriatus, which may live near Crab-eating Fox and Maned Wolf, occasionally even chasing them off.

Biology

Our C. chinga studies are also shedding some light on aspects of its biology and natural history. During capture for placement of ra-dio-collars, we recorded morphometric data including body mass. In one studied population in southern Brazil there were significant differences between males and females in mean total length (58.8 cm for males and 55.3 cm for females) and mean body mass (2.26 kg and 1.58 kg), giving a remarkable sexual difference of 43%. Van Gerdal's (1968, apud Redford \& Eisenberg 1992) assertion of sexual size dimorphism in Molina's Hog-nosed Skunk in Uruguay is therefore corroborated by our data.

Regarding reproduction of C. chinga, we recorded six litters, ranging from two to three pups (mean, 2.5). The reproductive period of C. chinga seems related to climatic seasons. Several matings were recorded in late winter and early spring (July-October), when we also found road-killed individuals carrying foetuses. In our telemetry survey, two females were observed with pups in the spring and early summer (October-January); one seemed to have given birth in September, being always seen with its pups until February, when the pups were no longer observed. In the summer (January and February), there were many observations of young individuals, apparently dispersing or searching for territories. Thus, we believe that birthing coincides with the beginning of the spring, and that the juveniles disperse in summer, after living 4-5 months with their mothers. There are still no such data for C. semi-
striatus, but our ongoing field efforts are also designed to address issues of this species's biology

Conclusions

Considering information from literature and our first surveys, we can recognise that C. chinga and C. semistriatus are: (i) two separate species-genetically and morphologically distinct and apparently occurring in two different (and perhaps isolated) habitats: Cerrado (C. semistriatus) and Pampa/Chaco (C. chinga); (ii) closely associated with grassland habitats; (iii) feeders mainly on insects, but also opportunistically on small vertebrates, larger carcasses and vertebrate eggs; (iv) nocturnal, solitary, with an apparently defined breeding season associated with warmer weather (early spring), and showing some degree of parental care (pups spend 4-5 months with their mothers) prior to juvenile dispersal; and (v) tolerant of human disturbance, although this is a major cause of mortality.

All these studies and field observations are in a very initial phase, and some current impressions may need to be re-evaluated as we gather more data. Moreover, it is also clear that these are very poorly known species, still requiring many studies to refine current understanding of ecology, behaviour, evolution and taxonomy. We hope that our ongoing efforts will enhance understanding of the biology of Conepatus, allowing design and implementation of effective conservation strategies.

Acknowledgements

We would like to thank Associação Pró-Carnívoros, Paulo Bonfim Chaves, Maurício Tavares, Jorge Cheren, Marina Piccoli, Fabio Mazim, Rafael Czepielewski, José Bonifácio Garcia Soares and Cladinara Roberts Sarturi for providing biological samples and helping in the research efforts and implementation. We also thank IdeaWild, Insituto Desert, CNPq and CAPES for grant and scholarship supports.

References

Cabrera, A. 1958 (for 1957). Catálogo de los mamíferos de América del Sur. Revista del Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Ciencias Zoológicas 4(1): i-iv, 1-308.
Cáceres, N. C. 2004. Occurrence of Conepatus chinga (Molina) (Mammalia, Carnivora, Mustelidae) and other terrestrial mammals in the Serra do Mar, Paraná, Brazil. Revista Brasileira de Zoologia 21: 577-579.
Cheida, C. C., Nakano-Oliveira, E., Fusco-Costa, R., Rocha-Mendes, F. \& Quadros, J. 2006. Ordem Carnivora. Pp. 231-276 in dos Reis, N. R., Peracchi, A. L., Pedro, W. A. \& Lima, I. P. (eds) Mamiferos do Brasil. Londrina, Brazil.
Donadio, E., Di Martino, S., Aubone, M. \& Novaro, A. J. 2001. Activity patterns, home-range, and habitat selection of the Common Hognosed Skunk, Conepatus chinga (Mammalia, Mustelidae), in northwestern Patagonia. Mammalia 65: 49-54.
Donadio, E., Di Martino, S., Aubone, M. \& Novaro, A. J. 2004. Feeding ecology of the Andean Hog-nosed Skunk (Conepatus chinga) in areas under different land use in north-western Patagonia. Journal of Arid Environments 56: 709-718.
Dragoo, J. W., Honeycutt, R. L. \& Schmidly, D. J. 2003. Taxonomic status of white-backed hog-nosed skunks, genus Conepatus (Carnivora: Mephitidae). Journal of Mammalogy 84: 159-176.
Eisenberg, J. F. 1989. Mammals of the Neotropics: the northern Neotropics. University of Chicago Press, Chicago, U.S.A

Eisenberg, J. F. \& Redford, K. H. 1999. Mammals of the Neotropics: the central Neotropics (Ecuador, Peru, Bolivia, Brazil). University of Chicago Press, Chicago, U.S.A.
Ferreira, G. B. 2008. O mosaico de habitats e a comunidade de mamiferos de médio e grande porte do Parque Nacional Cavernas do Peruaçu, norte de Minas Gerais. Universidade Federal de Minas Gerais (Msc. dissertation), Minas Gerais, Brazil
Fuller, T. K., Johnson, W. E., Franklin, W. L. \& Johnson, K. A. 1987. Notes on the Patagonian Hog-nosed Skunk (Conepatus humboldtii) in southern Chile. Journal of Mammalogy 68: 864-867.
Gonçalves, F. A., Cechin, S. Z. \& Bager, A. 2007. Predação de ninhos de Trachemys dorbigni (Duméril \& Bibron) (Testudines, Emydidae) no extremo sul do Brasil. Revista Brasileira de Zoologia 24: 1063-1070.
González-Maya, J. F., Schipper, J. \& Benítez, A. 2009. Activity patterns and community ecology of small carnivores in the Talamanca region, Costa Rica. Small Carnivore Conservation 41: 9-14.
Kipp, H. 1965. Beitrag zur Kenntnis der Gattung Conepatus Molina, 1782. Zeitschrift für Sängetierkunde 30: 193-232.

Nowak, R. M. 1999. Walker's mammals of the world. Johns Hopkins University Press, Baltimore, U.S.A.
Redford, K. H. \& Eisenberg, J. F. 1992. Mammals of the Neotropics: the southern cone. University of Chicago Press, Chicago, U.S.A.
Rodrigues, A. S. M. \& Auricchio, P. 1994. Mustelideos do Brasil. Coleção Terra Brasilis, Série Zoologia - Zoo III, Mamíferos do Brasil, São Paulo-SP, Brazil.
Silveira, L. 1999. Ecologia e conservação dos mamiferos carnívoros do Parque Nacional das Emas, Goiás. Universidade Federal do Goiás (Msc. dissertation), Goiânia, Goiás, Brazil.

Sunquist, M. E., Sunquist, F. \& Daneke, D. E. 1989. Ecological separation in a Venezuelan llanos carnivore community. Pp. 197-232 in Redford, K. H. \& Eisenberg, J. F. (eds) Advances in Neotropical mammalogy. Sandhill Crane Press, Gainesville, Florida, U.S.A.
Travaini, A., Delibes, M. \& Ceballos, O. 1998. Summer foods of the Andean Hog-nosed Skunk (Conepatus chinga) in Patagonia. Journal of Zoology, London 246: 457-460.
Wozencraft, W. C. 2005. Order Carnivora. Pp. 532-628 in Wilson, D. E. \& Reeder, D. M. (eds) Mammal species of the world: a taxonomic and geographic reference, 3rd edn. Johns Hopkins University Press, Baltimore, Maryland, U.S.A.

${ }^{1}$ Instituto de Biociências, UFRGS, Av. Bento Gonçalves 9500, prédio 43433, Porto Alegre, RS, 91501-970, Brazil.

${ }^{2}$ Faculdade de Biociências, PUCRS, Av. Ipiranga 6681, prédio 12, Porto Alegre, RS, 90619-900, Brazil.
${ }^{3}$ Instituto de Ciências Biológicas, UFMG, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil.

${ }^{4}$ Unidade de Estudos Básicos, UEMA, Cidade Universitária Paulo VI, São Luis, MA, 65055-970, Brazil.

${ }^{5}$ Instituto Pró-Carnívoros, Av. Horácio Neto, 1030, Casa 10, Parque Edmundo Zanoni, Atibaia, SP, 12940-970, Brazil.

Corresponding author email: eduardo.eizirik@pucrs.br

