PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL

FACULDADE DE BIOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM ZOOLOGIA

TESE DE DOUTORADO

ANÁLISE DA DISTRIBUIÇÃO ESPACIAL DO MELANISMO NA FAMÍLIA

FELIDAE EM FUNÇÃO DE CONDICIONANTES AMBIENTAIS

Lucas Gonçalves da Silva

Orientador: Dr. Eduardo Eizirik

Porto Alegre – RS – Brasil

2014

LUCAS GONÇALVES DA SILVA

ANÁLISE DA DISTRIBUIÇÃO ESPACIAL DO MELANISMO NA FAMÍLIA FELIDAE EM FUNÇÃO DE CONDICIONANTES AMBIENTAIS

Tese apresentada como requisito para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Zoologia da Faculdade de Biociências da Pontifícia Universidade Católica do Rio Grande do Sul.

Orientador: Dr. Eduardo Eizirik

Porto Alegre - RS - Brasil

2014

LUCAS GONÇALVES DA SILVA

ANÁLISE DA DISTRIBUIÇÃO ESPACIAL DO MELANISMO NA FAMÍLIA FELIDAE EM FUNÇÃO DE CONDICIONANTES AMBIENTAIS

Tese apresentada como requisito para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Zoologia da Faculdade de Biociências da Pontifícia Universidade Católica do Rio Grande do Sul.

Aprovada em: _____ de _____ de _____

BANCA EXAMINADORA:

Prof. Dr.

Prof. Dr.

Prof. Dr.

Porto Alegre - RS - Brasil

2014

Aos que acreditaram, incentivaram e colaboraram com esse projeto.

AGRADECIMENTOS

Durante quatro anos do doutorado estive rodeado de muitas pessoas importantes e sem elas alcançar esse objetivo provavelmente teria sido muito mais difícil. Porém, como muitas coisas na minha vida descendem de muitos anos, não só pessoas que conviveram comigo nesse período dos últimos quatro anos, mas que contribuíram na minha história tem uma parte da minha gratidão nesse momento. Com certeza a união de todos que citarei nas próximas linhas que fez tudo isso acontecer.

Em primeiro lugar agradeço ao meu orientador Prof. Dr. Eduardo Eizirik pela oportunidade, confiança, orientação e parceria durante esse período. Sem os ensinamentos, compartilhamento de experiências e de todo o conhecimento científico esse projeto não seria possível. Orientado normalmente espelha-se muito em seu orientador, e você é um exemplo de grande pesquisador e chama atenção pela dedicação e entusiasmo com que encara o trabalho. Duda, meu sincero muito obrigado.

Em segundo lugar gostaria de agradecer a minha família. Meus pais Nersi Maria G. da Silva e Luiz Alberto G. da Silva por toda a educação, compreensão e incentivo a estudar minha vida toda. Aos meus irmãos Diego G. da Silva, Luis Felipe G. da Silva e Valentina G. da Silva pelos momentos familiares e todo o carinho. Também aos meus avós e demais familiares. Amo todos vocês.

Um agradecimento especial a todos os pesquisadores/colaboradores brasileiros e estrangeiros que de alguma forma contribuíram com esse projeto. Foram mais de 100 pesquisadores de mais de 20 países que compartilharam seus dados, fotos, experiências e produções conosco, parte muito importante para a elaboração desse estudo. São eles: Peter Crawshaw Jr., Ronaldo Morato, Laury Cullen Jr., Leandro Silveira, Edsel Amorim Jr., Tadeu de Oliveira, Carlos Benhur Kasper, Jorge Cherém, Rony García-Anleu, Katia Barros Ferraz, Francesca Palmeira, Daniel Rocha, Emiliano Ramalho, Renata Pitman, Patricia Medici, Christoph Knogge, Rogerio Cunha de Paula, Tiago Freitas, Esteban Payan, Benoit de Thoisy, Agustin Paviolo, Mario DiBitteti, Alexandre Vogliotti, Linda Gordon, Denis Sana, Kristofer Helgen, Eileen Westwig, Andrew Stein, Esther Langan, Milind Pariwakam, Biswajit Mohanty, Kashmira Kakati, Philip Ross, Anton Ario, Ezekiel Fabiano, Andrew Kittle, Kae Kawanishi, Bruce Kekule, Reuben Clements, Arezoo Sanei, Thomas Gray, Shu Jin Luo, Beatriz Beisiegel, Philipp Henschel, Stephen Brend, Stuart Pimm, Corey Bradshaw, Vidya Atreya, Dipankar Ghose, Sandeep Sharma, Arash Ghoddousi, Thaiane Weinert, Sayed Babak, Bertha Ferrars, Jane Budd,

Yury Shibnev, Ekaterina Nicolaeva, Alexander Reebin, João Feliz de Moraes, Guy Balme, Michelle Altenkirk, Allwen Jesudasan, Igor Khorozian, David Stanton, David Macdonald, Mel Sunquist, Accioly Gomes, Micheline Vergara, Johnny Jensen, Kevin Flesher, Keila Juarez, Angad Achappa, Guilherme Ferreira, Divya Mudappa, Joseph Vattakaven, Andrew Hearn, Jean Remy Makana, Ashley Vosper, John Hart, David Burslem, Staline Kibet, Glen Reynolds, Dale Miguelle, Muhammad Waseem, Annemarie Stewart, Constanza Napolitano, Hans Bauer, Ullas Karanth, Carlos DeAngelo, Sonam Wang, John Goodrich, Shomita Mukherjee, Limin Feng, Will Mesquita, Leonardo Viana, Fabricio Santos, Fernando Tortato, Felipe Gomes, Marcelo Mazzoli, Iran de Souza, Marina Xavier, Felipe Peters, Caroline Sartor, Everton Behr, Germano Woehl Jr., Rafael Garziera, Guilherme Trovati, Flavia Conte, Veronica Quiroga, Erika Cuyckens, Javier Pereira, Juan Carlos Chebez, Leonardo Maffei, Juan Ortega, Jose Moreira, Rob Pickles, Rodolfo Vasquez, Jonatan Soares, Juliana Santos, Anibal Parera, Michael Tewes, Francisco Illescas, Samuel Santos, Adriano Paglia, Amanda Galvão, Ashok Kumar, Paula Almeida, Diana Uribe, Marco Antonio Rego, Rose Morato, Christina Connoly, Samuel Perez, Analice Calaça, Eric Sanderson, Regis Lahm, Julio Cesar Bicca-Marques, Sandro Bonatto, Nelson Fontoura, Natalia Tôrres, Fabio Mazim, Tathiana Bagatini, Ricardo Boulhosa, Carlos de Angelo, Gustavo Fonseca, Adilson Schneider, Mauro Lucherini, Diego Queirolo, Alexandre Uezu, Cláudio Pádua, Frederico Lemos, Rodolpho Mafei, Suely Aguiar, Apolonio Nelson, Vladimir Dinets, Rebeca Mascarenhas, Raquel Moura, Neil Carter, Anthony Giordano e Alice Laguardia.

Gostaria também de agradecer às instituições que cederam dados e colaboraram com o andamento do trabalho: American Museum of Natural History, Smithsonian Institution, Panthera, Wildlife Conservation Society, World Wild Fund, IUCN Cat Specialist Group, Instituto de Pesquisas Ecológicas, Instituto Biotrópicos, CENAP ICMBio, Instituto Pro-Carnívoros, Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis, National Geographic Society, Projeto Carnívoros do Iguaçu, Jaguar Conservation Fund, Conservation International, Universidade de São Paulo, Museu Paraense Emilio Goeldi, Society for Conservation Biology, Instituto Mamirauá, Ceiba, Proyecto Yaguarete, Asian Leopard Specialist Group, Carnívoros das Serras, S.P.E.C.I.E.S, International Society of Zoological Sciences, Lion Guardians, Projeto Onçafari, Wildlife Conservation Trust, Duke University, Peking University, MunYa Wana Leopard Project, Instituto Nacional de Pesquisas Espaciais, Universidade Federal de Santa Maria, Oxford WildCru, Universidade Federal do Rio Grande do Sul, Conicet, Felidae Conservation Fund, Conservation India, Cape Leopard Trust, Atree India, Cheetah Conservation Project, Ocelot Project, Nature Conservation Foundation, Environmental Systems Research Institute, Clark Labs, Global Biodiversity Information Facility e Ministério do Meio Ambiente do Brasil.

Agradeço à Pontifícia Universidade Católica do Rio Grande do Sul, ao Programa de Pós-Graduação em Zoologia e aos professores do PPG.

Agradeço ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pela bolsa concedida.

Um muito obrigado a todos os colegas de laboratório, pela convivência e trabalho em equipe de todos os dias: Manoel Rodrigues, Renata Bornholdt, Taiana Haag, Tatiane Trigo, Flavia Tirelli, Henrique Fiqueiró, Fernanda Pedone, Talita Pereira, Cris Trinca, Mirian Tsuchiya, Alexsandra Schneider, Laura Heidtmann, Ana Cypriano, Carla Pires, Adriana Giongo, Taiz Simão, Marina Favarini, Tiago Ferraz, Mauricio Bogo, Laura Utz, Italo Mourthe, Fabíola Pereira e demais colegas. Valeu "Genômicos"!.

Muito obrigado Liana Webber, pelo amor e compreensão em todos os momentos. O último ano do meu doutorado foi bem mais feliz ao teu lado.

Agradeço aos meus muitos amigos, do Brasil e exterior, pelos momentos felizes e pelo apoio em todas as horas.

E a todas as pessoas que não estão citadas aqui mas participaram de alguma forma de tudo isso.

Sinceros agradecimentos a todos, de coração.

"Earth and sky, woods and fields, lakes and rivers, the mountain and the sea, are excellent schoolmasters, and teach some of us more than we can ever learn from books."

- John Lubbock (The Use of Life, 1894) -

SUMÁRIO

RESUMO 01
ABSTRACT 03
CAPÍTULO 1: INTRODUÇÃO GERAL 05
1. Diversidade de coloração e o melanismo em populações naturais
2. Ocorrência do melanismo em felinos 08
3. Aspectos biológicos das espécies foco 11
3.1. A onça-pintada (Panthera onca) (Linneaus, 1758) 11
3.2. O jaguarundi (Puma yagouaroundi) (Geoffroy, 1803) 14
3.3. O leopardo (Panthera pardus) (Linneaus, 1758) 15
4. Modelagem de distribuição de espécies como ferramenta para estudos de
ecologia, conservação e evolução17
5. Objetivos
5.1. Objetivo geral
5.2. Objetivos específicos
CAPÍTULO 2: ARTIGO CIENTÍFICO (Panthera onca) 22
CAPÍTULO 3: ARTIGO CIENTÍFICO (Puma yagouaroundi) 52
CAPÍTULO 4: ARTIGO CIENTÍFICO (Panthera pardus) 80
CAPÍTULO 5: DISCUSSÃO GERAL 108
PERSPECTIVAS 114
REFERÊNCIAS BIBLIOGRÁFICAS 116
APÊNDICES 138

RESUMO

A variação na coloração animal é um tema que intriga pesquisadores da área de biologia evolutiva há bastante tempo. Dentre as variações observadas, o melanismo é um polimorfismo de coloração comum em diversos grupos de organismos, definido pela predominância de uma cor escura na superfície do corpo. Diversos fatores biológicos, como termorregulação, suscetibilidade ou resposta a doenças, camuflagem, aposematismo, seleção sexual e sucesso reprodutivo podem ser influenciados pelo melanismo, o que torna o seu estudo bastante relevante, inclusive como um sistema modelo para investigações evolutivas de polimorfismos fenotípicos em geral. Sua ocorrência é comum na família Felidae, tendo sido documentada em 13 das 38 espécies do grupo e, em alguns casos, podendo atingir altas frequências em certas populações. Hipóteses clássicas sugerem que essas variantes de pelagem podem apresentar vantagens adaptativas em certas circunstâncias ecológicas, o que até o momento não foi testado de forma rigorosa para qualquer das espécies do grupo. O presente estudo teve como foco o melanismo em três espécies de felídeos: onças-pintadas (Panthera onca), jaguarundis (Puma yagouaroundi) e leopardos (Panthera pardus), nas quais esta variante é causada por diferentes mutações nos genes MC1R e ASIP, de herança dominante, semi-dominante e recessiva, respectivamente. No presente estudo, para cada uma destas espécies, foram consideradas duas hipóteses concorrentes: (I) o melanismo constitui um polimorfismo neutro, presente em toda a área de distribuição e de forma aleatória entre ambientes distintos, com ausência de associação com variáveis ambientais; e (II) o melanismo está distribuído espacialmente de forma estruturada e não-randômica, e associada a parâmetros ambientais e condicionantes biogeográficos específicos. A partir de registros provenientes de coleções científicas, armadilhas fotográficas, capturas e DNA fecal cobrindo a maior parte da distribuição geográfica das espécies focais, foram obtidas 794 amostras de onças-pintadas, 463 de jaguarundis e 623 de leopardos, com aferição da coloração em nível individual. As modelagens e análises estatísticas foram realizadas com os programas Maxent (algoritmo de máxima entropia), ArcGis 9.3 e SPSS 17, utilizando variáveis ambientais obtidas a partir das bases de dados WorldClim, Climond, SRTM e GlobCover. Os resultados apresentam pela primeira vez um mapa de distribuição geográfica do melanismo em felinos, bem como estimativas da frequência dessa característica nestas três espécies. A frequência observada de melanismo foi de 9% em onças-pintadas, 80% em jaguarundis e 10% em leopardos, sendo que em todas as espécies o padrão de distribuição geográfica foi significativamente não-aleatório. Nas onças-pintadas, em ecoregiões de paisagens abertas periodicamente inundadas como o Pantanal (Brasil) e os Llanos (Colômbia/Venezuela), o melanismo foi totalmente ausente, apesar do grande número de amostras provenientes destas regiões, ao contrário de áreas florestais, onde a frequência do melanismo se manteve semelhante ao esperado para a espécie como um todo. Em jaguarundis, o padrão fenotípico escuro (que é evolutivamente derivado) mostrou-se muito mais comum na natureza do que a coloração ancestral (avermelhada), estando o primeiro distribuído em todas as áreas de ocorrência da espécie, e a segunda associada fortemente a paisagens mais secas e abertas. Em leopardos, o melanismo está presente em cinco das nove subespécies atualmente reconhecidas, e fortemente associado a florestas tropicais e subtropicais úmidas, especialmente na região do sudeste asiático. Análises dos parâmetros ambientais que parecem influenciar de forma mais relevante a ocorrência do melanismo nestas três espécies sugerem um papel importante de fatores como altitude, temperatura, radiação solar e umidade em diferentes conformações de paisagem. Essas observações apoiam a hipótese de que o melanismo em felinos não constitui um polimorfismo neutro, sofrendo a ação de seleção natural relacionada a variáveis ambientais e conformações de paisagem, o que induz uma distribuição geográfica não-aleatória deste fenótipo de coloração.

Palavras-chave: fenótipo, melanismo, polimorfismo, biomas, felinos, seleção natural.

ABSTRACT

Variation in animal coloration is a theme that has intrigued evolutionary biologists for a long time. Among the commonly observed pigmentation polymorphisms, melanism (darkening of the surface coloration) has been reported quite frequently in multiple groups of organisms. Several biological factors may be influenced by melanism, including thermoregulation, susceptibility or response to disease, camouflage, aposematism, sexual selection and reproductive success. Melanism is common in the Felidae, having been documented in 13 of its 38 species, in some cases reaching high frequencies in natural populations. Classical hypothesis have suggested that such coat color variants can present adaptive advantages under certain ecological conditions, but these ideas have never been rigorously tested for any wild cat species. In jaguars (Panthera onca), jaguarundis (Puma yagouaroundi) and leopards (Panthera pardus) melanism is caused by different mutations in the MC1R and ASIP genes, which present dominant, semi-dominant and recessive inheritance patterns, respectively. In this study we have focused on melanism in these three cat species, and considered two competing hypotheses: (I) melanism is a neutral polymorphism that is randomly distributed throughout the range of each of these species, bearing no association with particular habitats or environmental variables; and (II) melanism has a non-random distribution, and presents significantly different frequencies among distinct landscape conformations. We constructed databases of records obtained from scientific collections, camera trap studies, individual captures and fecal DNA samples that collectively covered most of the ranges of the focal species. We obtained 794 records of jaguars, 463 jaguarundis and 623 leopards, including individually ascertained information on coat color. We performed modeling and statistical analyses using the software packages Maxent (maximum entropy algorithm), ArcGis 9.3 and SPSS 17, based on environmental variables obtained from the Worldclim, Climond, SRTM and GlobCover databases. The results allowed for the first time the construction of maps depicting the geographic distribution of melanism in wild cat species, as well as estimates of its frequency in the three target species. The frequency of melanism was ca. 9% in jaguars, 80% in jaguarundis, and 10% in leopards, and all three species showed a non-random distribution pattern of this coloration variant. In jaguars, melanism was totally absent from ecoregions containing open and periodically flooded landscapes, such as the Pantanal (Brazil) and Llanos (Colombia/Venezuela), which was striking

given the large number of samples surveyed in these regions; in contrast, forested areas displayed a melanism frequency that was similar to that expectation based on the species as a whole. In jaguarundis, the dark phenotype (which is evolutionarily derived) proved to be much more common in nature than the ancestral reddish form, with the former being distributed across all areas in which the species occurs, and the latter being highly associated with open and dry landscapes. In leopards, melanism was present in five of the nine currently recognized subspecies, and was strongly associated with tropical and subtropical moist forests, especially in Southeast Asia. Analyses of environmental parameters that seem to be most influential on the melanism occurrence in these three species suggest a relevant role for factors such as altitude, temperature, solar radiation and moisture in different landscape conformations. These observations support the hypothesis that melanism in felids is not a neutral polymorphism, and undergoes the influence of natural selection related to environmental variables and landscape conformations, leading to a non-random geographic distribution of this coloration phenotype.

Keywords: phenotype, melanism, polymorphism, biomes, felids, natural selection.

CAPÍTULO 1:

INTRODUÇÃO GERAL

1. Diversidade de coloração e o melanismo em populações naturais

A grande variedade de padrões de coloração observada no reino animal é um tema de especial interesse no que tange à compreensão dos mecanismos que geram e mantêm essa variação. A base molecular, o significado adaptativo e a influência de processos evolutivos sobre características fenotípicas ainda são lacunas do conhecimento e há bastante tempo intrigam pesquisadores na área da biologia evolutiva. A variação fenotípica é diretamente influenciada pela evolução, portanto, é importante conhecer quantos e quais genes estão associados a variantes de coloração, identificar a existência de fenótipos convergentes e mensurar como a atuação da seleção natural e processos demográficos afetam essa diversidade.

A relevância comportamental e ecológica da coloração animal pode ser fruto de papel adaptativo em alguns contextos. Características funcionais das espécies podem ser afetadas diretamente pela variação de coloração: (I) camuflagem (efeito de confusão entre a coloração do ambiente e do animal afetando sua detecção visual) ou coloração disruptiva (padrões de coloração que confundem os contornos do animal); (II) comunicação intraespecífica (interação de indivíduos da mesma espécie) ou interespecífica (comunicação entre espécies distintas, aposematismo) e; (III) processos fisiológicos como termorregulação ou suscetibilidade a doenças e patógenos (Cott, 1940; Majerus, 1998; Caro, 2005). Apesar desses conceitos serem recentes dentro da Ecologia, uma antiga regra zoológica proposta por Gloger (1833) cita a associação de animais endotérmicos de coloração mais pigmentada com ambientes mais úmidos, baseada em um estudo de plumagem em aves. Entretanto, a 'regra de Gloger' como é conhecida fundamenta-se em observações, proposições anedóticas e especulações sobre a seleção Darwiniana atuando na coloração animal, porém sem ter sofrido até o momento algum rigoroso teste da hipótese. O tema veio a ser novamente estudado por Poulton (1890) com foco em lepidópteros, posteriormente por Beddard (1895) e mais recentemente por Burtt & Ichida (2004).

Existem três diferentes possibilidades evolutivas para a ocorrência de fenótipos semelhantes em espécies distintas. No primeiro caso, uma mesma mutação em um determinado gene pode causar convergência adaptativa (Ling *et al.*, 2003; Rompler *et al.*, 2006). Em um segundo caso, diferentes mutações no mesmo gene podem produzir um fenótipo semelhante (Rosenblum, 2006) ou, em um terceiro caso, mutações em diferentes genes estão associadas ao mesmo fenótipo (Hoekstra, 2006). Além disto, há a

possibilidade de uma determinada mutação envolvida com padrões fenotípicos ter ocorrido uma vez no passado e ser mantida por meio de processos de especiação subsequentes, que deram origem aos táxons atuais (Colosimo *et al.*, 2005). Ou ainda o surgimento da mutação em uma determinada linhagem e sua transferência a outras através de processos de hibridação ou introgressão (Anderson *et al.*, 2009). Essas possibilidades até o momento foram pouco exploradas em sistemas naturais e carecem de novas investigações.

O melanismo é um polimorfismo de coloração bastante comum em diversos grupos de organismos, em que se observa um escurecimento geral do tegumento (pigmentação superficial) em relação ao que seria considerado o padrão fenotípico normal ou selvagem, devido à alta produção de melanina (Majerus, 1998). É uma característica que evoluiu em uma ampla variedade de formas de vida, documentada tanto em laboratório (Silvers, 1979; Barsh, 1995) quanto em populações naturais (Searle, 1968). Existem hipóteses clássicas que postulam um potencial papel adaptativo do melanismo em diferentes espécies, envolvendo diversos possíveis impactos na sobrevivência ou reprodução dos indivíduos (por exemplo: Cott, 1940; Ortolani & Caro, 1996; Majerus, 1998; Caro, 2005). Diversos fatores biológicos como termorregulação, suscetibilidade ou resposta a doenças, camuflagem, aposematismo, seleção sexual e sucesso reprodutivo podem ser diretamente influenciados pelo melanismo, sendo que na maior parte dos casos tais possibilidades ainda não foram testadas de forma completa e rigorosa (Majerus, 1998).

Os mamíferos são um grupo de evidentes e variadas características fenotípicas, tanto entre espécies quanto em nível intraespecífico, tornando-se um promissor modelo de estudo sobre polimorfismos (Hubbard *et al.*, 2010), incluindo o melanismo. O foco deve ser na descoberta de quais são os genes envolvidos, as exatas mutações que implicam em características fenotípicas e seus efeitos em funções proteicas regulatórias (Barsh, 1996; Hubbard *et al.*, 2010). Entretanto, existem poucos estudos acerca da associação fenótipo/genótipo em populações naturais visando elucidar o significado adaptativo desta variante de pigmentação (Vage *et al.*, 1997; Rieder *et al.*, 2001; Hoekstra, 2006; Ishida *et al.*, 2006; Candille *et al.*, 2007). Existem dois principais locos gênicos responsáveis pela ocorrência do melanismo em mamíferos: *MC1R* (*Receptor de Melanocortina-1*) e *ASIP* (*Proteína Sinalizadora de Agouti*) (Robbins *et al.*, 1993; Perry *et al.*, 1996). A interação dos produtos regulados pelos genes *MC1R* e *ASIP* influencia diretamente a produção de melanina. Fenótipos melânicos são associados com mutações

de herança dominante no gene *MC1R* (Jackson, 1994) ou mutações de herança recessiva no gene *ASIP* (Robbins *et al.*, 1993). De forma sucinta, o ganho-de-função da proteína *MC1R* ou a perda-de-função da *ASIP* induzem o melanismo em mamíferos. A identificação desses genes como candidatos a responsáveis pela variação de coloração de vertebrados é descrita em vários trabalhos. Polimorfismos no *MC1R* estão associados ao melanismo em raposas (Vage *et al.*, 1997), porcos (Kijas *et al.*, 1998), ovelhas (Vage *et al.*, 1999), vacas (Klungland *et al.*, 1995), onças-pintadas/jaguarundis (Eizirik *et al.*, 2003), aves (Takeuchi *et al.*, 1996; Theron *et al.*, 2001), roedores (Nachman *et al.*, 2003), primatas (Mundy & Kelly, 2003) e esquilos (McRobie *et al.*, 2009). Já polimorfismos no gene *ASIP* estão associados ao melanismo em ratos (Kuramoto *et al.*, 2001; Kingsley *et al.*, 2009), cavalos (Rieder *et al.*, 2001), gatos domésticos (Eizirik *et al.*, 2003) e leopardos (Schneider *et al.*, 2012).

2. Ocorrência do melanismo em felinos

A família Felidae é um grupo potencialmente excelente como modelo investigativo de complexos processos evolutivos relacionados com a pigmentação da pelagem em populações naturais. A ocorrência de pigmentação polimórfica é comum em felinos domésticos e selvagens, apresentando variação na pigmentação de fundo e na presença, forma, coloração e distribuição de pintas e manchas. Esses distintos padrões sempre serviram de base para clássicas hipóteses de associações ecológicas em ambientes distintos e, dentre as variações na coloração da pelagem, uma das mais comuns na família Felidae é o melanismo. Essa característica variação fenotípica está presente em 13 das atuais 38 espécies do grupo (Eizirik *et al.*, 2003; Schneider *et al.*, 2012) (Figura 1).

Alguns destes casos são muito conhecidos. Onças-pintadas (*Panthera onca*) e leopardos (*Panthera pardus*) melânicos possuem pelagem totalmente diferente do padrão usual ("selvagem") pintado da espécie (fundo claro com rosetas) (Wallace, 1877; Pocock, 1929; Pocock, 1930; Nelson & Goldman, 1933; Searle, 1968; Robinson, 1970, Allen *et al.*, 2010). Esses animais apresentam escurecimento da coloração de fundo, tornando-a quase que completamente preta (Ulmer, 1941; Robinson, 1976; Sunquist & Sunquist, 2002; Wilson & Mittermeier, 2009; Schneider *et al.*, 2012) e são conhecidos popularmente como panteras negras. Ao contrário, a coloração melânica do jaguarundi (*Puma yagouaroundi*) tem uma variação entre o acinzentado e o cinza-chumbo e difere

completamente da pelagem avermelhada (Searle, 1968; Robinson, 1976; Wilson & Mittermeier, 2009), a qual representa o estado ancestral nesta espécie (Eizirik *et al.*, 2003).

Linhagem	Foto	Espécie	Melanismo
	3	Felis catus	Presente / Mutação conhecida*
	Jer.	Felis silvestris	
Linhagem do	Part of the second	Felis libyca	
	- Jean P	Felis bieti	
gato-domestico	ST	Felis margarita	
	Contraction of the second	Felis nigripes	
	9775	Felis chaus	Presente / Mutação desconhecida
Linhagem do leopard cat	1.25	Otocolobus manul	
	M.	Prionailurus rubiginosus	
	- AK	Prionailurus bengalensis	
	500	Prionailurus viverrinus	
	Cak?	Prionailurus planiceps	
	P	Puma concolor	
Linhagem do puma	Ant	Puma yagouaroundi	Presente / Mutação conhecida*
r	TR	Acinonyx jubatus	
		Lynx pardinus	
Linhagem do	*10	Lynx lynx	*****
lynx	Land	Lynx canadensis	
	S. Co.	Lynx rufus	Presente / Mutação desconhecida
		Leopardus pardalis	
	N	Leopardus wiedii	
	Ser of	Leopardus jacobita	
Linhagem da	- Torrad	Leopardus colocolo	Presente / Mutação conhecida***
jaguatirica	50	Leopardus geoffroyi	Presente / Mutação conhecida***
		Leopardus guigna	Presente / Mutação conhecida***
	3 M	Leopardus tigrinus	
	A.P.	Leopardus guttulus	Presente / Mutação desconhecida
Linhagem do caracal	·BR	Caracal caracal	
		Caracal aurata	
	- Ar	Caracal serval	Presente / Mutação desconhecida
Linhagem do bay cat	A	Pardofelis badia	
	S.E.P.	Pardofelis temminckii	Presente / Mutação conhecida**
	-57	Pardofelis marmorata	Presente / Mutação desconhecida
Linhagem das panteras		Panthera leo	
	200	Panthera onca	Presente / Mutação conhecida*
	THE C	Panthera pardus	Presente / Mutação conhecida**
	1 Mar	Panthera tigris	
	13	Panthera uncia	
	ATVS	Neofelis nebulosa	

* Eizirik *et al.* (2003) ** Schneider *et al.* (2012) *** Schneider (2013)

Figura 1 - Ocorrências do melanismo na família Felidae.

O gene MC1R em felinos consiste em um éxon de 951 pb (317 códons) com estrutura similar à de outros mamíferos (Mountjoy et al., 1992; Robbins et al., 1993; Vage et al., 1999). A ocorrência de melanismo em onças-pintadas e jaguarundis é provocada por duas diferentes deleções no gene MC1R. Onças melânicas possuem uma sequência alélica mutante com ausência de 15 pb (5 códons), como resultado de uma deleção nas posições 301-315. Os jaguarundis melânicos possuem uma segunda deleção no gene MC1R, na qual são removidos 24 pb (8 códons) em uma posição adjacente, distinta da encontrada nas onças-pintadas. Essas deleções derivam de eventos de mutação independentes e refletem heranças de efeito dominante e semidominante, respectivamente (Eizirik et al., 2003). No caso das onças-pintadas, foi encontrada concordância de 100% com um padrão dominante de herança do melanismo a partir da análise de indivíduos amostrados ao longo da distribuição geográfica da espécie (Eizirik et al. 2003; Haag et al., 2010I) e, no jaguarundi, a semidominância desta variante de pelagem foi inferida através de uma abordagem semelhante (Eizirik et al. 2003). Já nos leopardos a ocorrência do melanismo é provocada por uma mutação localizada no exon 4 do gene ASIP, inserindo um códon de parada na posição 111, o que provavelmente elimina por completo a função da proteína codificada (Schneider et al., 2012). A descoberta da mutação causadora do melanismo em leopardos corroborou a anteriormente conhecida herança recessiva proposta por Robinson (1969) e foi inferida a partir de amostras do sudeste da Ásia (Schneider et al., 2012), área conhecida pela alta frequência de indivíduos melânicos (Kawanishi et al., 2010).

Análises recentes indicam que o melanismo surgiu independentemente pelo menos oito vezes dentro da família Felidae (Schneider *et al.*, 2012), representando sete das oito linhagens evolutivas do grupo (Johnson *et al.*, 2006), em alguns casos atingindo frequências populacionais bastante altas (por exemplo, Dittrich, 1979; Kawanishi *et al.*, 2010). Tais observações apoiam a hipótese de que o melanismo pode trazer uma vantagem adaptativa em certas circunstâncias ecológicas (Ulmer, 1941; Eizirik & O'Brien, 2003; Caro, 2005; Allen *et al.*, 2010). Referências que remetem ao século 19 e à primeira metade do século 20 citam a hipótese de associação de indivíduos escuros com áreas mais úmidas e de formações vegetais densas (por exemplo, florestas tropicais) (Gloger, 1833; Poulton, 1890; Cott, 1940; Ulmer, 1941). Além disso, também está citada na bibliografia uma possível seleção negativa em relação aos indivíduos de pelagem escura em áreas abertas onde a incidência solar e as temperaturas médias são altas (Ortolani & Caro, 1996; Majerus, 1998). Apesar de estas hipóteses circularem na

cultura popular há bastante tempo, e serem mencionadas periodicamente na literatura técnica como postulados anedóticos, elas nunca foram abordadas rigorosamente do ponto de vista científico e testadas de forma sistemática. A história evolutiva, os efeitos biológicos e mesmo a distribuição geográfica dessas variantes de coloração não são claramente conhecidos até o momento, de forma que o presente estudo se propõe a investigar estes tópicos pela primeira vez de maneira aprofundada.

3. Aspectos biológicos das espécies foco

Dentre as 13 espécies de felídeos em que existe a ocorrência confirmada do melanismo, três foram selecionadas para o presente estudo. Uma síntese dos principais aspectos biológicos das espécies-foco encontra-se a seguir:

3.1. A onça-pintada (Panthera onca) (Linneaus, 1758)

A onça-pintada é o maior felino das Américas, o terceiro maior do mundo e a única espécie representante do gênero *Panthera* no continente (Sunquist & Sunquist, 2002). É uma espécie de predadora de topo de cadeia (Maffei *et al.*, 2004) de grande porte e vigor físico (Sunquist & Sunquist, 2002), carnívora, oportunista, de atividade preferencialmente noturna e possui uma dieta que inclui mais de 85 espécies de mamíferos, répteis e aves (Seymour, 1989).

A distribuição atual das onças-pintadas se estende por 18 nações (Figura 2). A porção sul dos Estados Unidos é o limite norte da distribuição da espécie e a Argentina é o seu limite sul (Sanderson *et al.*, 2002; Sunquist & Sunquist, 2002; Caso *et al.*, 2014). Indivíduos da espécie foram documentados nos últimos anos nos Estados Unidos (Brown & Gonzalez, 2000, Hatten *et al.*, 2005; McCain & Childs, 2008), México (Ortega & Medley, 1999; Chavez & Ceballos, 2006; Dinets & Polechla, 2007; Vilchis *et al.*, 2008; Perez, 2011), America Central (Silver *et al.*, 2004; Perez *et al.*, 2007; Carillo *et al.*, 2009; Zeller *et al.*, 2011; Shoender & Main, 2013), Colômbia e Venezuela (Ruiz-Garcia *et al.*, 2006; Jedrzejewski *et al.*, 2011), Chaco Boliviano (Maffei *et al.*, 2004; Silver *et al.*, 2004; Morato *et al.*, 2013), Pantanal (Soisalo & Cavalcanti, 2006; Cavalcanti & Gese, 2009; Morato *et al.*, 2013), Mata Atlântica (Conforti & Azevedo 2003; Cullen Jr.

et al., 2005; Paviolo *et al.*, 2006; Paviolo *et al.*, 2008; Haag *et al.*, 2010II; Jorge *et al.*, 2013; Morato *et al.*, 2013), Cerrado (Lima *et al.*, 2013; Morato *et al.*, 2013) e Caatinga (Silveira *et al.*, 2009; Morato *et al.*, 2013). Pode ser encontrada desde o nível do mar até 3.800m de altitude (Perry, 1970; Tewes & Schmidly, 1987), mas raramente ultrapassa os 1.200m (Seymour, 1989; Sunquist & Sunquist, 2002).

Figura 2 - Distribuição conhecida da onça-pintada (Fonte: IUCN).

As onças-pintadas estão presentes em uma grande diversidade de ambientes, desde florestas tropicais até áreas semi-áridas (Sunquist & Sunquist, 2002; Caso *et al.*, 2013). Estudos de hábitats preferenciais indicam uma estreita relação da sobrevivência da espécie com corpos d'água e matas (Schaller & Crawshaw, 1980; Quigley & Crawshaw, 1992), quantidade suficiente de presas (Seymour, 1989; Swank & Teer, 1989; Paviolo *et al.*, 2009) e escape de áreas fortemente antropizadas (Quigley & Crawshaw, 1992). Adicionalmente, a espécie apresenta baixa estruturação populacional ao longo de sua distribuição, não sendo identificadas significativas diferenciações genéticas em escalas continental ou regionais. Apenas o rio Amazonas (Amazônia Central) e o Estreito de Dárien (Panamá) foram identificados como possíveis barreiras históricas ao fluxo gênico, e ainda assim parecem não ter isolado completamente as populações do seu entorno (Eizirik *et al.*, 2001).

A espécie é listada no apêndice 1 da CITES (Convention on International Trade in Endangered Species of Wild Fauna and Flora) (Hatten et al., 2005) e é considerada 'quase ameaçada' pela IUCN (International Union for Conservation of Nature) (Wozencraft, 1993; Caso et al., 2013) por conta da perda e fragmentação dos seus hábitats, além de conflitos diretos com atividades humanas (Eizirik et al., 2001; Campos et al., 2011; Carvalho & Morato, 2013). Além disso, algumas populações remanescentes podem constar como em situação crítica por estarem isoladas e possuírem poucos indivíduos (Eizirik et al., 2001; Haag et al. 2010; Galetti et al., 2013; Zeilhofer et al., 2014). Pelo fato de indivíduos da espécie ocuparem grandes extensões territoriais como suas áreas de vida (Cullen et al., 2005), as populações remanescentes distribuem-se em terras que vão além das fronteiras de áreas protegidas aumentando a probabilidade de extinção, principalmente por conta da caça e retaliação por parte de fazendeiros em função da predação de animais domésticos (Sanderson et al., 2002; Carvalho & Morato, 2013). Seu pico de declínio populacional ocorreu nos anos 1960 (Weber & Rabinowitz, 1996), exacerbando a redução de sua distribuição histórica, que hoje é 50% menor do que em 1900 (Sanderson et al., 2002) devido à sua extinção local em diversas áreas (Sunquist & Sunquist, 2002; Mazzoli, 2008). Neste contexto, planos de ação e listas locais (por exemplo: Indrusiak & Eizirik, 2003; Morato et al., 2013), além de modelos geográficos (Sanderson et al., 2002; Rabinowitz & Zeller, 2010), atualmente são as principais ferramentas para planejar e articular a conservação da espécie.

3.2. O jaguarundi (Puma yagouaroundi) (Geoffroy, 1803)

O jaguarundi é um felídeo Neotropical de pequeno porte e que possui dados deficientes sobre sua biologia, padrão de distribuição geográfica atual e sua situação populacional (Sunquist & Sunquist, 2002; Grassman & Tewes 2004; Maffei *et al.*, 2007). A espécie apresenta comportamento mais ativo no período diurno (Oliveira, 1998; Maffei *et al.*, 2007) e possui dieta generalista, alimentando-se preferencialmente de aves, répteis e pequenos mamíferos (Tófoli *et al.*, 2009).

Sua distribuição geográfica é bastante semelhante à das onças-pintadas, ocorrendo desde o Texas (sul dos Estados Unidos) até o sul da América do Sul (Sunquist & Sunquist 2003; Almeida *et al.*, 2013; Caso *et al.*, 2013) (Figura 3). Registros dos últimos anos apontam a presença do jaguarundi na Mata Atlântica (Michalski *et al.*, 2006; Tófoli *et al.*, 2009; Bianchi *et al.*, 2011), Cerrado (Trovati *et al.*, 2008; Almeida *et al.*, 2013), Caatinga (Feijó & Langguth, 2013), sul do Brasil (Indrusiak & Eizirik, 2003; Santos *et al.*, 2004; Kasper *et al.*, 2007), Chaco Boliviano (Maffei *et al.*, 2007) e sul dos Estados Unidos (Grassman & Tewes, 2004; Grigione *et al.*, 2007), ocorrendo com mais freqüência em baixas altitudes, mas podendo ser encontrado até 3.200m acima do nível do mar (Cuervo *et al.*, 1986). Em outras áreas de sua distribuição histórica como Amazônia, Pantanal, Patagônia e América Central, a atual situação de ocorrência da espécie ainda é duvidosa.

A espécie é encontrada em diversas conformações de hábitats, podendo ocorrer desde áreas semiáridas e savanas até densas florestas secas e úmidas (Oliveira, 1998; Sunquist & Sunquist 2003) e aparenta não ter forte estruturação geográfica ao longo de sua distribuição (Pires, 2012). Está atualmente listada em várias listas regionais de espécies ameaçadas, constando como 'pouco preocupante' na lista da IUCN e citada pelos apêndices I e II da CITES (Caso *et al.*, 2013). Sofre ameaça por conta da perda e fragmentação de hábitat e perseguição humana (Almeida *et al.*, 2013; Caso *et al.*, 2013), apesar de sua caça ser proibida em vários países (Coterc, 2008). Sabe-se que a espécie ocorre em baixas densidades (Oliveira *et al.*, 2010), mas ainda possui duvidosa estimativa populacional e possíevel tendência de declínio no número de indivíduos (Almeida *et al.*, 2013).

Figura 3 - Distribuição conhecida do jaguarundi (Fonte: IUCN).

3.3. O leopardo (Panthera pardus) (Linneaus, 1758)

O leopardo é o maior felino selvagem pintado da África e Ásia (Sunquist & Sunquist, 2002) e uma das menores espécies do atual gênero *Panthera* (Davis *et al.*, 2010; Tseng *et al.*, 2013). Os aspectos principais da biologia da espécie são bastante similares aos da onça-pintada em relação aos hábitos e dieta (predadores oportunistas, preferencialmente noturnos e possuindo uma vasta gama de presas, com destaque para mamíferos de pequeno e médio porte [Kingdon, 2001]).

A espécie possui maior distribuição geográfica do que qualquer outra espécie de felino. Pode ser encontrado desde o extremo leste da Rússia até a África, compreendendo o território de mais de 35 países (Figura 4). Leopardos foram registrados nos últimos 25 anos no sul da África (Balme et al., 2010; Balme et al., 2013; Swanepoel et al., 2013), África Central (Henschel & Ray, 2003; Patterson et al., 2004; Ray et al., 2005), Península Arábica (Perez et al., 2006; Mazzolli, 2009), India (Ramakrishnan et al., 1999; Johnsingh & Negi, 2003; Chauhan et al., 2005; Harihar et al., 2011; Dutta et al., 2012; Dutta et al., 2013), Ásia Central (Khorozyan, 2000; Khorozian, 2003; Sanei, 2007; Gavashelishvili & Lukarevskiy, 2008; Ghoddousi et al., 2008; Waseem, 2010; Taghdisi et al., 2013), Nepal (Ghimirey, 2006; Thapa et al., 2013), Butão (Sangay & Vernes, 2008; Wang & Mcdonald, 2009I; Wang & Mcdonald, 2009II), Sri Lanka (Miththapala et al., 1989; Kittle & Watson, 2009), sudeste Asiático (Kawanishi et al., 2010; Sanei et al., 2011; Gray & Prum, 2011), Rússia (Hebblewhite et al., 2011), China (Jutzeler et al., 2010) e Java, Indonésia (Meijaard, 2004). Pode ser encontrado em altitudes que variam desde o nível do mar até 5.000m (Sunquist & Sunquist, 2002). Atualmente, a espécie está dividida em nove subespécies válidas, as quais são base para estudos diversos, bem como para estratégias de conservação (Uphyrkina et al., 2001; Henschel et al., 2013).

Uma grande variedade de hábitats está associada com a presença de leopardos: ambientes florestais densos, florestas frias, campos, savanas, regiões rochosas, semiáridas e desérticas. Suas áreas de vida ocupam grandes extensões territoriais, tal como ocorre com outros felinos de grande porte (Sunquist & Sunquist, 2002). Além de prováveis diferenças demográficas intrínsecas à espécie em diferentes ambientes, efeitos antropogênicos levaram à redução recente do número de leopardos em distintas regiões, acarretando em variação geográfica na sua densidade populacional (Kingdon, 2001).

O leopardo encontra-se categorizado como 'quase ameaçado' na lista vermelha das espécies ameaçadas da IUCN e, em alguns locais de sua distribuição como Rússia, China e Java é criticamente ameaçado pelo fato de as populações estarem isoladas, com pequeno tamanho efetivo e baixo número de indivíduos (Henschel *et al.*, 2013). Além disso, também está listada no apêndice I da CITES por conta de redução e fragmentação do seu habitat e pressões de caça (comum em diversos países devido a confrontos com atividades humanas, já que frequentemente preda animais domésticos [Sunquist & Sunquist, 2002; Azlan & Sharma, 2006; Henschel *et al.*, 2013]). Seu status populacional

é desconhecido na maior parte de sua distribuição, mas estima-se que a tendência geral da espécie seja o declínio (Henschel *et al.*, 2013).

Figura 4 - Distribuição conhecida do leopardo (Fonte: IUCN).

4. Modelagem de distribuição de espécies como ferramenta para estudos de ecologia, conservação e evolução

Com o crescimento da pesquisa científica na área da Ecologia, o desenvolvimento tecnológico (especialmente computacional) e a utilização de métodos baseados em sistemas de informações geográficas (SIG's) novas técnicas vêm sendo incorporadas aos projetos, com destaque para as últimas duas décadas (Turner *et al.*, 2003; Rangel & Loyola, 2012; Joppa *et al.*, 2013). Ao mesmo tempo em que cresce a utilização de ferramentas computacionais e o desenvolvimento de novos algoritmos de análises de dados, cresce também a pressão sobre os recursos naturais, mudanças climáticas no planeta e a taxa de modificação das paisagens originais. Portanto, entender como são os

padrões de distribuição natural dos organismos e como essas modificações antrópicas os afetam são questões-chave para estudos de evolução e para a biologia da conservação na atualidade (Whittaker *et al.*, 2005; Kozak *et al.*, 2008; Marco Jr. & Siqueira, 2009; Costa *et al.*, 2010; Wiens *et al.*, 2010). Além disso, o aumento dos registros de ocorrência das espécies em bases de dados acessíveis para o público geral são o pilar de um novo campo chamado "eco-informática" que é a base para os atuais modelos de nicho ecológico (Paterson *et al.*, 2011; Diniz-Filho & Loyola, 2012).

Conhecer a distribuição geográfica das espécies é uma das questões fundamentais da ecologia geral visando ao entendimento de como parâmetros ambientais influenciam os padrões de biodiversidade. Para um ecólogo moderno, a história biogeográfica desses padrões, a estrutura da comunidade de estudo e os processos ecológicos capazes de criá-los são os mais importantes fatores para a compreensão de onde uma espécie se distribui e porque ela encontra-se naquele ambiente (Wiens & Donoghue, 2004). As espécies persistem em locais onde toleram fatores ambientais bióticos e abióticos (nicho ecológico) e muitos dos padrões biogeográficos conhecidos são criados por essas diferenças de nicho (Wiens, 2011; Rangel & Loyola, 2012; Wisz *et al.*, 2013).

A modelagem de nicho ecológico ou modelagem de distribuição de espécies é definida como a inferência ou previsão da distribuição geográfica de determinado organismo por meio de métodos ou algoritmos (Guisan & Zimmermann, 2000; Colwell & Rangel, 2009; Franklin, 2009; Peterson & Soberón, 2012), sendo uma ferramenta comum nos estudos recentes de biogeografia e ecologia (Calabrese *et al.*, 2013). São cinco os tópicos a serem considerados de grande importância para os modelos de distribuição de espécies: o conceito fundamental de nicho ecológico, o delineamento amostral e constituição da modelagem, parâmetros ou preditores que serão utilizados, seleção do modelo, contribuição dos preditores e avaliação do modelo final (Araujo & Guisan, 2006). Todas essas considerações visam à melhoria da capacidade de prever com precisão a distribuição observada das espécies.

Uma das questões mais importantes nos modelos de nicho ou de distribuição de espécies é a gama de métodos ou algoritmos potencialmente úteis (Rangel & Loyola, 2012). Existem três grupos de métodos principais que podem ser utilizados para modelagens de nicho ecológico. (I) Modelos "envelope" ou modelos de classificação: recomendáveis para estudos que a visam inferir a forma e direção da relação entre a ocorrência das espécies e condições ambientais. São modelos genéricos, de fácil

compreensão e interpretação, que tendem a superestimar a distribuição. São exemplos de modelos de classificação o BIOCLIM (Busby, 1991), o Euclidian and Gower Distances (Carpenter et al., 1993) e o ENFA (Ecological-Niche Factor Analysis) (Hirzel et al., 2002). (II) Modelos estatísticos baseados em regressão: possuem melhor aplicabilidade se a ocorrência das espécies responde linearmente às mudanças ambientais ou incorpora consequências da interação de fatores ambientais e a distribuição. São modelos de complexidade intermediária, de compreensão relativamente fácil e com melhor resultado de predição do que os modelos de classificação. São exemplos de modelos de regressão o GAM (Generalized Additive Model) (Hastie & Tibshirani, 1986), o MARS (Multivariate Adaptive Regression Splines) (Friedman, 1991) e o GLM (Generalized Linear Models) (Guisan et al., 2002). (III) Modelos de aprendizagem automática ('machine-learning'): são modelos de alta complexibilidade, alta precisão e grande robustez estatística. São muito efetivos para predições pois maximizam a relação entre a ocorrência e os preditores, porém apresentam problemas quando são utilizados com um número grande de parâmetros e estes possuem correlação entre si (Olden et al., 2008). Como exemplos podem ser citados: GARP (Genetic Algorithm for Rule Set Production) (Stockwell & Noble, 1992), ANN (Artificial Neural Networks) (Manel et al., 1999), Random Forests (Breiman, 2001), Generalized Boosting Regression Model (Friedman, 2001) e o Maxent (Maximum Entropy) (Phillips et al., 2006).

Dentre os mais complexos modelos de distribuição de espécies, um dos métodos mais populares e mais utilizados atualmente é o Maxent, o qual conta com mais de 1000 aplicações publicadas desde sua criação (Elith *et al.*, 2010; Loiselle *et al.*, 2010; Terribile *et al.*, 2010; Merow *et al.*, 2013). O modelo é baseado no algoritmo de aprendizagem automática de máxima entropia descrito por Philips *et al.* (2006) e utiliza como base a combinação de pontos de presença das espécies com parâmetros preditivos. Seu desempenho é influenciado pelo número de parâmetros utilizados e o potencial de acerto do modelo é avaliado estatisticamente pela AUC (*area under curve*) do método ROC (*receiver operating characteristic*) (Philips & Dudik, 2008). É atualmente considerado o melhor método para modelar uma distribuição geográfica desconhecida de determinada espécie (Elith *et al.*, 2010; Rangel & Loyola, 2012).

Em suma, esses diversos modelos de distribuição de espécies e especialmente o Maxent podem ser utilizados em uma gama de temáticas distintas, por exemplo em efeitos e respostas a mudanças climáticas (Buckley *et al.*, 2010; Lawing & Polly, 2011; Simon et al., 2013), reconstrução de histórias demográficas (Collevatti et al., 2012), paleodistribuição (Ribeiro & Diniz-Filho, 2012; Collevatti et al., 2013), estudos de endemismo (Carnaval & Mortiz, 2008), inferência de refúgios (Waltari et al., 2007; Thomé et al., 2010), predição da riqueza de espécies (Graham & Hijmans, 2006), estimativa da distribuição atual de diversos grupos de organismos (Hernandez et al., 2006; Buermann et al., 2008; Kumar & Stohlgren, 2009; Raes et al., 2009; Loiselle et al., 2010; Warren et al., 2011), inclusive com aplicação para espécies de felídeos (Mukherjee et al., 2010; Ferraz et al., 2012; Tôrres et al., 2012) e até mesmo testes do desempenho dos modelos comparativamente (Elith et al., 2006), dentre outros. Além disto, responder outros tipos de perguntas biológicas (tal como determinar a distribuição geográfica de características intraespecíficas e explorar sua relação com variáveis ambientais) pode ser uma nova abordagem para esses métodos. Entender a teoria por trás dos modelos de distribuição, utilizar dados e métodos apropriados, testar a performance preditiva dos modelos e aplicá-los para responder questões biológicas (Pearson, 2007) é o desafio para sua utilização em projetos de ecologia, evolução e conservação.

5. Objetivos

5.1. Objetivo geral

Caracterizar os padrões de distribuição espacial do melanismo em *Panthera* onca, *Panthera pardus* e *Puma yagouaroundi*, visando investigar a relevância adaptativa deste fenótipo em populações naturais.

5.2. Objetivos específicos

- Gerar um banco de dados georreferenciado contendo pontos de ocorrência de indivíduos das três espécies em questão (incluindo capturas de animais vivos, imagens de armadilhas fotográficas, peles depositadas em coleções científicas e amostras de DNA fecal) para os quais o melanismo possa ser claramente identificado.
- 2. Mapear a ocorrência geográfica do melanismo nas três espécies de interesse.

- 3. Testar se a ocorrência do melanismo nessas espécies é aleatória ou se está associada a diferentes biomas ou ecoregiões.
- Estimar um modelo de nicho ecológico para a distribuição geográfica de cada uma das espécies, bem como a ocorrência de melanismo nas mesmas, considerando parâmetros ambientais preditores.
- 5. Investigar a relação entre a distribuição dos fenótipos de coloração nestas espécies e variáveis ambientais, buscando identificar indícios de processos biológicos envolvidos na atuação de seleção natural sobre esta característica.

CAPÍTULO 2:

ARTIGO CIENTÍFICO

"A BIOGEOGRAPHIC ASSESSMENT OF JAGUAR (*Panthera onca*) MELANISM: NICHE MODELING REVEALS A NON-RANDOM DISTRIBUTION ACROSS DIFFERENT LANDSCAPES"

A ser submetido para a revista 'Global Ecology and Biogeography'

1	A BIOGEOGRAPHIC ASSESSMENT OF JAGUAR (Panthera onca)
2	MELANISM: NICHE MODELING REVEALS A NON-RANDOM
3	DISTRIBUTION ACROSS DIFFERENT LANDSCAPES
4	(Global Ecology and Biogeography, Wiley Blackwell, ISSN 1466-822X)
5	
6	Lucas Gonçalves da Silva (1); Esteban Payán (2); Peter Crawshaw Jr. (3,10);
7	Leandro Silveira (4); Laury Cullen Jr. (5); Ronaldo Gonçalves Morato (3,10);
8	Edsel Amorim Moraes Jr. (6); José Fernando Moreira-Ramirez (7); Benoit De
9	Thoisy (8); Rony García-Anleu (9) & Eduardo Eizirik (1,10)
10	
11	(1) Graduate Program in Zoology - Pontifícia Universidade Católica do Rio Grande do Sul; Av
12	Ipiranga 6681, P12/134, 90619-900. Porto Alegre-RS, Brazil.
13	(2) Panthera Colombia; Cr. 7, 153-80, Office 904. Bogotá, Colombia.
14	(3) Centro Nacional de Pesquisa e Conservação de Mamíferos Carnívoros, ICMBio Brazil;
15	Estrada Municipal Hisaichi Takebaysahi 8600, 12952-001. Atibaia-SP, Brazil.
16	(4) Jaguar Conservation Fund; Rodovia GO-341, Km 81, 75830-000. Mineiros-GO, Brazil.
17	(5) Instituto de Pesquisas Ecológicas; Rua dos Lirios 38, 13405-045. Piracicaba-SP, Brazil.
18	(6) Instituto Biotropicos; Rua Herculano Pena 344, 39100-000, Diamantina-MG, Brazil.
19	(7) Ecosur Campeche; Av Rancho Poligono 2A, Parque Industrial, 24500. Lerma, Mexico.
20	(8) Kwata NGO; 16 Av Pasteur, 97300. Cayenne, French Guyana.
21	(9) Wildlife Conservation Society - Guatemala Program; Av 15 de Marzo, Casa 3, 17001.
22	Ciudad Flores-Petén, Guatemala.
23	(10) Instituto Pró-Carnívoros; Av. Horácio Neto 1030, 12945-010. Atibaia-SP, Brazil.
24	
25	Corresponding authors: Lucas G. da Silva & Eduardo Eizirik, Graduate Program in Zoology,
26	PUCRS, Porto Alegre-RS, Brazil. E-mail: lucas.silva@pucrs.br; eduardo.eizirik@pucrs.br.
27	Short title: "Biogeographic Assessment and Distribution of Melanism in Jaguars"
28	Abstract: 440 words
29	Body of paper: 6.205 words
30	References: 68
31	Keywords: Phenotypic variation, ecoregions, natural selection, evolution, adaptation.
32	

- **33 ABSTRACT**
- 34

35 Aim The exact geographic distribution, ecological relevance and adaptive role of 36 phenotypic polymorphisms are still poorly known for most organisms. Among felids, 37 melanism is a well-known polymorphism affecting the coat color of several species. 38 Although such variation has been known for over a century, and speculations regarding 39 its adaptive relevance are equally old, so far this polymorphism has not been thoroughly 40 investigated, to the extent that not even its exact biogeographic occurrence is 41 documented in any cat species. In this study, we aimed to characterize the geographic 42 distribution of melanism in jaguars and test whether such phenotypic variant was distributed randomly across the species' range, or associated with particular landscape 43 44 conformations.

45

46 Location The New World.

47

48 **Methods** We built a database of jaguar location points originating from camera-traps, 49 field captures, fecal DNA samples and records in scientific collections, identifying 50 melanistic *vs.* non-melanistic individuals. We produced models of the geographic 51 distribution pattern of melanism in jaguars using niche modeling algorithms and 52 environmental predictors with the Maxent software. Additionally, we analyzed the 53 frequency of melanism in biomes and ecoregions using our location record database and 54 statistical comparisons among landscape conformations.

55

56 Results We assembled 794 jaguar records, of which 765 possessed coat color 57 information. The overall frequency of melanism was ca. 9%, and the occurrence of this 58 phenotype was not randomly distributed across the species' range. In forested areas, a 59 stronghold of jaguars and a type of habitat that could possibly favor melanism, the 60 frequency of this variant did not depart from the overall mean. In contrast, seasonally 61 flooded areas (Pantanal and Llanos) presented no records of melanism, leading to a 62 significantly lower frequency than the expectation based on the overall mean. 63 Interestingly, in dry open landscapes (savannas and grasslands), the frequency of 64 melanism was higher than expected, but this deviation may have been mostly influenced 65 by local demographic factors in sampled areas.

66

67 Main conclusions Our spatial analyses provided an improved map of the jaguar 68 geographic distribution, and the first detailed map of the occurrence of melanism in this 69 species. We demonstrate that melanism, although widespread, was not distributed 70 randomly across different biomes. Rather, this variant was overrepresented in some 71 habitats and absent in others, indicating that natural selection could be acting upon this 72 phenotype. In the case of the Pantanal and Llanos, this inference is further supported by 73 the available evidence of geographic proximity and historical connectivity with adjacent 74 biomes in which melanism is present. Niche modeling analyses allowed the direct 75 assessment of environmental variables as predictors of the presence of melanism, and 76 suggested that parameters associated with moisture, temperature and solar radiation may 77 influence the spatial distribution of this mutant phenotype.

78

79 INTRODUCTION

80

81 The adaptive relevance of animal coloration has been explored and discussed for 82 over a century (e.g. Gloger, 1833; Poulton 1890, Beddard 1895, Cott 1940). 83 Pigmentation phenotypes have often been inferred to present adaptive roles in 84 ecological, physiological and/or behavioral processes such as camouflage, intra- and 85 interspecific communication, and thermoregulation (Beddard, 1895; Cott, 1940; 86 Majerus, 1998; Caro, 2005). The broad phenotypic variation of vertebrates observed in 87 nature is one of the questions that have long intrigued evolutionary biologists, including 88 its adaptive significance and genetic basis. Despite the interest in the subject, relatively 89 few studies have addressed the association between phenotypes in natural populations 90 and the environments in which organisms occur, aiming to investigate evolutionary 91 processes involved in the generation and maintenance of coloration diversity and the 92 environmental characteristics that influence the adaptive significance of phenotypes 93 (Eizirik & O'Brien 2003; Nachman et al., 2003; Hoekstra 2006).

94 Melanism is a color polymorphism that is common in various groups of 95 organisms, in which the skin/fur/plumage is darker than what would be considered the 96 normal or 'wild' phenotype. There are classical hypotheses that postulate an adaptive 97 role of melanism in different species, involving many potential impacts on survival or 98 reproduction (e.g. Cott, 1940; Ortolani & Caro, 1996; Majerus, 1998; Caro, 2005). Several biological factors such as thermoregulation, susceptibility or response to
disease, camouflage, aposematism, sexual selection and reproductive success could be
directly influenced by melanism, but in most cases such possibilities have not yet been
rigorously tested (Majerus, 1998).

103 The occurrence of melanism is rather common in the Felidae, having been 104 documented in 13 of the 38 species of the group (Schneider et al., 2012). Interestingly, 105 in none of them has it reached fixation, but rather always exists as a polymorphic 106 phenotype. Recent analyses have shown that melanism evolved independently at least eight times within the Felidae (Eizirik et al. 2003; Schneider et al., 2012; Schneider 107 108 2013), in some cases reaching very high frequencies in natural populations (e.g. 109 Kawanishi et al., 2010). These observations support the hypothesis that melanism can 110 provide an adaptive advantage in certain ecological conditions (Caro, 2005; Allen et al., 111 2010).

112 The biological effects and even the geographic distribution of coloration variants 113 are not clearly known at this time, making it difficult to carry out systematic or rigorous 114 tests of this adaptive hypothesis. Early work on this topic raised the hypothesis of an 115 association between darker individuals and wetter areas with dense vegetation (e.g. 116 tropical forests) (Gloger, 1833; Cott, 1940; Ulmer, 1941; Ortolani & Caro, 1996). In 117 addition, there have also been suggestions of the potential for negative selection against 118 dark individuals in open areas where the sunlight/radiation levels and mean 119 temperatures are high (Ulmer, 1941; Ortolani & Caro, 1996; Majerus, 1998; Majerus & 120 Mundy, 2003). Although these hypotheses have been commonly mentioned in the 121 technical literature as anecdotal postulates, and also appeared in the popular culture for 122 some time, they have never been directly tested.

123 The jaguar (Panthera onca) is the largest wild cat in the Americas, and the only 124 extant representative of genus Panthera in the New World (Sunquist & Sunquist, 2002). 125 Its current distribution stretches over 18 nations, from the southern United States to 126 Argentina (Sanderson et al., 2002). The species is listed on Appendix 1 of CITES 127 (Convention on International Trade in Endangered Species of Wild Fauna and Flora) 128 (Hatten et al., 2005) and is considered vulnerable by the IUCN (Wozencraft, 1993; Caso 129 et al., 2014) due by habitat loss, fragmentation and human persecution (Eizirik et al., 130 2001; Carvalho Jr. & Morato, 2013; Morato et al., 2013). In addition, some remaining populations may be critically endangered and are isolated and with low number of
individuals (Eizirik *et al.*, 2001; Haag *et al.*, 2010a; Galetti *et al.*, 2013).

133 Melanism in jaguars (Figure 1) is inherited as a dominant trait, caused by a 15-134 base-pair deletion in the MC1R gene that leads to a "gain of function" mutation favoring 135 the production of dark melanin (eumelanin) in the background regions of the coat 136 (Eizirik et al., 2003; Haag et al., 2010b). Although the trait has been well known in this 137 species for many years and easily identifiable in jaguars in nature (e.g. Nelson & 138 Goldman, 1933; Ulmer, 1941; Robinson, 1976; Dittrich 1979), its geographic 139 distribution, as well as the environmental factors that may influence its persistence in 140 natural populations, are still unknown.

141 In this study we aimed to develop spatial distribution models of melanism in P. 142 onca in response to environmental parameters obtained from global databases and/or 143 remote sensing, to evaluate the adaptive relevance of this phenotype in jaguars. We 144 consider and test two alternative hypotheses: (1) melanism is present throughout the 145 species' distribution, occurring randomly across all environments (i.e. absence of 146 association with different landscape conformations); and (2) melanism is distributed 147 according to environmental parameters and biogeographic constraints. Additionally, we 148 seek to identify environmental variables that may be associated with the presence or 149 absence of melanism in a particular ecoregion, aiming to draw inferences on the 150 occurrence of natural selection acting on these phenotypes.

- 151
- 152 METHODS

153

- 154 Species data
- 155

156 The data set comprised record points from the entire historical range of the 157 jaguar, from the southern United States to Argentina (Table 1, Figure 2), encompassing 158 various biomes (e.g. moist and dry forests, grasslands and desert areas). These records 159 were obtained from five different sources: (1) individuals kept in scientific collections 160 that possessed information on the geographic coordinates of the sampling location as 161 well as on coat color (or, preferably, available skin for direct assessment and 162 photographic documentation of coat color); (2) Individuals captured or found dead 163 during field ecology studies; (3) field-collected faecal samples whose melanism status
164 could be confidently inferred using a molecular assay (Haag *et al.*, 2010b); (4) camera
165 trap records; and (5) samples available in online databases with precise geographic
166 origin and available source information (e.g. Global Biodiversity Information Facility 167 GBIF.org).

168

169 Environmental predictors

170

The occurrence of different phenotypes throughout the species' distribution was mapped by building a database of location records of melanistic and non-melanistic individuals using ArcGis 9.3 (ESRI, 2010). All the records were converted into degree coordinates, using the *WGS84* standard reference system. Additionally, we used biome and terrestrial ecoregion shapefiles (Olson *et al.*, 2001) as mask layers, to extract and analyze information about natural landscapes in which the phenotypes occur.

177 For modeling the potential distribution of melanism, in the initial analysis we 178 considered 37 explanatory environmental variables and landscape data that covered 179 100% of the jaguar's known distribution. We used 35 environmental variables obtained 180 from the Worldclim (http://www.worldclim.org) and Climond (http://www.climond.org) 181 databases: annual mean temperature (Bio01), mean diurnal temperature range (Bio02), 182 isothermality (Bio03), temperature seasonality (Bio04), max temperature of warmest 183 week (Bio05), min temperature of coldest week (Bio06), temperature annual range 184 (Bio07), mean temperature of wettest quarter (Bio08), mean temperature of driest 185 quarter (Bio09), mean temperature of warmest quarter (Bio10), mean temperature of 186 coldest quarter (Bio11), annual precipitation (Bio12), precipitation of wettest week 187 (Bio13), precipitation of driest week (Bio14), precipitation seasonality (Bio15), 188 precipitation of wettest quarter (Bio16), precipitation of driest quarter (Bio17), 189 precipitation of warmest quarter (Bio18), precipitation of coldest quarter (Bio19), 190 annual mean radiation (Bio20), highest weekly radiation (Bio21), lowest weekly 191 radiation (Bio22), radiation seasonality (Bio23), radiation of wettest quarter (Bio24), 192 radiation of driest quarter (Bio25), radiation of warmest quarter (Bio26), radiation of 193 coldest quarter (Bio27), annual mean moisture index (Bio28), highest weekly moisture 194 index (Bio29), lowest weekly moisture index (Bio30), moisture index seasonality 195 (Bio31), mean moisture index of wettest quarter (Bio32), mean moisture index of driest 196 quarter (Bio33), mean moisture index of warmest quarter (Bio34), and mean moisture

index of coldest quarter (Bio35). In addition, we included data on altitude (obtained
from the SRTM [http://www2.jpl.nasa.gov/srtm]) as well as on landscape surface cover
(obtained from ESA GlobCover Project 2009 [http://due.esrin.esa.int/globcover]). All
variables were used at a fine (~1 km) spatial resolution.

201 Since correlation among explanatory variables can lead to model overfitting, we 202 computed Pearson's correlation coefficient (r) between each pair of variables (Kumar & 203 Stohlgren, 2009; Raes et al., 2009; Mukherjee et al., 2010), using the SPSS 17.0 204 statistical software. The correlation was assessed by extracting variable information 205 from 10,000 unique and randomly generated points within the present geographic 206 distribution layer of jaguars (obtained from IUCN, and complemented with our own database records) using ArcGis 9.3. We selected 10 variables that were not highly 207 208 correlated to each other, using r=0.7 as the cut-off value. The selected variables were: 209 annual mean temperature, maximum temperature of warmest week, minimum 210 temperature of coldest week, annual precipitation, precipitation of wettest week, 211 precipitation of driest week, highest weekly radiation, lowest weekly radiation, annual 212 mean moisture index and altitude (the latter one being included given the ecological 213 relevance of this information). These predictors were then selected assuming that they 214 are sufficient for modeling the geographic distribution of this species, and the 215 distribution of melanism within it.

216

217 Modeling procedures

218

219 We modeled the overall distribution of jaguars and the spatial distribution of 220 melanism using the maximum entropy algorithm implemented in the software Maxent 221 (Phillips et al., 2006) along with associated statistical tools (Waltari et al., 2007; 222 Phillips & Dudik, 2008; Elith et al., 2010; Merow et al., 2013). We employed the total 223 set of records, 70% of which were used for training and 30% for testing the models. The 224 data were sampled using the bootstrap routine of 10 random partitions with replacement 225 (Pearson, 2007). All runs were configured in random seed, convergence threshold of 226 1E-5 with 500 iterations and 10,000 hidden background points (Ferraz et al., 2012). 227 Model performance was assessed by the AUC (Area Under Curve) value for the 228 Receiver Operating Characteristic (ROC Curve) and the binomial probability (Pearson, 229 2007; Calabrese et al., 2013), aiming to obtain models of continental-scale distribution

230 and description of environmental parameters which are related to the spatial distribution 231 of melanism. We also observed a complete lack of melanistic records in the Llanos 232 ecoregion of Colombia and Venezuela, in spite of reasonable coverage of our sampling 233 in that area (see Table 2). Given these observations, we decided to perform additional 234 analyses of landscape variables and their association with melanism with a specific 235 focus on these ecoregions. Finally, four models were run with this configuration (see 236 Results for more details on model choice): (1) the total set of 794 samples (control 237 model), (2) the 69 melanistic animals (melanism model), (3) the 79 records from the 238 Pantanal; and (4) the 29 records from the Llanos.

- 239
- 240 Statistical analysis
- 241
- 242

243 The statistical analysis of record distribution for each biome was done using the 244 chi-square test with Fisher correction (Plackett, 1983). The basic approach was to test 245 differences between the observed and expected frequencies of melanism for each 246 landscape conformation. The correction test was justified because in some biomes 247 (35.7% of the total) we had fewer than five samples for one group in a single category, 248 which violates assumptions of the standard chi-square test. As there was no detected 249 bias with respect to the sampling of different phenotypes at any location (i.e. our 250 sampling was random in regard to coat color), we used the overall frequency of 251 melanism across the whole range (based on the 765 records containing coat color 252 information) to generate the expected number of melanistic records per biome. We used 253 this approach to test two competing hypotheses regarding the association between 254 phenotypic groups and biomes/ecoregions: (1) the null hypothesis that observed 255 frequencies of melanistic and non-melanistic animals are not different from the 256 expected frequencies in each habitat, resulting in no association between melanism and 257 any biome; and (2) the alternative hypothesis that observed frequencies are different 258 from expected frequencies in each biome, suggesting an association between these two 259 groups and the landscapes in which the animals are included.

- 260
- 261 **RESULTS**
- 262

We obtained 794 samples, 696 of which were non-melanistic individuals, 69 were melanistic animals and 29 had no information on coat color (Table 1, Figure 2, and Supplementary Table 1). In addition to our analyses focusing on melanism, this database contributed to update the currently accepted distribution of jaguars (based on Sanderson *et al.* [2002]; Rabinowitz & Zeller [2010]), filling geographic gaps where this species had not been recorded previously but was thought to potentially occur (Morato *et al.*, 2013).

270 The overall frequency of melanism was 9% across the species' range. Most of 271 the records of melanistic animals (66 in total) were located in South America. 272 Moreover, all regions that had previously been reported as potential sites of melanistic 273 jaguar occurrence in different biomes of Brazil were corroborated by this study, 274 especially the Amazon and Cerrado areas (states of Amazonas, Pará, Mato Grosso, 275 Goiás and Minas Gerais; see Meyer [1994]) and Caatinga (Serra da Capivara National 276 Park [Perez, 2008; Silveira et al., 2009]). Additionally, new records in our database 277 were obtained for areas where there were no previous reports of melanistic animals 278 (Colombia, Peru, Ecuador) (Figure 2). In some cases, melanism can reach high 279 frequencies in a single ecoregion, for example the Alto Paraná Atlantic Forest, Cerrado 280 and Caatinga ecoregions (Table 2).

When the presence of melanism across regions was assessed, we observed marked differences in its frequency among distinct landscape conformations (biomes and ecoregions, Tables 2 and 3). In particular, there was a significant (P<0.05) excess of melanistic animals in our sample of records from the Caatinga biome in Brazil, and a complete lack of melanism in the Pantanal (implying a significantly [P<0.05] lower frequency of this phenotype in this region).

287 Niche models generated here were considered satisfactory (AUC > 0.9): control 288 model (AUC training = 0.949, test = 0.941), melanism (AUC training = 0.978, test = 289 (0.955), Pantanal (AUC training = 0.979, test = 0.996) and Llanos (AUC training = 290 0.989, test = 0.987). The control model provided a good fit to known present broad 291 distribution model for jaguars in the Americas (Figure 3A), indicating that it provides a 292 suitable baseline against which to compare the melanism model. The melanism model 293 (Figure 3B) showed some similarities with the control model, but also some important 294 differences, especially the low suitable habitats for occurrence in the Pantanal and 295 Llanos ecoregions. There were also differences (not shown) in the two ecoregionspecific models (Pantanal and Llanos), which were used to assess the impact of differentenvironmental variables on the presence (or absence) of melanism.

When we compared the four different niche models (Figure 4), we observed clear differences in the relative importance of at least three environmental predictors: annual mean temperature, lowest weekly radiation and min temperature of coldest week. These variables showed very distinct impacts on the predictive power of the melanism model when compared to the control (all samples) or to the two biomes in which melanism seems to be absent (see Figure 4).

304

305 DISCUSSION

306

307 Although jaguars are often documented in North and Central Americas (Sunquist 308 & Sunquist, 2002), there were historically only three records of melanistic individuals in 309 these regions. The only record of melanism from North America prior to this study was 310 a black female photographed in 2004, in the El Fuerte River Valley, near Sinaloa, 311 Mexico (Dinets & Polechla Jr., 2007). In Central America, there are two records of 312 melanistic animals from Belize: Ek Balan and El Rancho Grande River (previously 313 reported as possible by Meyer [1994]), both now confirmed. Remaining populations of 314 the species have been recently identified in the northern portion of its distribution, in the 315 southern United States (Grigione et al., 2007; McCain & Childs, 2008), but there has 316 been no record of melanism in these areas.

317 We generated in our study a model of the jaguar distribution that may be 318 incorporated into additional assessments of its range for use in the design of 319 conservation strategies for jaguars, as it presents distinct (and perhaps complementary) 320 features when compared to the previous models generated by Ferraz et al. (2012) and 321 Tôrres et al. (2012). Additionally, the location records from our database corroborate 322 the observation that the species has lost part of its historical range, especially in the 323 southern portion of Brazil (reported by Mazzoli [2008]) and in Florida, United States 324 (reported by Daggett & Henning [1974]).

The combination of statistical techniques associated with geographic information systems data has been used for some time in predictive models of ecology (Guisan & Zimmermann, 2000) and especially in ecological niche models in the context of macroecological analysis (Carnaval & Moritz, 2008; Elith *et al.*, 2010; Loiselle *et al.*, 329 2010; Calabrese et al., 2013). The models shown in Figure 3 were designed to provide 330 an analysis of the relative influence of environmental predictors on the geographic 331 distribution of melanism in jaguars. The main differences between the control model, 332 melanism model, and Pantanal and Llanos models were restricted particularly to three 333 predictors: annual mean temperature, lowest weekly radiation and minimum 334 temperature of coldest week (Figure 4). All of these predictors are possibly related with 335 thermoregulation in natural habitats, suggesting that the presence (or frequency) of 336 melanism in jaguars may be regulated by climatic variables. However, it is important to 337 highlight that the relative importance of predictors assessed here is related only to their 338 influence on each Maxent niche model (percent impact on the composition of each 339 distribution map), i.e. the comparison was not performed on absolute values. In 340 addition, we note that it is possible that some other important predictor (possibly 341 bearing a causal influence on the observed pattern) may have been lost in the selection 342 of variables by Pearson's test, or that another important predictor was not measured or 343 contemplated in the initial analysis. Therefore, additional analyses of these data will be 344 necessary to fully discern the underlying relationships between the incorporated 345 variables and the resulting distributional pattern.

346 For a character to be recognized as adaptive, it must be derived and involved in 347 the response to a selective agent (Futuyma, 2009), and in this context it is interesting to 348 determine if a polymorphism deviates from equilibrium expectations (Kreitman, 2000). 349 To elucidate biological issues related to melanism in natural populations, and assess the 350 relevance of different adaptive phenotypes, it is necessary to consider the relative 351 importance of genetic drift and natural selection on the dynamics of different 352 phenotypes in distinct landscapes (Lande, 1976; Mukherjee et al., 2010). A selectively 353 neutral phenotype should show a random pattern of variation among populations, while 354 non-random patterns suggest the occurrence of selection (if populations are 355 demographically connected). In the case of a stable polymorphism (such as melanism), 356 an important issue to be considered is the phenotype frequency across different 357 landscapes (Novembre & DiRienzo, 2009) because in some cases ecological variables 358 describing a species range can predict genetic patterns (Mukherjee et al., 2010).

Previous studies have shown that jaguars possess low levels of geographic structure on a range-wide scale (Eizirik *et al.*, 2001). Phylogeographic analyses indicated that there were no impassable historical barriers to gene flow throughout the 362 species' range. Only a few historical barriers to dispersal were inferred at this scale, 363 such as the Amazon River, whose influence was much stronger on the female-inherited 364 mitochondrial DNA than on nuclear markers (implying some continuous male-mediated 365 gene flow). These results suggested that the species has behaved historically almost as a 366 panmictic population, which argues against the possibility that founder effects and/or 367 high genetic drift at a regional scale could have induced the observed non-random 368 patterns in the distribution of melanism. Also, there is so far no evidence of historical 369 bottleneck events (Eizirik et al., 2001), which could have exacerbated genetic drift and 370 thus lead to large-scale increases in the frequency of a neutral allele such as that 371 involved in melanism. In this context, it may be noted that melanism is present with 372 high suitability on both sides of the Amazon River, suggesting that it has not been 373 affected by the historical (albeit incomplete) restriction to gene flow inferred with 374 molecular markers. Given these considerations, we conclude that the most probable 375 scenario is the jaguar melanism allele arose at a particular location and dispersed 376 throughout the species' distribution, with its regional frequency being influenced at least 377 partially by natural selection related to environmental parameters that vary across 378 different landscapes.

379 We thus believe that the geographic variation observed here provides evidence 380 for the existence of natural selection in this system, and provides some hints as to its 381 nature. The most intriguing pattern observed here is the absence of melanistic jaguars 382 from the Pantanal (Brazil) and the Llanos (Colombia/Venezuela), both of which 383 comprise seasonally flooded savannas. It is relevant to mention that the Pantanal 384 ecoregion harbors one of most studied and most stable natural populations of jaguars, 385 with high abundance of individuals (estimated at 1000 jaguars, according to Morato et 386 al. [2013]) and reasonably well preserved natural habitats (Soisalo & Cavalcanti, 2006; 387 Cavalcanti & Gese, 2009). Even so, no current or historical records of melanism were 388 found in this landscape conformation (in a set of 79 samples). Although the sample for 389 the Llanos was not as extensive (29 records), the same pattern was observed in that 390 ecoregion. Moreover, the niche modeling results pointed to very large differences in the 391 distribution suitability between the melanism model in Pantanal and Llanos, when 392 compared to the control model for the same regions (Figure 3). These results indicate 393 that some feature(s) present in these ecoregions induce a lower suitability for the 394 occurrence of jaguar melanism, given the available evidence that they are genetically

and demographically connected to adjacent areas (e.g. Cerrado, Atlantic Forest,Amazon).

397 When rainforests were assessed, such as the Amazon and the Atlantic Forest, the 398 frequency of melanism was exactly the same as that found for the species as a whole 399 (9.0%, table 3). At the same time, the species potential distribution map and melanism 400 distribution map indicates a high habitat suitability in bush and moist areas. As we 401 know, the Amazon region has a large size and high population density of jaguars and 402 can be considered a core habitat for the species (Tobler et al., 2013). In addition, the 403 Brazilian Atlantic Forest region, despite the recent population decline (Paviolo et al., 404 2008; Galetti et al., 2013) and the local loss of genetic diversity in jaguars (Haag et al., 405 2010a), still has remaining populations. The presence of melanism in Brazilian forests 406 had already been documented by Cullen Jr et al. (2006), and can reach high local 407 frequencies in some remnant areas, such as in the Morro do Diabo State Park, Alto 408 Paraná ecoregion (São Paulo state, Brazil). An interesting fact to consider is that this 409 ecoregion is geographically very close to Pantanal areas where melanism is totally 410 absent. Moreover, Valdez (2010) identified molecular evidence of historical gene flow 411 between jaguars in the Alto Paraná forests and those from the southern Pantanal 412 populations, indicating that the melanism allele should indeed have reached the Pantanal 413 over historical time, and reinforcing the hypothesis of natural selection against 414 melanism in the latter area.

415 Unlike the biomes mentioned above, in which the melanism frequency is null or 416 equal to the expected frequency, there were biomes in which the melanism frequency 417 was higher than expected. In desert and xeric shrublands (especially the Caatinga 418 ecoregion) and tropical grasslands and savannas (especially the Cerrado ecoregion), 419 melanism reached frequencies of 28.9% and 12.4%, respectively. At first glance, these 420 results can be considered suggestive for positive selection favoring melanism in these 421 areas. However, considering the reports from previous studies focusing on these biomes 422 (Silveira et al., 2009; Morato et al., 2013) and our own database, we note that these 423 melanistic records are concentrated in protected areas, in which the landscape has not 424 been modified by human activities over the last 50 years, differently from the 425 surrounding unprotected matrix. Taking into account the fast rates of landscape 426 modification in the past years, this result suggests that the observed high frequency of 427 melanism in these protected areas could be a consequence of genetic drift in these

populations, which may be completely isolated from other fragments and possess a
small effective population size. Such a process has already been demonstrated for
Atlantic Forest jaguars using molecular markers (Haag *et al.*, 2010a), and may underlie
the high frequency of melanism observed in areas such as the Morro do Diabo State
Park mentioned above.

433

434 CONCLUSIONS

435

436 Given the current genetic evidence indicating that jaguars have historically 437 comprised a broadly connected population across its range, it would be expected to find a random distribution of melanism throughout this distribution if this variant was 438 439 selectively neutral. Our results indicate that this is not the case. Although the observed 440 cases of increased frequency of melanism (e.g. in the Caatinga ecoregion) may be 441 indeed derived from recent, drift-induced shifts in frequency in locally isolated 442 populations, such a scenario is unlikely in the case of the Pantanal and the Llanos. 443 Given the magnitude of these regions, their estimated population of jaguars, and the 444 evidence (at least for the Pantanal) of connectivity with adjacent biomes, we do not find 445 support for a drift-based explanation for the observed pattern, and thus favor a scenario 446 implying an effect of natural selection. In the case of these regions, such a conclusion 447 would imply selection against melanism in these habitats, possibly related to 448 thermoregulation issues. Moreover, the suitability maps generated here showed 449 differences in the distribution of melanistic records relative to the overall control, and 450 suggested that at least some of the underlying differences could be related to 451 environmental parameters such as moisture, temperature, precipitation and solar 452 radiation. Overall, this study contributed to address a question that has circulated 453 anecdotally for almost 200 years in the scientific literature but remained untested in 454 natural populations (Gloger, 1833; Poulton 1890, Beddard 1895, Cott 1940), and 455 particularly in wild felids (Nelson & Goldman, 1933; Ulmer, 1941; Robinson, 1976; 456 Dittrich 1979). In addition to providing the first geographic distribution map for 457 melanism in jaguars, our results demonstrate that its distributional pattern is non-458 random, and support the hypothesis that natural selection is operating on this phenotype, 459 opening up new avenues for investigating this polymorphism in this and other felid 460 species.

462 AKNOWLEDGEMENTS

463

464 Authors would like to thank Emiliano Ramalho, Katia Barros Ferraz, Francesca 465 Palmeira, Taiana Haag, Daniel Rocha, Tiago Freitas, Rogério Cunha de Paula, 466 Alexandre Uezu, Micheline Vergara, Kristofer Helgen, Eileen Westwig, Esther Langan, 467 Renata Bornholdt, Linda Gordon, Danis Sana, Analice Calaça, Samuel Perez, 468 Alexandre Vogliotti, Flavia Conde, Leonardo Viana, Carlos Benhur Kasper, Beatriz 469 Beisiegel, João Feliz Moraes, Thaiane Weinert and Mario DiBitteti for location 470 records/scientific support; to American Museum of Natural History, Smithsonian 471 Institution, Jaguar Conservation Fund, Instituto Pro-Carnivoros, CENAP ICMBio, 472 Instituto Mamirauá, Panthera, Wildlife Conservation Society, IUCN Cat Specialist 473 Group, Instituto Biotrópicos and PUCRS for scientific support. We also thank 474 CNPq/Brazil for financial support.

- 475
- 476

477 REFERENCES

478

Allen, W.L., Cuthill, I.C., Samuel, N.E. & Baddeley, R. (2010) Why the leopard got its spots: relating pattern development to ecology in felids. *Proceedings of The Royal Society: Biological Sciences* 277, online.

482

483 Beddard, F.E. (1985) Animal coloration: Colour and markins of animals 2nd Ed. Swan
484 Sonnenschein: London.

485

486 Calabrese, J.M., Certain, G., Kraan, C. & Dormann, C.F. (2013) Stacking species distribution
487 models and adjusting bias by linking them to macroecological models. *Global Ecology and*488 *Biogeography*, geb.12102.

- 490 Carnaval, A.C. & Moritz, C. (2008) Historical climate modelling predicts patterns of current
 491 biodiversity in the Brazilian Atlantic forest. *Journal of Biogeography* 35, 1187-1201.
- 492
- 493 Caro, T. (2005) The Adaptive Significance of Coloration in Mammals. *BioScience* 55(2), 125-
- **494** 136.

100	
496	Carvalho Jr., E.A.R. & Morato, R.G. (2013) Factors affecting big cat hunting in Brazilian
497	protected areas. Tropical Conservation Science 6(2), 303-310.
498	
499	Caso, A., Lopez-Gonzalez, C., Payan, E., Eizirik, E., de Oliveira, T., Leite-Pitman, R., Kelly,
500	M. & Valderrama, C. (2014) Panthera onca. In: IUCN 2014. IUCN Red List of Threatened
501	Species. <www.iucnredlist.org> Downloaded on 03 January 2014.</www.iucnredlist.org>
502	
503	Cavalcanti, S.M.C. & Gese, E.M. (2009) Spatial eclogy and social interactions of jaguars
504	(Panthera onca) in the southern Pantanal, Brazil. Journal of Mammalogy 90(4), 935-945.
505	
506	Cott, H.B. (1940) Adaptative Coloration in Mammals. London: Methuen.
507	
508	Cullen Jr, L., Abreu, K.C., Sana, D. & Nava, A.F. (2006) As onças-pintadas como detetives da
509	paisagem no corredor do Alto Paraná, Brasil. Natureza & Conservação 3(1), 43-58.
510	
511	Dinets, V. & Polechla Jr, P. (2007) First Documentation of melanism in a jaguar from northern
512	Mexico. <i>CatNews</i> 42 , 17.
513	
514	Daggett, P.M. & Henning, D.R. (1974) The jaguar in North America. American Antiquity 39(3),
515	465-469.
516	
517	Dittrich, L. (1979) Die verenbung des melanismus beim jaguar (Panthera onca). Zool. Garten.
518	49 , 417-428.
519	
520	Eizirik, E., Kim, J.H., Raymond, M.M., Crawshaw Jr, P.G., O'Brien, S.J. & Johnson, W.E.
521	(2001) Phylogeography, population history and conservation genetics of jaguars (Panthera
522	onca, Mammalia, Felidae). Molecular Ecology 10, 65-79.
523	
524	Eizirik, E., Yuhki, N., Johnson, W.E., Raymond, M., Hannah, S.S. & O'Brien, S.J. (2003)
525	Molecular genetics and evolution of melanism in the cat family. <i>Current Biology</i> 13 , 448-453.
526	
527	Eizirik, E. & O'Brien, S.J. (2003) Evolution of the melanism in the Felidae. <i>CatNews</i> 38 , 37-39.
528	
529	Elith, J., Phillips, S.J., Hastie, T., Dudik, M., Chee, Y.E. & Yates, C.J. (2010) A statistical
530	explanation of MaxEnt for ecologists. Diversity and Distributions 17, 43-57.

531	
532	ESRI (2010) ARCGis Software. ESRI Mapping Company USA.
533	
534	Ferraz, K.M.P.M.B., Ferraz, S.F.B., Paula, R.C., Beisiegel, B. & Breitenmoser, C. (2012)
535	Species distribution modeling for conservation purposes. Natureza & Conservação 10(2), 214-
536	220.
537	
538	Futuyma, D.J. (2009) Evolution, Second Edition. Sinauer Associates Inc.
539	
540	Galetti, M., Eizirik, E., Beisiegel, B., Ferraz, K., Cavalcanti, S., Araujo, A.C., Crawshaw Jr., P.,
541	Paviolo, A., Galetti Jr, P.M., Jorge, M.L., Marinho-Filho, J., Vercillo, U. & Morato, R.G. (2013)
542	Atlantic Rainforest's jaguars in decline. Science 342, 930.
543	
544	Gogler, C.W.L. (1833) Das Abändern der Vögel durch Einfluss des Klimas [The evolution of
545	birds through the impact of climate]. Breslau: August Schulz.
546	
547	Grigione, M., Scoville, A., Scoville, G. & Crooks, K. (2007) Neotropical cats in southeast
548	Arizona and surrouding areas: Past and present status of jaguars, ocelots and jaguarundis.
549	Mastozoología Neotropical 14(2), 189-199.
550	
551	Guisan, A. & Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology.
552	Ecological Modelling 135, 147–186.
553	
554	Haag, T., Santos, A.S., Sana, D., Morato, R.G., Cullen Jr, L., Crawshaw Jr, P.G.; De Angelo,
555	C., Di Bitteti, M., Salzano, F.M. & Eizirik, E. (2010a) The effect of habitat fragmentation on the
556	genetic structure of a top predator: loss of diversity and high differentiation among remnant
557	populations of Atlantic Forest jaguars (Panthera onca). Molecular Ecology 19(22), 4906-4921.
558	
559	Haag, T., Santos, A.S., Valdez, F.P., Sana, D., Silveira, L., Cullen Jr, L., De Angelo, C.,
560	Morato, R.G., Crawshaw Jr, P.G., Salzano, F.M. & Eizirik, E. (2010b) Molecular tracking of
561	jaguar melanism using faecal DNA. Conservation Genetics 11(3), 1239-1242.
562	
563	Hatten, J.R., Murray, A.A. & Van Pelt, W.E. (2005) A spatial model of potential jaguar habitat
564	in Arizona. Journal of Wildlife Management 69(3), 1024-1033.
565	

566	Hoekstra, H.E. (2006) Genetics, development and evolution of adaptive pigmentation in
567	vertebrates. Heredity 97, 222-234.
568	
569	Kawanishi, K., Sunquist, M.E., Eizirik, E., Lynam, A.J., Ngoprasert, D., Wan Shahruddin,
570	W.N., Rayan, D.M., Sharma, D.S.K. & Steinmetz, R. (2010) Near fixation of melanism in
571	leopards of the Malay Peninsula. Journal of Zoology 282(3), 201-206.
572	
573	Kreitman, M. (2000) Methods to detect selection in population with aplication to the human.
574	Annu. Rev. Genomics Hum. Genet. 01, 539–59.
575	
576	Kumar, S. & Stohlgren, T.J. (2009) Maxent modeling for predicting suitable habitat for
577	threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology
578	and Natural Environment 1, 94-98.
579	
580	Lande, R. (1976) Natural selection and random genetic drift in phenotypic evolution. Evolution
581	30 , 314-334.
582	
583	Loiselle, B.A., Graham, C.H., Goerck, J.M. & Ribeiro, M.C. (2010) Assessing the impact of
584	deforestation and climate change on the range size and environmental niche of birds species in
585	the Atlantic forests, Brazil. Journal of Biogeography 37, 1288-1301.
586	
587	Majerus, M.E.N. (1998) Melanism – Evolution in action. Oxford University Press.
588	
589	Majerus, M.E.N. & Mundi, N.I. (2003) Mammalian melanism: natural selection in black and
590	white. <i>Trends in Genetics</i> 19 (11), 585-588.
591	
592	Mazzoli, M. (2008) Loss of historical range of jaguars in southern Brazil. Biodiversity
593	Conservation, s10531.
594	
595	McCain, E.B. & Childs, J.L. (2008) Evidence of resident jaguars (Panthera onca) in the
596	southwestern United States and the implications for conservation. Journal of Mammalogy 89(1),
597	1–10.
598	
599	Meyer, J.R. (1994) Black jaguars in Belize? A survey of melanism in the jaguar (Panthera
600	onca). http://biological-diversity.info/Black_Jaguar.htm (acess: september 01, 2013).
601	

602	Merow, C., Smith, M.J. & Silander, J.A. (2013) A practical guide to Maxent for modeling		
603	species' distributions: what it does, and why inputs and settings matter. Ecography 36, 1058-		
604	1069.		
605			
606	Morato, R.G., Beisiegel, B.M., Ramalho, E.E., Campos, C.B & Boulhosa, R.L.P. (2013)		
607	Avaliação do risco de extinção da Onça-pintada Panthera onca (Linnaeus, 1758) no Brasil.		
608	<i>BioBrasil</i> 1 , 122-132.		
609			
610	Mukherjee, S., Krishnan, A., Tamma, K., Home, C., Navya, R., Joseph, S., Das, A. &		
611	Ramakrishnan, U. (2010) Ecology driving genetic variation: A comparative phylogeography of		
612	jungle cat (Felis chaus) and leopard cat (Prionailurus bengalensis) in India. PlosOne 5(10),		
613	e13724.		
614			
615	Nachman, M.W., Hoekstra, H.E. & D'Agostino, S.L. (2003) The genetic basis of adaptive		
616	melanism in pocket mice. Proceedings of the National Academy of Sciences USA 100, 5268-		
617	5273.		
618			
619	Nelson, E.W. & Goldman, E.A. (1933) Revision of the jaguars. Journal of Mammalogy 14(3),		
620	221-240.		
621			
622	Novembre, J. & DiRienzo, A. (2009) Spatial patterns of variation due to natural selection in		
623	humans. Nature Genetics 10, 745-755.		
624			
625	Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V., Underwood,		
626	E.C., D'Amico, J.A., Itoua, I., Strand, H.H., Morrison, J.C., Loucks, C.J., Allnutt, T.F., Ricketts,		
627	T., Kura, Y., Lamoreux, J.F., Wettengel, W., Hedao, P. & Kassem, K. R. (2001) Terrestrial		
628	ecoregions of the world: a new map of life on Earth. BioScience 51, 933-938.		
629			
630	Ortolani, A. & Caro, T. M. (1996) The adaptative significance of color patterns in carnovires.		
631	In: Gittleman, J.L. Carnivores Behavior, Ecology and Evolution – Volume 2. Cornell University		
632	Press.		
633			
634	Paviolo, A., De Angelo, C., Di Blanco, Y. & Di Bitteti, M. (2008) Jaguar Panthera onca		
635	population decline in the Upper Paraná Atlantic Forest of Argentina and Brazil. Fauna & Flora		
636	International Oryx 42 (4), 554–561.		
637			

638	Pearson, R.G. (2007) Species' Distribution modeling for conservation educators and		
639	practitioners. American Museum of Natural History Press.		
640			
641	Perez, S.E.A. (2008) Ecologia da onça-pintada nos parques nacionais Serra da Capivara e		
642	Serra das Confusões, Piauí. PhD dissertation, Brasília University.		
643			
644	Philips, S.J., Anderson, R.P. & Schapired, R.E. (2006) Maximum entropy modeling of species		
645	geographic distributions. Ecological Modelling 190, 231-259.		
646			
647	Philips, S.J. & Dudik, M. (2008) Modeling of species distributions with Maxent: new extensions		
648	and a comprehensive evaluation. <i>Ecography</i> 31 ,161-175.		
649			
650	Plackett, R.L. (1983) Karl Pearson and the Chi-Squared Test. International Statistical Review		
651	51 (1): 59–72.		
652			
653	Poulton, E.B. (1890) The Colours of Animals, their meaning and use, especially considered in		
654	the case of insects. London: Kegan Paul, Trench & Trübner.		
655			
656	Rabinowitz, A. & Zeller, K.A. (2010) A range-wide model of landscape connectity and		
657	conservation for the jaguar, Panthera onca. Biological Conservation 143, 939-945.		
658			
659	Raes, N., Roos, M.C., Slik, J.W.F, Van Loon, E.E. & Steege, H. (2009) Botanical richness and		
660	endemicity patterns of Borneo derived from species distribution models. Ecography 32, 180-		
661	192.		
662			
663	Robinson, R. (1969) The breeding of spotted and black leopards. Journal Bombay Natural		
664	History Society 66 , 423-429.		
665			
666	Sanderson, E.W., Redford, K.H., Chetkiewicz, C.B., Medellin, R.A., Rabinowitz, A., Robinson,		
667	J.G. & Taber, A.B. (2002) Planning to save a species: the jaguar as a model. Conservation		
668	<i>Biology</i> 16 (1), 58-72.		
669			
670	Schneider, A., David, V.A., Johnson, W.E., O'Brien, S.J., Barsh, G.S., Maymond, M.M. &		
671	Eizirik, E. (2012) How the leopard hides its spots: ASIP mutations and melanism in wild cats.		
672	<i>PlosOne</i> 7 , e50386.		
673			

- 674 Schneider, A. (2013) Investigação da base molecular e história evolutiva do melanismo em
 675 *felídeos selvagens*. PhD dissertation, Pontifícia Universidade Católica do Rio Grande do Sul,
 676 Brazil.
- 677
- 678 Silveira, L., Jácomo, A.T.A., Astete, S., Sollmann, R., Tôrres, N.M., Furtado, M.M. & Marinho-
- 679 Filho, J. (2009) Density of the near threatened jaguar Panthera onca in the caatinga of north-
- 680 eastern Brazil. *Fauna & Flora International Oryx* 44, 104-109.
- 681
- Soisalo, M.K. & Cavalcanti, S.M.C. (2006) Estimating the density of a jaguar population in the
 Brazilian Pantanal using camera-traps ans capture-recapture sampling in combination with GPS
 radio-telemetry. *Biological Conservation* 129, 487-496.
- 685
- 686 Sunquist, M. & Sunquist, F. (2002) Wild Cats Of The World. University of Chicago Press.
- 687
- Tobler, M.W., Percastegui, S.E.C., Hartley, A.Z. & Powell, G.V.N (2013) High jaguar densities
 and large population sizes in the core habitat of the southwestern Amazon. *Biological Conservation* 159, 375–381.
- 691
- Tôrres, N.M, De Marco Jr., P., Santos, T., Silveira, L., Jácomo, A.T.A & Diniz-Filho, J.A.F.
 (2012) Can species distribution modelling provide estimates of population densities? A case
 study with jaguars in the neotropics. *Diversity and Distributions* 18, 615-627.
- 695
- 696 Ulmer, F.A. (1941) Melanism in the Felidae, with special reference to the genus *Lynx. Journal*697 *of Mammalogy* 11, 185-188.
- 698
- 699 Valdez, F.P. (2010) *Genética de populações de onça-pintada* (Panthera onca) *em biomas*700 *brasileiros*. Masters thesis. Pontifícia Universidade Católica do Rio Grande do Sul, Brazil.
- 701
- Waltari, E., Hijmans, R.J., Peterson, A.T., Nyari, A.S., Perkins, S.L. & Guralnick, R.P. (2007)
 Locating Pleistocene refugia: Comparing phylogeographic and ecological niche model
 predictions. *PlosOne* 7, e563.
- 705
- 706 Wozencraft, W.C. (1993) Mammal species of the world: a taxonomic and geographic reference.
- 707 In: Wilson, D.E. & Reeder, D.M. (Eds.). pp. 288-300. Smithsonian Institution Press.
- 708

709	BIOSKETCH
710	
711	Lucas Gonçalves da Silva is a PhD student at the Graduate Program in Zoology of PUCRS,
712	Brazil. His research focuses on ecology, zoology, evolution, computational biology and
713	geoprocessing. His main interests are related to applied ecology, conservation biology and
714	natural resources management.
715	
716	Eduardo Eizirik is a professor at the Department of Biodiversity and Ecology of PUCRS,
717	Brazil, and a member of the Pro-Carnívoros Institute, Brazil. His research team address diverse
718	questions focusing on mammalian evolution, genomics, systematics, molecular ecology and
719	conservation genetics, especially focusing on Neotropical carnivores.
720	
721	
722	
723	
724	SUPPLEMENTARY MATERIAL
725	
726	Supplementary table 1 - Location records for Panthera onca employed in this study (pdf).
727	*Apêndice 1
728	
729	

TABLES

Country	Total	Non-melanistic	Melanistic	No color
		South America		
Argentina	16	16	0	0
Bolivia	22	18	1	3
Brazil	390	324	57	9
Colombia	121	118	2	1
Ecuador	13	10	1	2
French Guyana	15	15	0	0
Guyana	9	6	0	3
Paraguay	3	3	0	0
Peru	33	25	5	3
Suriname	2	1	0	1
Venezuela	11	8	0	3
SA Total	635	544	66	25
		Central America		
Belize	6	4	2	0
Costa Rica	7	6	0	1
Guatemala	88	88	0	0
Honduras	1	1	0	0
Nicaragua	4	4	0	0
Panama	5	5	0	0
CA Total	111	108	2	1
	North America			
United States	7	7	0	0
Mexico	41	37	1	3
NA Total	48	44	1	3
Total of samples	794	696	69	29

Table 1 – Sample distribution by continent and country.

Table 2 – Number of records of melanistic and non-melanistic jaguar individuals in each of the sampled Neotropical biomes and ecoregions. Ecoregions listed in red font indicate the presence of melanistic individuals.

		Total Ecoregions	Total Biomes	
Biome	Ecoregion	S=Non-melanistic	S=Non-melanistic	
		M=Melanistic	M=Melanistic	
	Caatinga	27 (16S / 11M)	38 (27S / 11M)	
	Chihuahuan desert	1 (1S) 4 (4S)		
Desert and Xeric Shrublands	Guaiira-Barranguilla xeric scrub	2 (2S)		
	Meseta Central matorral	1 (1S)		
	Sonoran desert	2 (2S)		
	Tamaulipan mezquital	1 (1S)		
Flooded Grasslands and Savannas	Pantanal	79 (798)	79 (79S)	
Temperate Grassiands, Savannas and Shrublands	Central American pine-oak forests	3 (38)	1 (15)	
	Sierra Madre del Sur pine-oak forests	2 (2S)		
Tropical and Subtropical Coniferous Forests	Trans-Mexican Volcanic Belt pine-oak forests	1 (1S)	14 (14S)	
	Sierra Madre Occidental pine-oak forests 8 (8S)			
	Apure-Villavicencio dry forests	8 (8S)		
	Atlantic dry forests	2 (28)		
Tropical and Subtropical Dry Broadloaf Forest	Sinaloan dry forests	9 (85 / 1M)	44 (438 / 1M)	
Tropical and Subtropical Dry Divadical Forest	Sinú Valley dry forests	1(1S)	++ (+557 IW)	
	Yucatán dry forests	3 (3S)		
	Sonoran-Sinaloan transition subtropical dry forest	2 (2S)		
	Beni savanna	1 (1S)		
Tropical and Subtropical Grasslands, Savannas and	Cerrado	88 (73S / 15M)		
Shrublands	Dry Chaco	2 (2S)	121 (106S / 15M)	
	Humid Chaco	1 (18)		
	Alto Paraná Atlantic forests	92 (788 / 14M)		
	Bahia forests	7 (6S / 1M)		
	Caqueta moist forests	9 (9S)		
	Cauca Valley montane forests	4 (4S)		
	Central American Atlantic moist forests	3 (3S)		
	Cordillera Oriental montane forests	3 (38)		
	Eastern Cordillera real montane forests	1 (1S)		
	Guianan Highlands moist forests	5 (5S)		
	Guianan moist forests	25 (238 / 2M)		
	Guianan savanna	1 (1S)		
	Iquitos varzeá	6 (6S)		
	Isthmian-Atlantic moist forests	4 (48)		
	Japurá-Solimoes-Negro moist forests	6 (58 / 1M)		
	Madeira-Tapajós moist forests	st forests 9 (65 / 3M) tane forests 12 (12S)		
	Magdalena Valley montane forests			
	Magdalena-Urabá moist forests	19 (19S)		
	Marajó varzeá Maranhão Bahagu forasta	2 (28)		
	Matalinao Babayu forests Mato Grosso seasonal forests	4 (48)		
	Monte Alegre varzeá	1 (1S)		
Tropical and Subtropical Moist Broadleaf Forest	Napo moist forests	17 (16S / 1M)	468 (4268 / 42M)	
	Negro-Branco moist forests	15 (158)		
	Northwestern Andean montane forests	7 (6S/1M)		
	Peten-Veracruz moist forests	93 (918 / 2M) 8 (48 / 4M)		
	Purus-Madeira moist forests	3(18/2M)		
	Rio Negro campinarana	1 (1S)		
	Santa Marta montane forests	1 (1S)		
	Serra do Mar coastal forests	14 (14S)		
	Solimões-Japura moist forests	7 (58 / 2M)		
	Southern Andean Yungas	1 (18)		
	Southwest Amazon moist forests	28 (23S / 5M)		
	Talamancan montane forests	1 (1S)		
	Tocantins/Pindare moist forests	8 (8S)		
	Uatuma-Trombetas moist forests	14 (13S / 1M)		
	Ucayali moist forests	1 (1S)		
	Veracruz moisi rofests Xingu-Tocantins-Araguaia moist forests	4 (45) 4 (28 / 2M)		
	Yucatán moist forests	5 (58)		
	Juruá-Purus moist forests	1 (1S)		
	Western Ecuador moist forests	4 (4S)		

Table 3 – Chi-square association test of landscape variables (biomes) with groups of samples (non-melanistic *vs.* melanistic). An adjusted residual <-2 or >2 indicates statistical significance for alpha=0.05.

		Groups			
Biome	Statistics	Non-melanistic	Melanistic	Total	
	Count	27	11	38	
	Expected	34,6	3,4	38,0	
Descent and Varia Shruhlands	% within landscape	71,1%	28,9%	100,0%	
Desert and Xeric Shrublands	% within groups	3,9%	15,9%	5,0%	
	% of Total	3,5%	1,4%	5,0%	
	Adjusted Residual	-4,4	4,4		
	Count	79	0	79	
	Expected	71,9	7,1	79,0	
Flooded Grasslands and	% within landscape	100,0%	,0%	100,0%	
Savannas	% within groups	11,4%	,0%	10,3%	
	% of Total	10,3%	,0%	10,3%	
	Adjusted Residual	3,0	-3,0		
	Count	1	0	1	
	Expected	,9	,1	1,0	
Temperate Grasslands,	% within landscape	100,0%	,0%	100,0%	
Savannas and Shrublands	% within groups	,1%	,0%	,1%	
	% of Total	,1%	,0%	,1%	
	Adjusted Residual	,3	-,3		
	Count	14	0	14	
	Expected	12,7	1,3	14,0	
Tropical and Subtropical	% within landscape	100,0%	,0%	100,0%	
Coniferous Forests	% within groups	2,0%	,0%	1,8%	
	% of Total	1,8%	,0%	1,8%	
	Adjusted Residual	1,2	-1,2		
	Count	43	1	44	
	Expected	40,0	4,0	44,0	
Tropical and Subtropical Dry	% within landscape	97,7%	2,3%	100,0%	
Broadleaf Forest	% within groups	6,2%	1,4%	5,8%	
	% of Total	5,6%	,1%	5,8%	
	Adjusted Residual	1,6	-1,6		
	Count	106	15	121	
Tropical and Subtropical	Expected	110,1	10,9	121,0	
Grasslands, Savannas and	% within landscape	87,6%	12,4%	100,0%	
Shrublands	% within groups	15,2%	21,7%	15,8%	
	% of Total	13,9%	2,0%	15,8%	
	Adjusted Residual	-1,4	1,4		
	Count	426	42	468	
	Expected	425,8	42,2	468,0	
Tropical and Subtropical	% within landscape	91,0%	9,0%	100,0%	
Moist Broadleaf Forest	% within groups	61,2%	60,9%	61,2%	
	% of Total	55,7%	5,5%	61,2%	
	Adjusted Residual	,1	-,1		
	Count	696	69	765	
Total	% within landscape	91,0%	9,0%	100,0%	
	% within groups	100,0%	100,0%	100,0%	
	% of Total	91,0%	9,0%	100,0%	

Chi-square = 31.832, likelihood ratio = 34.993, Fisher's exact test = 30.051, standarized statistic -0.252. 765 valid cases.

FIGURE LEGENDS

Figure 1 – Main coat color variants in *P. onca*: (A) Non-melanistic ('wild-type') and (B) Melanistic. Photos: (A) Rony García-Anleu (Wildlife Conservation Society) and (B) Leandro Silveira (Jaguar Conservation Fund).

Figure 2 – Distribution of records in each sampled biome.

Figure 3 – Potential distribution map of jaguars: (A) Distribution of the species (control model) and (B) Distribution of melanism (melanism model).

Figure 4 – Relative importance (%) of the environmental predictors used in the Maxent models: Control model (yellow), Melanism (black), Pantanal-only (green) and Llanos-only (blue).

FIGURES

Environmental predictor

CAPÍTULO 3:

ARTIGO CIENTÍFICO

"GEOGRAPHIC DISTRIBUTION AND MACROECOLOGICAL ASSESSMENT

OF COLORATION PHENOTYPES IN A POLYMORPHIC NEOTROPICAL

FELID, THE JAGUARUNDI (Puma yagouaroundi)"

A ser submetido para a revista 'Journal of Zoology'

1	GEOGRAPHIC DISTRIBUTION AND MACROECOLOGICAL ASSESSMENT
2	OF COLORATION PHENOTYPES IN A POLYMORPHIC NEOTROPICAL
3	FELID, THE JAGUARUNDI (Puma yagouaroundi)
4	
5	(Journal of Zoology, Wiley/The Zoological Society of London, ISSN 1469-7998)
6	
7	Lucas Gonçalves da Silva (1); Tadeu Gomes de Oliveira (2,7); Carlos Benhur
8	Kasper (3); Jorge José Cherém (4); Edsel Amorim Moraes Jr. (5); Agustin Paviolo
9	(6) & Eduardo Eizirik (1,7)
10	
11	(1) Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS; Av Ipiranga
12	6681, P12/134, 91619-900. Porto Alegre-RS, Brazil.
13	(2) Departamento de Biologia, Universidade Estadual do Maranhão; Cidade
14	Universitária Paulo VI, CP-09, 65055-000. São Luís-MA, Brazil.
15	(3) Universidade Federal do Pampa - UNIPAMPA; Rua Antonio Trilha 1847, Sala
16	2, 97300-000. São Gabriel-RS, Brazil.
17	(4) Caipora Cooperativa; Av Desembargador Vitor Lima, 260/513, 88040-400.
18	Florianopolis-SC, Brazil
19	(5) Instituto Biotropicos; Rua Herculano Pena 344, 39100-000, Diamantina-MG,
20	Brazil.
21	(6) Instituto de Biología Subtropical, Universidad Nacional de Misiones -
22	CONICET; Bertoni 85, CP3370. Puerto Iguazú-Misiones, Argentina.
23	(7) Instituto Pró-Carnívoros; Av Horácio Neto 1030, Pq Edmundo Zanoni. Atibaia-
24	SP, Brazil.
25	
26	Correspondence: L.G. Silva (lucas.silva@pucrs.br) and E. Eizirik
27	(eduardo.eizirik@pucrs.br)
28	
29	Short title: "Geographic distribution of phenotypes in jaguarundis".
30	
31	

32 ABSTRACT

33

34 The jaguarundi (*Puma yagouaroundi*) is a small cat with a broad distribution 35 across the Americas, which presents two main coloration phenotypes (dark brown/gray 36 vs. red/reddish). Although these coat color variants have been known for decades, and 37 historically speculated to be associated with different habitats, their exact geographic 38 distribution has never been mapped across the species' range. Moreover, their 39 association to different habitats has never been tested statistically, so that their 40 ecological relevance with respect to varying environmental features remains unknown. 41 Based on 463 location records encompassing the entire historical range of the species 42 obtained from camera-traps, captures and skins held in scientific collections, we 43 produced suitability models for both jaguarundi phenotypes based on niche modeling 44 from environmental predictors, and compared them with a control model for the species 45 as a whole. The frequency of dark jaguarundis is *ca.* 80%, while reddish animals 46 represent ca. 20% of our overall sample set. However, there were marked differences in 47 these frequencies across regions. Dark animals were significantly associated with moist 48 and dense forests, while reddish forms were associated with dry areas such as deserts 49 and xeric landscapes. Accordingly, there were clear differences in the geographic 50 distribution models of these coat colors phenotypes. These results demonstrate that the 51 spatial distribution of these coloration features is non-random, and suggest that some 52 habitat characteristics likely influence the occurrence of these different forms. We 53 assessed the suitability models to investigate whether particular environmental variables 54 could explain these different distributions. Although there were detectable differences 55 between the dark and reddish models (affecting variables such as moisture, temperature, 56 precipitation and radiation), we did not identify a clear-cut pattern that could easily 57 demonstrate an effect of natural selection on traits such as camouflage or
58 thermoregulation, suggesting that perhaps a more complex interplay of different
59 ecological processes regulates this system over evolutionary time.

60

61 Keywords: melanism, polymorphism, natural selection, distribution models,62 phenotypes frequency.

- 63
- 64 INTRODUCTION
- 65

66 A great diversity of morphological phenotypes variation is observed in 67 vertebrates. Unraveling the molecular basis and adaptive role of phenotypic variants has 68 been a focus of attention in several areas of evolutionary biology. The ecology of some 69 species can affect the frequency of its genetic variants (Mukherjee et al., 2010), and 70 phenotypes in natural populations can present spatial patterns associated with particular 71 environments (Eizirik & O'Brien 2003; Novembre & DiRienzo, 2009), possibly 72 implying behavioral or ecological relevance (Lande, 1976; West-Eberhard, 1989; 73 Majerus, 1998; Caro, 2005). Analyses integrating information on coloration patterns 74 and environmental characteristics that influence ecological processes (such as 75 camouflage and disruptive coloration, intra and interspecific communication and 76 physiology) have the potential to illuminate the evolutionary processes involved in the 77 generation and maintenance of polymorphic phenotypes in nature (Barsh, 1996; 78 Nachman et al., 2003; Hoekstra, 2006).

Several biological factors such as thermoregulation, aposematism, camouflage,
susceptibility or response to disease, sexual selection and reproductive success are
classically associated with melanism (coat color darkening in relation to what would be

82 considered the 'normal' or 'wild' phenotype) in different species (Majerus, 1998). 83 Putative associations between darkened coats and some types of environment have been mentioned in early studies of animal coloration, and used to propose the classical 84 85 hypothesis that melanistic animals are favored in wetter areas covered by dense 86 vegetation (e.g. tropical forests) (Gloger, 1833; Poulton, 1890; Beddard, 1895; Cott, 87 1940; Ulmer, 1941). Additionally, previous studies have suggested that open areas 88 might have a negative impact on dark individuals, due to the effects of high 89 sunlight/radiation levels, as well as high mean temperatures in some areas (Ortolani & 90 Caro, 1996; Majerus & Mundy, 2003).

91 The occurrence of melanism is common in the Felidae, having been so far 92 documented in 13 of the 38 species, with strong evidence for at least eight independent 93 origins in this family over evolutionary time (Schneider et al., 2012). The biological 94 effects and even the geographic distribution of felid melanistic variants are not clearly 95 known at this time, but recent analyses indicate that melanism in some cases can reach 96 very high frequencies in regional populations (e.g. Kawanishi et al., 2010). Such 97 observations, along with the multiple origins of melanism in the family and repeated 98 increases in frequency in different populations, support the hypothesis that melanism 99 can provide an adaptive advantage in certain ecological conditions (Caro, 2005; Eizirik 100 & O'Brien 2003; Eizirik et al., 2003; Allen et al., 2010).

101 The jaguarundi (*Puma yagouaroundi*) is a small Neotropical cat whose ecology 102 is still poorly known (Grassman & Tewes 2004; Maffei *et al.*, 2007). Its range extends 103 from the southern United States to Argentina (Sunquist & Sunquist 2002; Almeida *et* 104 *al.*, 2013; Caso *et al.*, 2013) and includes a wide variety of habitats, from semiarid and 105 grassland areas to dense dry and wet forests (Oliveira, 1998; Sunquist & Sunquist 106 2002). The species is listed as 'least concern' by the IUCN (Caso *et al.*, 2013) and vulnerable in regional lists (Almeida *et al.*, 2013). Habitat loss, fragmentation and
human persecution are the most important threats to the species (Almeida *et al.*, 2013;
Caso *et al.*, 2013). It is considered to be a diurnal cat (Oliveira, 1998; Maffei *et al.*,
2007), with a generalist diet (Tófoli *et al.*, 2009) and occurring at low densities
(Oliveira *et al.*, 2010). Its population size is poorly known globally or regionally, but
there is some evidence indicating a trend for a demographic decline (Almeida *et al.*,
2013).

114 The species is a unique felid in several respects, especially related with diurnal 115 and arboreal behaviors. It is the only felid whose pelage in completely unmarked (i.e. 116 devoid of stripes or spots) throughout its life. Moreover, there is marked coloration 117 polymorphism in this species, with two main forms that can be easily recognized 118 (Figure 1). The ancestral phenotype in jaguarundis is the reddish form, and melanism is 119 caused by a semi-dominant mutation in the MC1R (Melanocortin 1-Receptor) gene that 120 induces the formation of the dark brown/gray phenotype (Eizirik et al., 2003). Although 121 these two main forms have been known for many years and anecdotally speculated to be 122 associated with different habitats (e.g. Sunquist & Sunquist 2002, Grassman & Tewes, 123 2004, Grigione et al., 2007 and Maffei et al., 2007) their exact geographic distributions 124 have never been mapped, and such associations have remained untested.

The goal of the present work was to conduct a survey of the habitat suitability of the main jaguarundi coloration phenotypes, and to test their association with different types of environments. We built a large-scale (range-wide) spatial distribution models for the two forms as well as for the species as a whole, and tested two alternative hypotheses: (1) melanism occurs randomly across all environments (absence of association between melanism and different landscapes); and (2) melanism presents a non-random distribution, and a significant association with particular biomes. Our results support the latter hypothesis, and open up new avenues for the investigation ofthe evolutionary ecology of coloration diversity in the elusive and poorly known felid.

134

135 METHODS

136

137 Database construction

138

139 The database included location records from the entire historical range of the 140 jaguarundi, from Southern United States to Argentina, in various different biomes and 141 ecoregions. These occurrence points were from four different sources: (1) Individuals in 142 scientific collections that presented geographical coordinates and information about coat 143 color (or preferably, photographic documentation); (2) Captures and individuals found 144 dead in fieldworks, (3) Records from camera traps and (4) Reports by researchers in 145 fieldwork or bibliographical sources already published. All records were converted into 146 degree coordinates using the WGS84 datum.

147 Because the species presents some color variants that cannot be easily 148 categorized into reddish or dark (i.e. intermediate colors, or heterogeneous patterns 149 across different body regions), doubtful animals were excluded from the dataset. We 150 therefore did our analyses on a set of individuals whose colors could be confirmed and 151 reliably classified into reddish or dark. We used the full dataset to generate a control 152 model for the distribution of the species as a whole, against which we compared 153 phenotype-specific models (see below). Since our sampling of records was 154 opportunistic and unbiased with respect to coloration phenotypes (i.e. different 155 phenotypes had the same capture probability), we assumed that the observed proportion 156 of each color in the overall dataset corresponded to its actual species-wide frequency.

157 Such overall frequencies were then used to generate expected values for use in158 association tests performed for each biome/ecoregion.

159

160 Selection of environmental variables

161

We mapped the occurrence of different phenotypes throughout the species' distribution by inserting location records into an ArcGis 9.3 database (ESRI, 2010). We used shapefiles of biomes and terrestrial ecoregions (Olson *et al.*, 2001; Hoekstra *et al.*, 2010) as mask layers to extract and analyze information on the natural landscapes in which these phenotypes occur. Such mapping exercise allowed an initial assessment of potential relationships between jaguarundi coloration phenotypes and landscape conformations across the species' range.

169 To generate our distribution models, we initially considered 37 explanatory 170 environmental variables and landscape data. We used 35 environmental variables 171 obtained from the Worldclim (http://www.worldclim.org) and Climond 172 (http://www.climond.org) databases, such as: annual mean temperature (Bio01), mean 173 diurnal temperature range (Bio02), isothermality (Bio03), temperature seasonality 174 (Bio04), max temperature of warmest week (Bio05), min temperature of coldest week 175 (Bio06), temperature annual range (Bio07), mean temperature of wettest quarter 176 (Bio08), mean temperature of driest quarter (Bio09), mean temperature of warmest 177 quarter (Bio10), mean temperature of coldest quarter (Bio11), annual precipitation 178 (Bio12), precipitation of wettest week (Bio13), precipitation of driest week (Bio14), 179 precipitation seasonality (Bio15), precipitation of wettest quarter (Bio16), precipitation 180 of driest quarter (Bio17), precipitation of warmest quarter (Bio18), precipitation of 181 coldest quarter (Bio19), annual mean radiation (Bio20), highest weekly radiation 182 (Bio21), lowest weekly radiation (Bio22), radiation seasonality (Bio23), radiation of 183 wettest quarter (Bio24), radiation of driest quarter (Bio25), radiation of warmest quarter 184 (Bio26), radiation of coldest quarter (Bio27), annual mean moisture index (Bio28), 185 highest weekly moisture index (Bio29), lowest weekly moisture index (Bio30), 186 moisture index seasonality (Bio31), mean moisture index of wettest quarter (Bio32), 187 mean moisture index of driest quarter (Bio33), mean moisture index of warmest quarter 188 (Bio34), and mean moisture index of coldest quarter (Bio35). Altitudes for the location 189 points were obtained from the SRTM database (http://www2.jpl.nasa.gov/srtm) and landscape information was obtained from the ESA GlobCover Project 2009 190 191 (http://due.esrin.esa.int/globcover). All variables were analyzed using a fine (~1 km) 192 spatial resolution.

193 To avoid model overfitting induced by correlation among explanatory variables, 194 we performed Pearson's correlation coefficient test (r) between each pair of variables 195 (Kumar & Stohlgran (2009); Raes et al., 2009; Mukherjee et al., 2010) using the 196 statistical software package SPSS 17.0. The correlation was assessed by extracting 197 variable information from 10,000 unique and randomly generated points sampled from 198 the known present geographic distribution layer of jaguarundis (obtained from IUCN 199 and complemented by our records) using ArcGis 9.3. We selected 12 predictors that 200 were not highly correlated with each other, using r=0.7 as the cut-off value, and 201 employed them as ecological indicators for niche modeling (Wiens, 2011). The selected 202 variables were: annual mean temperature, temperature seasonality, temperature annual 203 range, annual precipitation, precipitation of driest week, precipitation of wettest quarter, 204 precipitation of driest quarter, annual mean radiation, annual mean moisture index, 205 highest weekly moisture index, lowest weekly moisture index and altitude.

7 Setting and running models

208

209 We modeled the spatial distribution of jaguarundis using the maximum entropy 210 algorithm implemented in the software package Maxent (Philips et al., 2006), a robust 211 statistical method for predictions of species distributions (Waltari et al., 2007; Philips & 212 Dudik, 2008; Elith et al., 2010; Merow et al., 2013). We ran and assessed three different 213 models: (1) total set of samples (control model); (2) subset comprising only dark 214 animals (melanism model); (3) subset comprising only reddish animals. For each of 215 these sample sets, we used 70% of the included points for training and 30% for testing 216 the models. The data were resampled using the bootstrap routine of 10 random 217 partitions with replacements (Pearson, 2007). All runs were configured in random seed, 218 convergence threshold of 1E-5 with 500 iterations and 10,000 hidden background points 219 (Ferraz *et al.*, 2012). Model performance was assessed by the AUC (Area Under Curve) 220 value for the Receiver Operating Characteristic (ROC) curve (Pearson, 2007; Tôrres et 221 al., 2012; Calabrese et al., 2013).

222

223 RESULTS

224

We obtained 463 individuals: 94 reddish records and 369 dark records and found different phenotype frequencies among different landscape conformations (biomes and ecoregions, Table 1). Considering all samples from our database, 79.7% of the animals were dark and 20.3% were reddish. Maxent models were considered satisfactory (AUC ≥ 0.9): control model (AUC training = 0.961, test = 0.943; Figure 2A), dark or melanistic animals (AUC training = 0.963, test = 0.956, Figure 2B), and reddish animals (AUC training = 0.960, test = 0.954, Figure 2C). Moreover, our database updates the current IUCN distribution map of the species, filling geographic gaps where jaguarundishad not been recorded previously.

234 Dark jaguarundis occurred in all biomes in which the species was recorded, 235 whereas reddish individuals were totally absent from flooded grasslands and savannas 236 (Table 1). Additionally, the observed frequency of these phenotypes was quite different 237 among biomes. Considering the proportion of distinct coat color patterns in our database 238 as an overall standard for the species as a whole, we found no significant departures in 239 tropical and temperate grasslands and savannas (76,5% dark, 23,5% red), nor in dry 240 forests (79,1% dark, 20,9% red). However, in moist forests we found a significantly 241 higher frequency of dark jaguarundis (87,3% dark, 12,7% red; p<0.05), while in desert 242 and xeric areas there was a significantly higher proportion of the reddish form (32,7% 243 dark, 67,3% red; p<0.05) (Table 2).

244 Our niche models provided additional corroboration to our inference of the 245 geographic distribution of these different phenotypes (Figure 3). The control model was 246 effective at predicting the overall jaguarundi distribution quite accurately, and the model 247 assessed for the dark animals was quite similar. In contrast, there were marked 248 differences in the model estimated for reddish animals, such as the low habitat 249 suitability in most of the Amazon basin, in the Pantanal and portions of the Cerrado 250 ecoregion, and the increased suitability in the Caatinga ecoregion in northeastern Brazil. 251 When we assessed the relative importance of all predictor variables used to generate the 252 different distribution models, we perceived some differences (Figure 4) that may be 253 relevant to begin explaining the observed patterns. Is clear that the most influential 254 predictor in the control model was temperature seasonality. For the melanistic model, 255 annual temperature range and annual mean radiation had higher impact, whereas for the 256 reddish model the highest and lowest weekly moisture index were the key predictors.

258 DISCUSSION

259

260 According to Pires (2012), there is no geographic/genetic structure in jaguarundi 261 populations that might explain the pattern of coat color distribution described here. 262 Although there were limitations in sampling across the Amazon forests, this previous 263 study identified a single genetic unit south of the Amazon river, with a seemingly 264 continuous distribution that includes northeastern Brazil and southern Brazil/Patagonia 265 (which are areas where the reddish forms appear to be abundant). In addition, that study 266 supported the inference that there was historical gene flow in the recent past between 267 the major groups located south and north of the Amazon river. These results go against 268 the hypothesis that population structure could have led to the observed pattern of 269 phenotypes distribution. The most probable scenario is an emergence of the melanism 270 allele at a particular location and its subsequent expansion throughout the jaguarundi 271 distribution, driven by natural selection, while the ancestral alleles coding for the 272 reddish phenotypes maintained some adaptive advantage in some regions.

273 For a character to be recognized as adaptive, it must be derived and involved in 274 the response of a selective agent (Futuyma, 2009). It is therefore interesting to test 275 whether a single-locus polymorphism displays an evolutionary dynamics that is 276 contrary to equilibrium expectations (Kreitman, 2000). Random geographic distribution 277 patterns across connected natural populations is the normal situation for a neutral 278 phenotype, while nonrandom patterns may indicate the occurrence of natural selection 279 affecting the trait. To assess the adaptive relevance of a stable polymorphism such as 280 coat colors in wild cats, it is necessary to consider the phenotype frequency among 281 different landscapes that are connected by historical gene flow. In jaguarundis, it is
282 relevant to point out that the derived coat color (dark) is much more common and 283 widely distributed than the ancestral form (red). Reddish jaguarundis are restricted to 284 only four geographic regions (southern Brazil to Patagonia, northeastern Brazil, 285 northern Peru to Colombia and Yucatan peninsula to southern United States), which is 286 corroborated by the niche model, rejecting the null hypothesis that the distribution of 287 phenotypes is random and unrelated to biogeographic constraints (hypothesis cited by 288 Eizirik & O'Brien [2003] and Eizirik et al., [2003]). This pattern leads us to conclude 289 that coat color in jaguarundis is affected by natural selection related to environmental 290 features that vary among biomes.

291 Ecological niche models can combine statistical techniques with geographic 292 information systems in predictive ecology and especially in macroecological analysis 293 (Elith et al., 2010; Calabrese et al., 2013). The models shown in Figure 2 A-C were 294 designed to provide an analysis of the relative influence of all predictor variables, to 295 explain the geographic distribution of distinct phenotypes. The main differences 296 between the generated models were related with annual mean temperature, annual mean 297 radiation and moisture index (Figure 4). All of these predictors exert different 298 influences on distinct landscape conformations, and it is difficult to draw precise 299 interpretations from this pattern alone. Although the influence of these variables may be 300 direct (e.g. solar radiation being related to thermoregulation aspects), it is also plausible 301 to conclude that they may affect landscape features that are themselves the selective 302 agents on jaguarundis (e.g. related to camouflage efficacy). Reddish jaguarundis are 303 clearly more common in open habitats (and adjacent forested areas), while the 304 frequency of dark animals is higher in close forests. This type of association is 305 reminiscent of the hypotheses put forth in the last two centuries by Gloger (1833), 306 Poulton (1890) and Cott (1940). The models generated in our study were found to be

307 robust compared with our initial data set and the presently known distribution of the 308 species. However, it is important to highlight that the niche models are based on 309 predictors and their relative importance to generate distribution maps. It is therefore 310 important to be cautious and not discard the possibility that some relevant predictor may 311 have been lost in the pre-selection of variables based on the correlation test, or that 312 additional variables that are perhaps more important were not even included in the 313 initial set employed in our analysis. Additional assessments will be required to test these 314 possibilities.

315 Location records from our database and our niche models corroborate previous 316 hypotheses postulating that melanism in jaguarundis is associated with landscape 317 conformations and therefore reject the null hypothesis that the distribution is random 318 across all biomes. Our analyses suggest that the association with different biomes is 319 related to the effect of environmental variables such as temperature, radiation and 320 moisture. Although the species is present in more than 60 ecoregions, reddish forms 321 were recorded in less than half of these areas. Moreover, our results clarified the 322 previously undocumented spatial distribution of coat color variants in this species, 323 opening up the possibility of investigating their adaptive significance. Further studies 324 about melanism are necessary to better understand this coat color variant in natural 325 populations of jaguarundis, especially testing and ranking thermoregulation along with 326 camouflage effectiveness. This species remains poorly known, and appears to be 327 common due to frequent sightings and the speculation that it can be tolerant to semi-328 altered and fragmented areas (Almeida et al., 2013). However, additional studies are 329 necessary to understand more completely its ecology, demography, genetics and 330 conservation status. We hope that this study will serve to foster increased interest in this 331 remarkable species, and also stimulate research focusing on other polymorphic 332 phenotypes, contributing to better understand their adaptive relevance in different333 ecological contexts.

334

335 AKNOWLEDGEMENTS

336

337 Authors would like to thank Katia Barros Ferraz, Francesca Palmeira, Daniel 338 Rocha, Kristofer Helgen, Eileen Westwig, Esther Langan, Fernando Tortato, Alexandre 339 Vogliotti, Marina Xavier, Flavia Tirelli, Felipe Peters, Everton Behr, Ronaldo Morato, 340 Renata Bornholdt, Javier Pereira, Esteban Payan, Benoit De Thoisy, Tiago Freitas and 341 João Feliz Moraes for location records/scientific support; to American Museum of 342 Natural History, Smithsonian Institution, Panthera, ICMBio Brazil, Wildlife 343 Conservation Society and PUCRS for scientific support; and CNPq Brazil for finantial 344 support.

345

346 **REFERENCES**

347

Allen, W.L., Cuthill, I.C., Samuel, N.E. & Baddeley, R. (2010) Why the leopard got its spots:
relating pattern development to ecology in felids. *Proceedings of The Royal Society: Biological Sciences* 277, online.

351

Almeida, L.B., Queirolo, D., Beisiegel, B.M. & Oliveira, T.G. (2013) Avaliação do estado de
conservação do gato-mourisco *Puma yagouaroundi* (É. Geoffroy Saint-Hilaire, 1803) no Brasil.

354 Biodiversidade Brasileira 3(1), 99-106,

355

Barsh, G.S. (1996) The genetics of pigmentation: from fancy genes to complex traits. *Trends In Genetics* 12, 299-305.

358	
359	Beddard, F.E. (1985) Animal coloration: Colour and markins of animals 2nd Ed. Swan
360	Sonnenschein: London.
361	
362	Calabrese, J.M., Certain, G., Kraan, C. & Dormann, C.F. (2013) Stacking species distribution
363	models and adjusting bias by linking them to macroecological models. Global Ecology and
364	Biogeography, geb.12102.
365	
366	Caro, T. (2005) The Adaptive Significance of Coloration in Mammals. <i>BioScience</i> 55(2), 125-
367	136.
368	
369	Caso, A., Lopez-Gonzalez, C., Payan, E., Eizirik, E., Oliveira, T.G., Leite-Pitman, R., Kelly, M.
370	& Valderrama, C. (2008) Puma yagouaroundi. In: IUCN 2013. IUCN Red List of Threatened
371	Species. Version 2013.2. < <u>www.iucnredlist.org</u> > Downloaded on 02 December 2013 .
372	
373	Cott, H.B. (1940) Adaptative Coloration in Mammals. London: Methuen.
374	
375	Eizirik, E. & O'Brien, S.J. (2003) Evolution of the melanism in the Felidae. <i>CatNews</i> 38 , 37-39.
376	
377	Eizirik, E., Yuhki, N., Johnson, W.E., Raymond, M., Hannah, S.S. & O'Brien, S.J. (2003)
378	Molecular genetics and evolution of melanism in the cat family. <i>Current Biology</i> 13 , 448-453.
379	
380	Elith, J., Phillips, S.J., Hastie, T., Dudik, M., Chee, Y.E. & Yates, C.J. (2010) A statistical
381	explanation of MaxEnt for ecologists. Diversity and Distributions 17, 43-57.
382	
383	ESRI (2010) ARCGis Software. ESRI Mapping Company USA.

- 385 Ferraz, K.M.P.M.B., Ferraz, S.F.B., Paula, R.C., Beisiegel, B. & Breitenmoser, C. (2012)
- 386 Species distribution modeling for conservation purposes. *Natureza & Conservação* 10(2), 214387 220.
- 388

389 Futuyma, D.J. (2009) *Evolution, Second Edition.* Sinauer Associates Inc.

- 390
- Gloger, C.W.L. (1833) *Das Abändern der Vögel durch Einfluss des Klimas* [The evolution of
 birds through the impact of climate]. Breslau: August Schulz.
- 393

394 Grassman, L.I. & Tewes, M.E. (2004) Jaguarundi the weasel cat of Texas. *South Texas Wildlife*395 8(4), 1-2.

- 396
- Grigione, M., Scoville, A., Scoville, G. & Crooks, K. (2007) Neotropical cats in southeast
 Arizona and surrounding areas: past and present status of jaguars, ocelos and jaguarundis. *Mastozoología Neotropical* 14(2), 189-199.
- 400
- 401 Hoekstra, H.E. (2006) Genetics, development and evolution of adaptive pigmentation in
 402 vertebrates. *Heredity* 97, 222-234.
- 403
- 404 Hoekstra, J., Molnar, J.L., Jennings, M., Revenga, C., Spalding, M.D. & Ellison, K. (2010) *The*405 *atlas of global conservation*. University of California Press.
- 406
- 407 Kawanishi, K., Sunquist, M.E., Eizirik, E., Lynam, A.J., Ngoprasert, D., Wan Shahruddin,
- 408 W.N., Rayan, D.M., Sharma, D.S.K. & Steinmetz, R. (2010) Near fixation of melanism in
- 409 leopards of the Malay Peninsula. *Journal of Zoology* 282(3), 201-206.
- 410

411 Kreitman, M. (2000) Methods to detect selection in population with aplication to the human.

412 Annu. Rev. Genomics Hum. Genet. 01, 539–59.

413

- 414 Kumar, S. & Stohlgran, T.J. (2009) Maxent modeling for predicting suitable habitat for
- 415 threatened and endangered tree *Canacomyrica monticola* in New Caledonia. *Journal of Ecology*
- 416 *and Natural Environment* **1**(4), 94-98.
- 417
- 418 Lande, R. (1976) Natural selection and random genetic drift in phenotypic evolution. *Evolution*419 30, 314-334.
- 420
- 421 Maffei, L., Noss, A. & Fiorello, C. (2007) The jaguarundi (Puma yagouaroundi) in the Kaa-Iya
- 422 Del Gran Chaco national park, Santa Cruz, Bolivia. *Mastozoología Neotropical* 14(2), 263-266.
 423
- 424 Majerus, M.E.N. (1998) *Melanism Evolution in action*. Oxford University Press.
- 425
- 426 Majerus, M.E.N. & Mundi, N.I. (2003) Mammalian melanism: natural selection in black and
- 427 white. *Trends in Genetics* **19**(11), 585-588.

428

- 429 Merow, C., Smith, M.J. & Silander, J.A. (2013) A practical guide to Maxent for modeling
 430 species' distributions: what it does, and why inputs and settings matter. *Ecography* 36, 1058431 1069.
- 432
- Mukherjee, S., Krishnan, A., Tamma, K., Home, C., Navya, R., Joseph, S., Das, A. &
 Ramakrishnan, U. (2010) Ecology driving genetic variation: A comparative phylogeography of
 jungle cat (*Felis chaus*) and leopard cat (*Prionailurus bengalensis*) in India. *PlosOne* 5(10),
 e13724.
- 437

438	Nachman, M.W., Hoekstra, H.E. & D'Agostino, S.L. (2003) The genetic basis of adaptive
439	melanism in pocket mice. Proceedings of the National Academy of Sciences USA 100, 5268-
440	5273.

- 441
- 442 Novembre, J. & DiRienzo, A. (2009) Spatial patterns of variation due to natural selection in
 443 humans. *Nature Genetics* 10, 745-755.
- 444
- 445 Oliveira, T.G. (1998) *Herpailurus yagouaroundi. Mammalian Species* 578: 1-6.
- 446
- 447 Oliveira, T.G., Tortato, M.A., Silveira, L., Kasper, C.B., Mazim, F.D., Lucherini, M., Jácomo,
- 448 A.T., Soares, J.B.G., Rosane, V.M. & Sunquist, M. (2010) Ocelot ecology and its effects on the
- small-felid guild in the lowland neotropics. p. 559-580. In: Macdonald, D.W. & Loveridge, A.J.

450 (eds.). *Biology and conservation of wild felids*. Oxford University Press.

- 451
- 452 Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V., Underwood,
- 453 E.C., D'Amico, J.A., Itoua, I., Strand, H.H., Morrison, J.C., Loucks, C.J., Allnutt, T.F.,
- 454 Ricketts, T., Kura, Y., Lamoreux, J.F., Wettengel, W., Hedao, P. & Kassem, K. R. (2001)

455 Terrestrial ecoregions of the world: a new map of life on Earth. *BioScience* **51**, 933-938.

- 456
- 457 Ortolani, A. & Caro, T. M. (1996) The adaptative significance of color patterns in carnovires.
- 458 In: Gittleman, J.L. *Carnivores Behavior, Ecology and Evolution Volume 2.* Cornell University
- 459 Press.
- 460
- 461 Pearson, R.G. (2007) Species' Distribution modeling for conservation educators and
 462 practitioners. American Museum of Natural History Press.
- 463

- 464 Philips, S.J., Anderson, R.P. & Schapired, R.E. (2006) Maximum entropy modeling of species
 465 geographic distributions. *Ecological Modelling* 190, 231-259.
- 466
- 467 Philips, S.J. & Dudik, M. (2008) Modeling of species distributions with Maxent: new
 468 extensions and a comprehensive evaluation. *Ecography* 31,161-175.
- 469
- 470 Pires, C.B. (2012) Diversidade genética e filogeografia de Puma yagouaroundi (Mammalia,
- 471 *Carnivora, Felidae*). PUCRS Uniniversity, MSc dissertation.
- 472
- 473 Poulton, E.B. (1890) The Colours of Animals, their meaning and use, especially considered in
- 474 *the case of insects*. London: Kegan Paul, Trench & Trübner.
- 475
- 476 Raes, N., Roos, M.C., Slik, J.W., Loon, E. & Steege, H. (2009) Botanical richness and
 477 endemicity patterns of Borneo derived from species distribution models. *Ecography* 32, 180478 192.
- 479
- 480 Schneider, A., David, V.A., Johnson, W.E., O'Brien, S.J., Barsh, G.S., Maymond, M.M. &
- 481 Eizirik, E. (2012) How the leopard hides its spots: *ASIP* mutations and melanism in wild cats.
- 482 *PlosOne* 7, e50386.
- 483
- 484 Sunquist, M. & Sunquist, F. (2002) Wild Cats Of The World. University of Chicago Press.
- 485
- 486 Tófoli, C.F., Rohe, F. & Setz, E.Z.F. (2009) Jaguarundi (*Puma yagouaroundi*) (Geoffroy, 1803)
- 487 (Carnivora, Felidae) food habits in a mosaic of Atlantic Rainforest and eucalypt plantations of
- 488 southeastern Brazil. *Brazilian Journal of Biology* **69**(3), 871-877.
- 489

490	Tôrres, N.M,	De Marco Jr	., P.,	Santos,	Т.,	Silveira, l	L., Jácomo,	A.T.A	&	Diniz-Filho,	J.A.F.
-----	--------------	-------------	--------	---------	-----	-------------	-------------	-------	---	--------------	--------

- 491 (2012) Can species distribution modelling provide estimates of population densities? A case
- 492 study with jaguars in the neotropics. *Diversity and Distributions* **18**, 615-627.
- 493
- 494 Ulmer, F.A. (1941) Melanism in the Felidae, with special reference to the genus *Lynx*. *Journal*
- 495 *of Mammalogy* **11**, 185-188.
- 496
- 497 Waltari, E., Hijmans, R.J., Peterson, A.T., Nyari, A.S., Perkins, S.L. & Guralnick, R.P. (2007)
- 498 Locating Pleistocene refugia: Comparing phylogeographic and ecological niche model499 predictions. *PlosOne* 7, e563.
- 500
- 501 West-Eberhard, M.J. (1989) Phenotypic plastiity and the origins of diversity. *Annual Review of*502 *Ecology, Evolution and Systematics* 20, 249-78.
- 503
- 504 Wiens, J.J. (2011) The niche, biogeography and species interactions. *Proceedings of The Royal*
- 505 Society: Biological Sciences 366, 2336-2350.
- 506
- 507
- 508 SUPPLEMENTARY MATERIAL
- 509 Supplementary table 1 Location records for *Puma yagouaroundi* (pdf).
- 510 *Apêndice 2
- 511

512 TABLE LEGENDS

513

Table 1 – Distribution of records of dark and reddish jaguarundis in different biomes
and ecoregions. Ecoregions listed in red font indicate the presence of reddish
individuals.

518	Table 2 – Association test of landscape variables (biomes) with groups of samples
519	(red/dark). Adjusted residuals <-2 or >2 indicate significant departure from the null
520	hypothesis of no association, for alpha=0.05.
521	
522	
523	FIGURE LEGENDS
524	
525	Figure 1 – Main coat colors of <i>P. yagouaroundi</i> : (A) Reddish; and (B) Dark brown/gray
526	(melanistic). Photos: T.G. de Oliveira.
527	
528	Figure 2 – Maps depicting the location of jaguarundi records used in this study, overlaid
529	onto the distribution of Neotropical biomes. (A) Dark individuals; (B) Red/reddish
530	individuals.
531	
532	Figure 3 – Potential distribution map for jaguarundis: (A) Distribution of the species as
533	whole (control model; n=463); (B) Distribution of dark animals (n=369) and (C)
534	Distribution of reddish animals (n=94).
535	
536	Figure 4 – Relative importance (%) of each predictor variable used in the models:
537	species-wide (control model): yellow; dark-only: gray; reddish-only: red.

TABLE 1

Biome	Ecoregion	Samples (D = Dark / R = Red)	Total Biome	
	Caatinga	38 (8D / 30R)		
	Chihuahuan desert	1 (1R)		
	Chihuahuan-Tehuacán Deserts	1 (1D)		
Deserts and Xeric Shrublands	Guajira-Barranquilla xeric scrub	4 (4D)	49 (16D / 33R)	
	La Costa xeric shrublands	1 (1D)		
	Paraguana xeric scrub	1 (1D)		
	Tamaulipan matorral	1 (1R)		
	Tamaulipan mezquital	2 (1D / 1R)		
Flooded Grasslands and Savannas	Pantanal	9 (9D)	9 (9D)	
	Dry Chaco	2 (2D)		
Temperate Grasslands, Savannas and Shrublands	Espinal	1 (1R)	7 (5D / 2R)	
	Humid Pampas	1 (1R)		
	Low Monte	3 (3D)		
	Apure-Villavicencio dry forests	6 (3D / 3R)		
	Atlantic Dry Forests	12 (11D / 1R)		
	Central American dry forests	3 (3D)		
	Chiapas Depression dry forests			
	Chiquitano Dry Forests	1 (1D)		
Tropical and Subtropical Dry Broadleaf Forests	Ecuadorian dry forests	1 (1D)	43 (34D / 9R)	
	Magdalena Valley dry forests	I (ID)		
	Mesoamerican Pine-Oak Forests	4 (4D)		
	Sinaloan dry forests	1 (1R)		
	Southern Mexican Dry Forests	10 (10D)		
	Southern Pacific dry forests	2 (2R)		
	Yucatán dry forests	1 (IR)		
	Beni savanna	2 (2D)		
	Cerrado	37 (33D / 4R)		
	Dry Chaco	12 (7D / 5R)		
Tropical and Subtropical Grasslands, Savannas and Shrublands	Guianan savanna	1 (1D)	87 (71D / 16R)	
	Humid Chaco	2 (2D)		
	Llanos	1 (1D)		
	Uruguayan savanna	22 (17D7 SR)		
	Western Gulf coastal grasslands	10 (8D / 2R)		
	Alto Parana Atlantic forests	84 (72D / 12R)		
	Amazon River and Flooded Forests	7 (7D)		
	Atlantic Forests	16 (11D / SR)		
	Araucaria moist forests	33 (26D77R)		
	Central American Atlantic moist forests	1 (1D)		
	Central Andean Yungas	11 (11D)		
	Choco-Darien Moist Forests	4 (4D)		
	Costa Rican seasonal moist forests	1 (1D)		
	Guianan Moist Forests	12 (12D)		
	Isthmian-Atlantic moist forests	2 (2D)		
	Isthmian-Pacific moist forests	2 (2D)		
	Madeira-1 apajós moist forests	1 (1D)		
	Magdalena-Urabá moist forests	2 (2D)		
Tropical and Subtropical Moist Broadleaf Forests	Maranhão Babaçu forests	1 (1D)	268 (234D / 34R)	
	Mato Grosso seasonal forests	9 (7D / 2R)		
	Petén-Veracruz moist forests	8 (6D / 2R)		
	Napo Moist Forests	9 (8D / 1R)		
	Northeastern Brazil restingas	1 (1R)		
	Northern Andean Montane Forests	9 (9D)		
	Serra do Mar coastal forests	21 (21D)		
	Southwest Amazon moist forests	3 (3D)		
	Southwestern Amazonian Moist Forests	4 (4D)		
	Tapajós-Xingu moist forests	3 (3D)		
	Tocantins/Pindare moist forests	6 (3D / 3R)		
	Uatuma-Trombetas moist forests	3 (3D)		
	Veracruz moist forests	13 (12D / 1R)		
	Xingu-Tocantins-Araguaia moist forests	1 (1D)		

TABLE 2

Biomo	Statistics	Gro	Total		
Bioine	Statistics	Dark	Red		
	Count	16	33	49	
	Expected	39,1	9,9	49,0	
Depart and Varia Shruhlanda	% within landscape	32,7%	67,3%	100,0%	
Desert and Aeric Shrublands	% within groups	4,3%	35,1%	10,6%	
	% of Total	3,5%	7,1%	10,6%	
	Adjusted Residual	-8,7	8,7		
	Count	9	0	9	
	Expected	7,2	1,8	9,0	
Flooded Grasslands and	% within landscape	100,0%	,0%	100,0%	
Savannas	% within groups	2,4%	,0%	1,9%	
	% of Total	1,9%	,0%	1,9%	
	Adjusted Residual	-1,5	1,5		
	Count	5	2	7	
	Expected	5,6	1,4	7,0	
Temperate Grasslands,	% within landscape	71,4%	28,6%	100,0%	
Savannas and Shrublands	% within groups	1,4%	2,1%	1,5%	
	% of Total	1,1%	,4%	1,5%	
	Adjusted Residual	-,5	,5	,	
	Count	34	9	43	
	Expected	34,3	8,7	43,0	
Tropical and Subtropical Dry	% within landscape	79,1%	20,9%	100,0%	
Broadleaf Forest	% within groups	9,2%	9,6%	9,3%	
	% of Total	7,3%	1,9%	9,3%	
	Adjusted Residual	-,1	,1	, ,	
	Count	71	16	87	
	Expected	69,3	17,7	87,0	
Tropical and Subtropical	% within landscape	81,6%	18,4%	100,0%	
Grassiands, Savannas and	% within groups	19,2%	17,0%	18,8%	
Sirubianus	% of Total	15,3%	3,5%	18,8%	
	Adjusted Residual	,5	-,5	,	
	Count	234	34	268	
	Expected	213,6	54,4	268,0	
Tropical and Subtropical	% within landscape	87,3%	12,7%	100,0%	
Moist Broadleaf Forest	% within groups	63,4%	36,2%	57,9%	
	% of Total	50,5%	7,3%	57,9%	
	Adjusted Residual	4,8	-4.8		
	Count	369	94	463	
Iotal	% of Total	79,7%	20,3%	100,0%	

Chi-square = 79.425; with 463 valid cases.

FIGURE 1

FIGURE 2

Environmental predictor

CAPÍTULO 4:

ARTIGO CIENTÍFICO

"MAPPING BLACK PANTHERS: MACROECOLOGICAL MODELING OF

MELANISM IN LEOPARDS (Panthera pardus)"

A ser submetido para a revista 'Proceedings of the Royal Society: Biological Sciences'

1	MAPPING BLACK PANTHERS: MACROECOLOGICAL
2	MODELING OF MELANISM IN LEOPARDS (Panthera pardus)
3	
4	(Proceedings of the Royal Society: Biological Sciences, Royal Society Publishing, ISSN 1471-2954)
5	
-	
6	
7	Lucas Gonçalves da Silva (1); Kae Kawanishi (2); Phillip Henschel (3);
8	Andrew Kittle (4); Arezoo Sanei (5); Alexander Reebin (6); Dale
9	Miquelle (6); Andrew Stein (7,8); Anjali Watson (4); Bruce Kekule (9)
0	& Eduardo Eizirik (1)
1	
2	(1) Graduate Program in Zoology - Pontifícia Universidade Católica do Rio Grande
3	do Sul. Porto Alegre Brazil
4	(2) Department of Wildlife Ecology and Conservation - University of Florida
5	Gainesville. United States.
6	(3) Panthera - Lion Program, Libreville, Gabon.
7	(4) Wilderness & Wildlife Conservation Trust. Colombo, Sri Lanka.
8	(5) Asian Leopard Specialist Group. Teeran, Iran.
9	(6) Wildlife Conservation Society. New York, United States.
20	(7) Department of Environmental Conservation - University of Massachusetts.
21	Amherst, United States.
22	(8) Botswana Predator Conservation Trust, Maun, Botswana.
23	(9) BL Wildlife Photography. Bangkok, Thailand.
25 26 27	Correspondence: L.G. Silva (lucas.silva@pucrs.br) and E. Eizirik (eduardo.eizirik@pucrs.br)

- 29 ABSTRACT
- 30

31 The precise geographic distribution and habitat association of most mammalian 32 polymorphic phenotypes are still poorly known, which hampers an in-depth assessment 33 of their adaptive relevance. Even in the case of black panthers, an iconic melanistic 34 variant of the leopard (Panthera pardus) known for centuries and popularly speculated to be adaptive in forested habitats, no map exists describing its exact geographic 35 36 distribution and its occurrence in different landscape conformations. In this study, we 37 used a large database of location records from camera-traps, captures and museum 38 specimens sampled across the species' range to produce a new potential distribution 39 map for leopards, as well as to describe the occurrence of melanism in this felid. We 40 estimated distributions for melanistic and non-melanistic leopards based on niche 41 modeling and environmental predictors. The frequency of melanism in leopards is *ca*. 42 10%, with most of the melanistic records originating from moist forests. This result 43 suggested a relationship between habitat type and the presence of melanistic leopards, 44 which was supported by the suitability model. Our data demonstrate that melanism is 45 not randomly distributed in leopards (which would be expected for interconnected 46 populations if this was a neutral polymorphism), but rather that different landscapes 47 have significantly different frequencies of dark animals. The habitat suitability models 48 allowed us to assess the effect of different environmental variables on the distribution of 49 leopards in general, as well as on melanistic individuals. Using the global model (all 50 leopards) as a control, we observed differences in the melanism model with respect to 51 the relative effects of moisture, temperature, precipitation and radiation, suggesting that 52 these variables might play a role in the dynamics of this polymorphism in natural 53 habitats. Overall, our results indicate that melanism in leopards is affected by natural 54 selection, possibly related to efficacy of thermoregulation and/or camouflage in 55 different landscape conformations. These findings therefore support classical 56 hypotheses on adaptive coloration in animals (e.g. Gloger's rule), and open up new 57 avenues for in-depth ecological and evolutionary analyses of melanism in felids.

- 58
- 59 Keywords: polymorphism, landscape, moist forests, natural selection, distribution60 models.
- 61
- 62

- 63 INTRODUCTION
- 64

Ecologically relevant features such as morphology, camouflage and disruptive coloration, intra- and interspecific communication, as well as physiology, are controlled by evolutionary processes such as genetic drift and natural selection. Among such features, animal coloration has often been proposed to possess adaptive relevance, performing various roles in behavioral and ecological processes [1-3]. Interestingly, although considerable color variation is observed in vertebrates, its adaptive significance and molecular basis remain largely unknown.

72 In this context, it is relevant to note that the ecology of some species can drive 73 genetic diversity [4], and phenotypes in natural populations can present spatial patterns 74 of variation associated with adaptation to some environments, regulated by natural 75 selection [5-6]. By connecting coloration diversity to environmental informations which 76 may have a direct or indirect influence on the adaptive significance of coat color 77 variants [7], it is possible to investigate evolutionary processes involved in the 78 generation and maintenance of phenotypes in nature [8]. Despite the interest in the 79 subject, relatively few studies have addressed the association between different 80 environments and the distribution of phenotypes [7-8].

81 Melanism is characterized by a darkening of the external coloration in relation to 82 what would be considered the 'normal' or 'wild-type' pigmentation. Several biological 83 factors such as thermoregulation, camouflage, aposematism, susceptibility or response 84 to disease, sexual selection and reproductive success have been classically associated 85 with melanism in various groups of organisms [2]. There are classical hypotheses that 86 postulate an adaptive role for melanism in different species (e.g. [3 and 9-10]). 87 However, these classical ideas have rarely been rigorously tested [2]. References dating back to the 19th century cite the hypothesis of an association between melanistic 88 89 individuals and wetter areas with dense vegetation (e.g. tropical forests) [9-13]. In 90 addition, previous studies have also mentioned the possibility that selection against dark 91 individuals might operate in open areas where solar radiation and mean temperatures are 92 high [2, 10, 14].

93 The leopard is the largest spotted cat in Africa and Asia [15] and an important
94 extant representative of genus *Panthera* [16-17]. Its historical distribution is the
95 broadest among all felids (from the Russian far east to Africa), encompassing a diverse

array of habitats, from deserts to rainforests, and from the humid tropics to temperate
zones [15]. The species is listed as near-threatened by the IUCN, due to habitat loss,
fragmentation and human persecution, with unknown population status in some areas.
In addition, some remaining populations may be critically endangered, isolated and with
small population sizes [18].

101 The occurrence of melanism is common in the Felidae, having been documented 102 in 13 of the 38 species of the group, and having arisen independently at least eight times 103 in the family [19-20]. Although variant pigmentation phenotypes in vertebrates are 104 caused by several genes [21-22], in the case of leopards (*Panthera pardus*) (Figure 1) it 105 has been shown that melanism is induced by a recessively inherited mutation in the 106 *ASIP* (*Agouti Signaling Protein*) gene, which leads to a nonsense mutation predicted 107 completely ablate *ASIP* function and thus induce black pigmentation [20].

108 Recent analyses have indicated that melanism can reach very high frequencies in 109 some leopard populations (e.g. southeast Asia reported by [23]). In addition, there have 110 been confirmed reports of melanistic leopards in India [15, 24-25], Abyssinia [26] and 111 Ethiopian Highlands [15], Java and Malaysia [27-29], Aberdare Mount Kenya [15], 112 Highlands of Nepal [30], as well as a doubtful occurrence in South Africa (cited in [15] 113 and by [31]). These observations are restricted to some areas, and may support the 114 hypothesis that melanism can provide an adaptive advantage in certain ecological 115 conditions in wild cats [3, 5, 19, 32]. At least four of the nine currently recognized 116 leopard subspecies (based on [33]) are already cited in the literature as having 117 confirmed records of melanistic animals: P. p. pardus, P. p. fusca, P. p. delacouri and 118 *P. p. melas.* However, the exact geographic range of this coloration phenotype has never 119 been mapped in leopards in general, or in any of its subspecies.

120 We therefore set out to investigate the distribution of melanism in leopards, and 121 conduct a systematic test of its association with different landscape conformations. In 122 addition, we aimed to generate and assess spatial distribution models constructed for the 123 species as a whole, as well as melanistic individuals in particular. Although some 124 distribution models have been generated for leopards on a small geographic scale [34-125 36], no study had yet produced a model for its entire range. We therefore generated such 126 a large-scale model, and used it as a control to investigate the geographic distribution 127 and underlying ecological associations of melanism in this felid. We considered two 128 alternative hypotheses: (1) melanism is present throughout the species distribution, occurring randomly in all environments (i.e. lack of association between melanism and
different landscape conformations); and (2) melanism is distributed non-randomly, and
its presence is associated with particular habitats and environmental parameters.

132

133 METHODS

134

135 Species data

136

137 We generated a database of location records spanning the entire historical range 138 of the leopard, from the Russian far east to Africa, and representing a very broad suite 139 of biomes and ecoregions (montane, mediterranean, temperate, mixed, moist and dry 140 forests, grasslands, savannas, tundra, woodlands, shrublands and deserts). These records 141 were obtained from four different sources: (1) specimens held in scientific collections 142 that possessed precise information on their geographic origin, as well as coat color data 143 (preferably individuals whose color could be directly ascertained and photographed); (2) 144 individuals found dead or captured during field studies; (3) camera-trap data; and (4) 145 reports by researchers doing fieldwork or published bibliographical sources.

146 Location records of individuals confirmed to be melanistic or non-melanistic 147 were used in the statistical analyses based on the frequency of these phenotypes. In the 148 global model of species distribution, we also included four points in which the presence 149 of melanism was reported by not fully confirmed (referred to here as doubtful records). 150 As there was no type of bias in our records with respect to coloration phenotype (i.e. 151 sampling was random with regard to coat color), we assumed that the frequency in 152 which melanism appears in the total data set represents the overall frequency in the 153 species, which provided a null hypothesis against which we tested potential deviations 154 in different regions.

155

156 Environmental predictors

157

The occurrence of different phenotypes throughout the leopard range was mapped by inserting location records of non-melanistic, melanistic and unconfirmed melanistic individuals into an ArcGis 9.3 [37] database. All the samples were converted into degree coordinates incorporating the *WGS84* system reference. Additionally, we used biome and terrestrial ecoregion shapefiles [38] as mask layers to extract andanalyze information about natural landscapes in which the phenotypes are located.

164 To generate the potential distribution models (global and melanism-only), we 165 initially employed 37 explanatory environmental variables and landscape data. We used 166 35 environmental variables obtained from the Worldclim (http://www.worldclim.org) 167 and Climond (http://www.climond.org) databases: annual mean temperature (Bio01), 168 mean diurnal temperature range (Bio02), isothermality (Bio03), temperature seasonality 169 (Bio04), max temperature of warmest week (Bio05), min temperature of coldest week 170 (Bio06), temperature annual range (Bio07), mean temperature of wettest quarter 171 (Bio08), mean temperature of driest quarter (Bio09), mean temperature of warmest quarter (Bio10), mean temperature of coldest quarter (Bio11), annual precipitation 172 173 (Bio12), precipitation of wettest week (Bio13), precipitation of driest week (Bio14), 174 precipitation seasonality (Bio15), precipitation of wettest quarter (Bio16), precipitation 175 of driest quarter (Bio17), precipitation of warmest quarter (Bio18), precipitation of 176 coldest quarter (Bio19), annual mean radiation (Bio20), highest weekly radiation 177 (Bio21), lowest weekly radiation (Bio22), radiation seasonality (Bio23), radiation of 178 wettest quarter (Bio24), radiation of driest quarter (Bio25), radiation of warmest quarter 179 (Bio26), radiation of coldest quarter (Bio27), annual mean moisture index (Bio28), 180 highest weekly moisture index (Bio29), lowest weekly moisture index (Bio30), moisture 181 index seasonality (Bio31), mean moisture index of wettest quarter (Bio32), mean 182 moisture index of driest quarter (Bio33), mean moisture index of warmest quarter 183 (Bio34) and, mean moisture index of coldest quarter (Bio35). We also incorporated data 184 on altitude (obtained from the SRTM (http://www2.jpl.nasa.gov/srtm)) and landscape 185 features (obtained the ESA GlobCover from Project 2009 186 (http://due.esrin.esa.int/globcover)). All variables were used at a fine (~1 km) spatial 187 resolution.

To avoid problems of model overfitting caused by correlation among explanatory variables, we ran Pearson's correlation coefficient test (*r*) for each pair of variables [4, 39-40], using the SPSS 17.0 statistical software. We assessed this correlation by extracting variable information from 10,000 unique and randomly generated points inserted in the currently known geographic distribution layer of leopards (obtained from IUCN and complemented by our own records) using ArcGis 9.3. We selected 12 predictors that were not highly correlated with each other, using

195 r=0.7 as the cut-off value. These variables were: annual mean temperature, maximum 196 temperature of the warmest week, minimum temperature of the coldest week, annual 197 precipitation, precipitation of the wettest week, precipitation seasonality, annual mean 198 radiation, radiation seasonality, highest weekly moisture index, mean moisture index of 199 the wettest quarter, mean moisture index of the driest quarter, and altitude. The 200 landscape layer was excluded because it contained information on the present land 201 cover, instead of historical data. We used these 12 selected predictors assuming that 202 they were adequate and sufficient ecological indicators for niche and biogeographic 203 modeling [41].

204

205 Modeling procedures

206

207 We modelled the overall distribution of leopards and the spatial distribution of 208 melanism using the maximum entropy algorithm implemented in the Maxent software 209 [42-46]. Three different models were generated and analyzed: (1) total set of samples 210 (control model), (2) only the melanistic animals (melanism model), (3) only the samples 211 from Southeast Asia (a region previously reported to harbor high melanism frequency 212 by [23]). We used these different sample sets of location records, with 70% of points for 213 training and 30% for testing the models. The data were sampled using the bootstrap 214 routine of 10 random partitions with replacement [47]. All runs were configured in 215 random seed, convergence threshold of 1E-5 with 500 iterations and 10,000 hidden 216 background points [48], converting the results into binary models for all analyses. The 217 model performance was assessed by the AUC (Area Under Curve) value for the 218 Receiver Operating Characteristic (ROC) curve and the binomial probability [47, 49-219 50], to obtain distribution maps and a description of environmental parameters which 220 most influence the spatial distribution of melanism in leopards.

221

222 RESULTS

223

We obtained 623 samples, comprising 552 non-melanistic individuals, 67 confirmed melanistic individuals, and four unconfirmed melanistic individuals (reports with no associated photographs). A map depicting the sample database is shown in figure 2 and described in the supplementary table. Our database provided a broad coverage of the known leopard distribution, as well as an update of the species' current
range, by filling in geographic gaps in which leopards had not been officially recorded
previously but were expected to occur (IUCN 2013 data).

231 Melanism presented a global frequency of 10.8% across the species' range, with 232 regional frequencies varying among different landscape conformations (biomes and 233 ecoregions; Table 1). The confirmed presence of melanistic leopards was recorded only 234 in five of the nine currently valid subspecies (Figure 3): Africa (P. p. pardus), Central 235 India, Nepal and Bhutan (P. P. fusca), Sri Lanka (P. p. kotiya), Southeast Asia (P. p. 236 delacouri) and Java (P. p. melas). All of these regions contained new records for areas 237 in which melanism had been previously described, as well as representation of 238 additional areas. Melanism was absent in the leopard subspecies occurring in the 239 Russian Far East (P. p. orientalis), Central China (P. p. japonensis), Arabian Peninsula 240 (P. p. nimr) and Middle East (P. p. saxicolor). Additionally, we obtained three doubtful 241 melanism records from Africa and one from Iran. These four points were removed from 242 the melanism model, conservatively assuming the absence of melanism in these areas. It 243 is noteworthy that three of these four records were located in areas in which the niche 244 model (see below) indicated low probability of melanism occurrence, whereas the 245 fourth record (located in the Ethiopian Highlands) did match an area with high 246 probability of melanism occurrence.

247 Although leopards were found in more than 100 ecoregions, melanism was most 248 common in tropical and subtropical moist forests (59 of 67 records, or 88%), especially 249 in the Indian Ghats (India, n=8), Javan forests (Indonesia, n=7), Kayah-250 Karen/Tenasserim forests (Southeast Asia, n=16) and Peninsular Malaysian rain forests 251 Southeast Asia, n=19). All of these records were consistent with high suitability of 252 occurrence in our Maxent model for melanistic leopards (Figure 4). Differences among 253 biomes were significant, especially in tropical and subtropical moist broadleaf forests, 254 where 30% of the animals were black, which is almost three times more than expected if 255 melanism were an evenly distributed neutral polymorphism (Table 2). In contrast, the 256 frequency of melanism was significantly lower than expected in deserts/xeric 257 shrublands, temperate broadleaf and mixed forests, as well as tropical/subtropical 258 grasslands, savannas and shrublands (see Table 2).

259 Maxent niche models were considered satisfactory (AUC ≥ 0.9): control model 260 (AUC training = 0.926, test = 0.924), melanism (AUC training = 0.976, test = 0.963), 261 and Southeast Asia (AUC training = 0.993, test = 0.992). Control and melanism 262 predicted distributions generated through niche models are presented in Figure 3A-B. 263 This assessment allowed a comparison between the overall range of leopards and the 264 presence of melanistic animals, showing regional enrichment for this variant in some 265 areas, as well as its absence in many others. When we analyzed the environmental 266 variables that were most influential on the three models (Figure 5), we observed that 267 predictors related to precipitation and radiation tended to have the largest effects. We 268 also observed differential effects of some predictors, such as the precipitation of the 269 wettest week being much more influential on the melanism model than on the other two.

270

271 DISCUSSION

272

The database built for this study provided improvements on the knowledge about the current geographic distribution of leopards, especially in areas that were previously dubious regarding its presence (Figure 3). We used this improved map of the species' geographic range to analyze the distribution pattern of black panthers.

277 Our data revealed that the distribution of melanistic leopards is non-random 278 across the species' range. Moist forests (especially in Southeast Asia) presented very 279 high frequencies of melanistic leopards (e.g. 39 of 71 individuals [55%] in Southeast 280 Asia), and more than 80% of the black animals in our database, a five-fold increase 281 relative to the expected number based on the overall average. Furthermore, we found no 282 confirmed melanistic leopards in the Middle East, Arabian Peninsula, Central China and 283 Russian Far East (Figure 2), nor any mention in the literature as to the presence of 284 melanism in these regions, indicating that this variant is really absent from these areas. 285 Overall, there was a significant reduction in the frequency of melanism in some biomes 286 that consist of open habitats or temperate forests (see Table 2). There thus is a clear 287 pattern in which melanism tends to increase in tropical/subtropical moist forests, and 288 decrease in open/dry or temperate habitats. Such a result supports the classical 289 hypothesis postulating an adaptive role for melanism [5, 10-13 and 19], which would be 290 favored in tropical and humid environments.

An alternative explanation is that variation in the melanism frequency could have been driven by demographic processes, including population structure and driftinduced differentiation. According to [33], some significant geographic structure can be 294 identified in leopards, indicating the existence of restricted historical gene flow among 295 some portions of the range. This division formed the basis for currently recognized 296 leopard subspecies, although in that study the authors noted that in some areas, such as 297 African continent, Arabian Peninsula, Sri Lanka and Java, the sampling was too sparse 298 to identify clear-cut phylogeographic relationships. Nevertheless, the presence of 299 demographic distinctiveness among at least the nine recognized species argues that such 300 differentiation must be taken into account when comparing the frequency of melanism 301 among regions. Although the possibility that demography has influenced the present-302 day frequency of melanism in leopards cannot be completely excluded, it is unlikely 303 that it could explain most of the observed patterns, since each of the subspecies' ranges tends to contain a variety of landscape conformations. Therefore, demographic effects 304 305 caused by historical differentiation among subspecies would tend to obscure, rather than 306 generate, the observed pattern of association between melanism and forested habitats.

307 Therefore, we consider that the most probable historical scenario for melanism 308 in leopards is the emergence of the causative allele at a particular location and its 309 dispersal throughout much of the species' distribution, suffering selection under the 310 influence of varying environmental conditions in different landscapes, as well as genetic 311 drift in some situations (e.g. founding of new populations during range expansion 312 events). Since melanism in leopards is a recessive trait [19], it is plausible that its 313 causative allele can disperse long distances over evolutionary time even across habitats 314 where it could be selected against (e.g. deserts and grasslands). This is because the 315 allele can remain "hidden" in heterozygosity for many generations when it is at low 316 frequency, while at the same it could be lost in some areas due to an effect of genetic 317 drift [51]. Another possibility is that melanism arose in leopards more than once, e.g. 318 hypothesizing a distinct mutation emerging in Africa, since the known ASIP mutation 319 was reported only based on Asian samples [20]. Such a hypothesis can be directly tested 320 with molecular approaches targeting the implicated region of the ASIP gene.

When the distribution of melanism in leopards is examined more closely, Southeast Asia emerges as a particularly interesting region. Our data support the findings reported by [23], showing that melanism is almost fixed in areas south of the Isthmus of Kra (Thailand/Malaysia). We obtained only two records of non-melanistic animals south of the Isthmus, while in more northerly areas both phenotypes appear at similar frequencies. This intriguing pattern may have been caused by some degree of 327 demographic isolation across the Isthmus, which is consistent with the hypothesis that 328 in the past (during the Last Glacial Maximum period, between 20000-25000 years ago, 329 [52]) it operated as an effective ecological barrier restricting gene flow for several 330 organisms. Differentiated evolutionary groups on both sides of the Isthmus have been 331 found in different groups of organisms, such as plants [53], beetles [54], crustaceans 332 [55] and even tigers [56]. The fact that present-day landscapes appear to be similar on 333 both sides of the Isthmus argue for a demographic, rather than selective explanation of 334 the high frequency of melanism in the southern portion. However, our analyses of 335 environmental predictors that influence the distribution of leopards in Southeast Asia 336 alone revealed some patterns that were distinct from the melanism model (see Figure 5). 337 Although there were some concordant patterns between the melanism and Southeast 338 Asian models (e.g. large influence of solar radiation parameters), there were also 339 differences, indicating that additional analyses focusing specifically in this region may 340 help clarify the underlying causes of the observed pattern.

341 Ecological niche models can combine statistical techniques with geographic 342 information systems data in predictive ecology and especially in macroecological 343 analysis [45, 50, 57-59] and can be an important tool to assess the geographic 344 distribution of wild felids because they provide estimates of presence/absence [48-49]. 345 The model shown in Figure 4 was designed to provide an analysis of the relative 346 influence of all predictors, as well as to explain the differences in the geographic 347 distribution of the species, melanism and in Southeast Asia where melanism is most 348 frequent. The main differences between the control model, melanism model and 349 southeast Asia models pertained to predictors related to precipitation, radiation and 350 moisture (Figure 5), all of which are associated with rain/moist forests. It is therefore 351 quite possible that the environmental variables that are most related to the occurrence of 352 melanism are in fact only tracking the presence of moist forests, which may in itself be 353 the driving agent selecting for this phenotype.

Given the observed support for an increased frequency of melanism in moist forests areas, it is interesting to discuss its potential causes in the light of classical hypotheses suggesting a selective advantage related to camouflage/ambush [9] or to thermoregulation [60]. It is also noteworthy that this result is different from what we observed in jaguars (a species that is closely related to leopards, with a similar melanistic variant and somewhat similar ecological requirements), in which the 360 presence of melanism does not seem to be significantly associated with moist forests, 361 but there seems to be an effect of negative selection in open/flooded areas, possibly 362 related to thermoregulation [see chapter 2]. However, it is important to note that the 363 Maxent model is based on predictors and their relative importance. It is therefore 364 important to be cautious and not to disregard the possibility that some relevant predictor 365 may have been lost in the selection of variables by Pearson's test, or that another 366 important predictor was not measured or contemplated in the initial analysis. In this 367 context, it is relevant to point out that when we removed the samples from Java (P. p. 368 *melas*) and ran the model again (not shown), using the same variables and configuration 369 of the control model and melanism model, the output map maintained high probabilities 370 of black leopards occurring in Java. The same result was obtained when we removed the 371 confirmed melanistic animal from Africa (P. p. pardus), with the model still indicating a 372 high probability of melanism at the sample location. Such observations lend confidence 373 to the reliability of the models generated in this study.

374 After over 100 years of anecdotal appearances in the scientific and popular 375 literature, but no direct assessment with rigorous approaches, this study has provided a 376 characterization of the spatial distribution of melanism in leopards, and demonstrated that such distribution is non-random. While its association with moist forests and its 377 378 significant decrease in open/dry habitats support classical adaptive hypotheses, many 379 other questions remain unanswered, such as the exact selective agents and mechanisms 380 acting upon this phenotype, as well as the interaction of selection and drift at a regional 381 level. The results and analyses reported here should hopefully serve as a useful basis for 382 studies addressing these questions, shedding further light on the ecological and 383 evolutionary dynamics of such a remarkable coloration variant.

- 384
- 385

386 AKNOWLEDGEMENTS

387

388 Authors would like to thank Katia Barros Ferraz, Francesca Palmeira, Daniel 389 Rocha, Kristofer Helgen, Eileen Westwig, Esther Langan, Milind Pariwakam, Biswajit 390 Mohanty, Kashmira Kakati, Anhar Harahap, Vidya Atreya, Jane Budd, Arash 391 Ghoddousi, Ezekiel Fabiano, Peter Crawshaw Jr., Alexander Reebin, Guy Balme, David Stanton, Yury Shibnev, Dipankar Ghose and João Feliz Moraes for location 392 393 records/scientific support; to American Museum of Natural History, Smithsonian 394 Institution, Panthera, Wildlife Conservation Society, World Wild Fund, Asian Leopard 395 Specialist Group, Cape Leopard Trust, IUCN Cat Specialist Group and PUCRS for 396 scientific support; and CNPq Brazil for finantial support.

397

398

400

399 REFERENCES

401 [1] Lande, R. (1975) Natural selection and random genetic drift in phenotypic evolution.
402 *Evolution* 30, 314-334.

403

405

404 [2] Majerus, M.E.N. (1998) *Melanism – Evolution in action*. Oxford University Press.

406 [3] Caro, T. (2005) The Adaptive Significance of Coloration in Mammals. *BioScience* 55(2),
407 125-136.

408

409 [4] Mukherjee, S., Krishnan, A., Tamma, K., Home, C., Navya, R., Joseph, S., Das, A. &
410 Ramakrishnan, U. (2010) Ecology driving genetic variation: A comparative phylogeography of
411 jungle cat (*Felis chaus*) and leopard cat (*Prionailurus bengalensis*) in India. *PlosOne* 5(10),
412 e13724.

413

414 [5] Eizirik, E. & O'Brien, S.J. (2003) Evolution of the melanism in the Felidae. *CatNews* 38,
415 37-39.

416

417 [6] Novembre, J. & DiRienzo, A. (2009) Spatial patterns of variation due to natural selection in
418 humans. *Nature Genetics* 10, 745-755.

419

420	[7] Nachman, M.W., Hoekstra, H.E. & D'Agostino, S.L. (2003) The genetic basis of adaptive
421	melanism in pocket mice. Proceedings of the National Academy of Sciences USA 100, 5268-
422	5273.
423	
424	[8] Hoekstra, H.E. (2006) Genetics, development and evolution of adaptive pigmentation in
425	vertebrates. Heredity 97, 222-234.
426	
427	[9] Cott, H.B. (1940) Adaptative Coloration in Mammals. London: Methuen.
428	
429	[10] Ortolani, A. & Caro, T. M. (1996) The adaptative significance of color patterns in
430	carnovires. In: Gittleman, J.L. Carnivores Behavior, Ecology and Evolution - Volume 2. Cornell
431	University Press.
432	
433	[11] Gloger, C.W.L. (1833) Das Abändern der Vögel durch Einfluss des Klimas [The evolution
434	of birds through the impact of climate]. Breslau: August Schulz.
435	
436	[12] Poulton, E.B. (1890) The Colours of Animals, their meaning and use, especially considered
437	in the case of insects. London: Kegan Paul, Trench & Trübner.
438	
439	[13] Beddard, F.E. (1985) Animal coloration: Colour and markins of animals 2nd Ed. Swan
440	Sonnenschein: London.
441	
442	[14] Majerus, M.E.N. & Mundi, N.I. (2003) Mammalian melanism: natural selection in black
443	and white. Trends in Genetics 19(11), 585-588.
444	
445	[15] Sunquist, M. & Sunquist, F. (2002) Wild Cats Of The World. University of Chicago Press.
446	
447	[16] Davis, B.W., Li, G. & Murphy, W.J. (2010) Supermatrix and species tree methods resolve
448	phylogenetic relationships within the big cats, Panthera (Carnivora: Felidae). Molecular
449	Phylogenetics and Evolution 56, 64–76.
450	
451	[17] Tseng, Z.J., Wang, X., Slater, G.J., Takeuchi, G.T.; Li, Q. & Xie, G. (2013) Himalayan
452	fossils of the oldest known pantherine established ancient origin of big cats. Proceedings of The
453	Royal Society: Biological Sciences 281, 20132686.
454	

- 455 [18] Henschel, P., Hunter, L., Breitenmoser, U., Purchase, N., Packer, C., Khorozyan, I., Bauer,
- 456 H., Marker, L., Sogbohossou, E. & Breitenmoser-Wursten, C. (2008) Panthera pardus. In:
- 457 IUCN 2013. IUCN Red List of Threatened Species Version 2013.1. <www.iucnredlist.org>.
- 458 Downloaded on 19 November 2013.
- 459
- 460 [19] Eizirik, E., Yuhki, N., Johnson, W.E., Raymond, M., Hannah, S.S. & O'Brien, S.J. (2003)
- 461 Molecular genetics and evolution of melanism in the cat family. *Current Biology* **13**, 448-453.
- 462
- 463 [20] Schneider, A., David, V.A., Johnson, W.E., O'Brien, S.J., Barsh, G.S., Maymond, M.M. &
 464 Eizirik, E. (2012) How the leopard hides its spots: *ASIP* mutations and melanism in wild cats.
 465 *PlosOne* 7, e50386.
- 466
- 467 [21] Robbins, L.S., Nadeau, J.H., Johnson, K.R., Kelly, M.A., Rehfuss, L., Baak, E., Mountjoy,
 468 K.G. & Cone, R.D. (1993) Pigmentation phenotypes of variant extension locus alleles result
 469 from point mutations that alter MSH receptor function. *Cell* 72, 827-834.
- 470
- 471 [22] Anderson, T.M., Vonholdt, B.M., Candille, S.I., Musiani, M., Greco, C., Stahler, D.R.,
 472 Smith, D.W., Padhukasahasram, B., Randi, E., Leonard, J., Bustamarte, C., Ostrander, E.A.,
 473 Tang, H., Wayne, R.K., Barsh, G.S. (2009) Molecular and evolutionary history of melanism in
 474 North American gray wolves. *Science* 323, 1339-1343.
- 475
- 476 [23] Kawanishi, K., Sunquist, M.E., Eizirik, E., Lynam, A.J., Ngoprasert, D., Wan Shahruddin,
- W.N., Rayan, D.M., Sharma, D.S.K. & Steinmetz, R. (2010) Near fixation of melanism in
 leopards of the Malay Peninsula. *Journal of Zoology* 282(3), 201-206.
- 479
- 480 [24] Sterndale, R.A. (1884) *Natural history of the Mammalia of India and Ceylon*. Calcutta:
 481 Thacker and Sprink.
- 482
- 483 [25] Daniel, J.C. (1996) *The leopard in India*. Dehra Dun: Natraj Publishers.
- 484
- 485 [26] Baylis, H.A. (1927) Panthera pardus adusta subsp. n. Journal of Natural History 9(20),
 486 214.
- 487
- 488 [27] Pocock, R.I. (1930I) The panthers and ounces of Asia. *Journal of the Bombay Natural*489 *History Society* 34, 64-82.
- 490

- 491 [28] Pocock, R.I. (1930II) The panthers and ounces of Asia part II. *Journal of the Bombay*492 *Natural History Society* 34, 307-336.
- 493
- 494 [29] Wallace, A.R. (1877) The colours of animals and plants. *Macmillan's Magazine* 36, 384495 408 and 464-471.
- 496
- 497 [30] Thapa, K., Pradhan, N.B., Barker, J., Dhakal, M., Bhandari, A.R., Gurung, G.S., Rai, D.P.,
 498 Thapa, G.J., Shrestha, S. & Singh, G.R. (2013) High elevation records of a leopard cat in the

Kangchenjunga Conservation Area, Nepal. CatNews 58, 26-27.

- 499 500
- 501 [31] Hammond, S. (2001) *Black leopard spotted in Lydenburg*. African Eye News Service502 Online.
- 503

504 [32] Allen, W.L., Cuthill, I.C., Samuel, N.E. & Baddeley, R. (2010) Why the leopard got its
505 spots: relating pattern development to ecology in felids. *Proceedings of The Royal Society:*506 *Biological Sciences* 277, online.

507

508 [33] Uphyrkina, O., Johnson, W.E., Quigley, H., Miquelle, D.G., Marker, L., Bush, M. &
509 O'Brien, S.J. (2001) Pylogenetics, genome diversity and origin of modern leopard, *Panthera*510 *pardus. Molecular Ecology* 10, 2617-2633.

511

512 [34] Gavashelishvili, A. & Lukarevskiy, V. (2008) Modelling the habitat requirements of 513 leopard *Panthera pardus* in west and central Asia. *Journal of Applied Ecology* **45**, 579-588.

- 514
- 515 [35] Habblewhite, M., Miquelle, D.G., Murzin, A.A., Aramilev, V.V. & Pikunov, D.G. (2011)
- 516 Predicting potential habitat and population size for reintroduction of the Far Eastern leopards in
- 517 the Russian Far East. *Biological Conservation* 144, 2403-2413.
- 518
- 519 [36] Swanepoel, L.H., Lindsey, P., Somers, M.J., Hoven, W. & Dalerum, F. (2013) Extent and
- 520 fragmentation of suitable leopard habitat in South Africa. *Animal Conservation* 16, 41-49.
- 521
- 522 [37] ESRI (2010) ARCGis Software. ESRI Mapping Company USA.
- 523
- 524 [38] Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.,
 525 Underwood, E.C., D'Amico, J.A., Itoua, I., Strand, H.H., Morrison, J.C., Loucks, C.J., Allnutt,

526	T.F., Ricketts, T., Kura, Y., Lamoreux, J.F., Wettengel, W., Hedao, P. & Kassem, K. R. (2001)
527	Terrestrial ecoregions of the world: a new map of life on Earth. <i>BioScience</i> 51 , 933-938.
528	
529	[39] Kumar, S. & Stohlgran, T.J. (2009) Maxent modeling for predicting suitable habitat for
530	threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology
531	and Natural Environment 1(4), 94-98.
532	
533	[40] Raes, N., Roos, M.C., Slik, J.W., Loon, E. & Steege, H. (2009) Botanical richness and
534	endemicity patterns of Borneo derived from species distribution models. Ecography 32, 180-
535	192.
536	
537	[41] Wiens, J.J. (2011) The niche, biogeography and species interactions. Proceedings of The
538	Royal Society: Biological Sciences 366, 2336-2350.
539	
540	[42] Philips, S.J., Anderson, R.P. & Schapired, R.E. (2006) Maximum entropy modeling of
541	species geographic distributions. Ecological Modelling 190, 231-259.
542	
543	[43] Waltari, E., Hijmans, R.J., Peterson, A.T., Nyari, A.S., Perkins, S.L. & Guralnick, R.P.
544	(2007) Locating Pleistocene refugia: Comparing phylogeographic and ecological niche model
545	predictions. <i>PlosOne</i> 7 , e563.
546	
547	[44] Philips, S.J. & Dudik, M. (2008) Modeling of species distributions with Maxent: new
548	extensions and a comprehensive evaluation. <i>Ecography</i> 31 ,161-175.
549	
550	[45] Elith, J., Phillips, S.J., Hastie, T., Dudik, M., Chee, Y.E. & Yates, C.J. (2010) A statistical
551	explanation of MaxEnt for ecologists. Diversity and Distributions 17, 43-57.
552	
553	[46] Merow, C., Smith, M.J. & Silander, J.A. (2013) A practical guide to Maxent for modeling
554	species' distributions: what it does, and why inputs and settings matter. Ecography 36, 1058-
555	1069.
556	
557	[47] Pearson, R.G. (2007) Species' Distribution modeling for conservation educators and
558	practitioners. American Museum of Natural History Press.
559	

- 560 [48] Ferraz, K.M.P.M.B., Ferraz, S.F.B., Paula, R.C., Beisiegel, B. & Breitenmoser, C. (2012)
 561 Species distribution modeling for conservation purposes. *Natureza & Conservação* 10(2), 214562 220.
- 563
- 564 [49] Tôrres, N.M, De Marco Jr., P., Santos, T., Silveira, L., Jácomo, A.T.A & Diniz-Filho,
- 565 J.A.F. (2012) Can species distribution modelling provide estimates of population densities? A
- case study with jaguars in the neotropics. *Diversity and Distributions* **18**, 615-627.
- 567
- 568 [50] Calabrese, J.M., Certain, G., Kraan, C. & Dormann, C.F. (2013) Stacking species
 569 distribution models and adjusting bias by linking them to macroecological models. *Global*570 *Ecology and Biogeography*, geb.12102.
- 571
- 572 [51] Kreitman, M. (2000) Methods to detect selection in population with aplication to the573 human. *Annu. Rev. Genomics Hum. Genet.* 01, 539–59.
- 574
- [52] Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica,
 J.X., Hostetler, S.W. & McCabe, A.M. (2009) The Last Glacial Maximum. *Science* 325, 710714.
- 578
- 579 [53] Liao, P., Chiang, Y., Huang, S. & Wang, J. (2009) Gene flow of *Ceriops tagal*580 (Rhizophoraceae) across the Kra Isthmus in the Thai Malay Peninsula. *Botanical Studies* 50:
 581 193-204.
- 582
- 583 [54] Sklenarova, K., Chesters, D. & Bocak, L. (2013) Phylogeography of poorly dispersing net584 winged beetles: a role of drifting India in the origin of afrotropical and oriental fauna. *PlosOne*585 8(6), e67957.
- 586
- 587 [55] Bruyn, M., Nugroho, E., Hossain, M., Wilson, J.C. & Mather, P.B. (2005) Phylogeographic
 588 evidence for the existence of an ancient biogeographic barrier: the Isthmus of Kra Seaway.
 589 *Heredity* 94, 370–378.
- 590
- [56] Luo, S., Kim, J., Johnson, W.E., Walt, J., Martenson, J., Yuhki, N., Miquelle, D.G.,
 Uphyrkina, O., Goodrich, J.M., Quigley, H., Tilson, R., Brady, G., McDougal, C., Hean, S.,
 Huang, S., Pan, W., Karanth, U.K., Sunquist, M., Smith, J.L.D. & O'Brien, S.J. (2004)
- 594 Phylogeography and genetic ancestry of tigers (*Panthera tigris*). *Plos Biology* **2**(12), e442.
- 595

596	[57] Guisan, A. & Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology.
597	Ecological Modelling 135, 147–186.
598	
599	[58] Carnaval, A.C. & Moritz, C. (2008) Historical climate modelling predicts patterns of
600	current biodiversity in the Brazilian Atlantic forest. Journal of Biogeography 35, 1187-1201.
601	
602	[59] Loiselle, B.A., Graham, C.H., Goerck, J.M. & Ribeiro, M.C. (2010) Assessing the impact
603	of deforestation and climate change on the range size and environmental niche of birds species
604	in the Atlantic forests, Brazil. Journal of Biogeography 37, 1288-1301.
605	
606	[60] Forsmann, A. (2011) Rethinking the thermal melanism hypothesis: rearing temperature and
607	coloration in pygmy grasshoppers. Evolutionary Ecology 25, 1247-1257.
608	
609	
610	APPENDICES
611	
612	Supplementary table 1 - Location records for Panthera pardus (pdf).
613	*Apêndice 3
614	
615	
616	
617	TABLE AND FIGURE CAPTIONS
618	
619	Table 1 – Distribution of non-melanistic and melanistic leopards in different landscape
620	types (biomes and ecoregions) across the species' range. Ecoregions listed in red font
621	indicate the presence of melanistic individuals.
622	
623	Table 2 – Association test of landscape variables (biomes) with groups of samples (non-
624	melanistic/melanistic) An adjusted residual >2 or < 2 indicates statistical significance
625	for $alpha=0.05$
626	
020	
627	Figure 1 – Coat color patterns in <i>Panthera pardus</i> : (A) Non-melanistic ('wild-type')
628	coloration; (B) Melanistic coloration. Photos: Bruce Kekule.
629	
Figure 2 – Location of the samples analyzed in this study, overlaid on a map ofterrestrial biomes.

632

Figure 3 – Map depicting the delimitation of presently recognized leopard subspecies
(based on reference [33]), including the distribution of melanistic and non-melanistic
samples used in the present study, as well as an indication of regions in which our
database enabled an extension of the known species range, relative to the current IUCN
map.

638

639 Figure 4 – Potential distribution maps of leopards: (A) Distribution of the species as a

640 whole (control model) and (B) Distribution of melanism (melanism model).

641

642 Figure 5 – Relative importance for each predictor used in the models (%): Control

643 model (yellow), Melanism (black) and Southeast Asia (green).

TABLES AND FIGURES

Table 1

Diama	Provide and	Samples	Tetal Disease	
biome	Ecoregion	(S=Non-melanistic / D = Doubtful melanistic / M=Melanistic)	I otal Biome	
Desert and Xeric Shrublands	Arabian Highlands woodlands and shrublands	9 (98)		
	Azerbaijan shrub desert and steppe	1 (15)		
	Central Persian desert basins	13 (138)		
	Deccan thorn scrub forests	6 (6S)		
	Kalahari xeric savanna	26 (26S)	69 (698)	
	Masai xeric grasslands and shrublands	1 (1S)	07 (070)	
	Namibian savanna woodlands	2 (28)		
	Namib-Karoo-Kaokoveid Deserts and Shrublands	3 (35)		
	Red Sea Nubo-Sindian tropical desert and semi-desert	1(13)		
	South Iran Nubo-Sindian desert and semi-desert	4 (4S)		
	Fynbos	8 (8S)		
Mediterranean Forests, Woodlands, and Scrub	Lowland fynbos and renosterveld	2 (25)	13 (13S)	
Tundra	Suiphun-Khanka meadows and forest meadows	2(25)	2 (25)	
T UNION	Drakensberg Montane Woodlands and Grasslands	28 (27S / 1D)	2 (20)	
	Eastern Himalayan alpine meadows	1 (1M)		
	Eastern Himalayan alpine shrub and meadows	1 (1M)		
	Ethiopian Highlands	1 (15)		
Montane Grasslands and Shrublands	Konet Dag woodlands and forest steppe	4 (45)	51 (478 / 1D / 3M)	
	Kuh Rud and Eastern Iran montane woodlands	5 (55)		
	Middle Asian montane woodlands and steppe	1 (1S)		
	Southeast Tibet shrublands and meadows	3 (3S)		
	Tibetan Plateau steppe	2 (28)		
	Caspian Hyrcanian mixed forests	4 (45)		
	Caucasus mixed forests	1 (1S)		
	Caucasus-Anatolian-Hyrcanian temperate forests	2 (28)		
	Central China loess plateau mixed forests	3 (38)		
Temperate Broadleaf and Mixed Forests	Changjiang Plain evergreen forests	3 (3S)	111 (108S / 3M)	
	Eastern rinnanayan broadleat forests Manchurjan mixed forests	74 (748)		
	Sichuan Basin evergreen broadleaf forests	3 (3S)		
	Western Himalayan broadleaf forests	4 (4S)		
	Zagros Mountains forest steppe	11 (11S)		
Terrerate Coniference Forest	Caucasus-Anatolian-Hyrcanian temperate forests	3 (28 / 1D)	6 (58 / 10)	
Temperate Confierous Forest	Western Himalayan temperate forests	2 (25)	6 (55 / 1D)	
Temperate Grasslands, Savannas and Shrublands	Eastern Anatolian montane steppe	2 (28)	2 (28)	
Tropical and Subtropical Coniferous Forests	Himalayan subtropical pine forests	5 (5S)	5 (58)	
	Central Deccan Plateau dry deciduous forests	2(28)		
	Indochina dry forests	2 (25)		
	Khathiar-Gir dry deciduous forests	9 (98)		
Tropical and Subtropical Dry Broadleaf Forests	Narmada Valley dry deciduous forests	1 (1M)	40 (38S / 2M)	
	South Deccan Plateau dry deciduous forests	1 (1S)		
	Southeastern Indochina dry evergreen forests	2 (28)		
	Angolan Mopane woodlands	6 (6S)		
	Central Zambezian Miombo woodlands	5 (5S)		
	East African Acacia Savannas	28 (27S / 1D)		
	East Sudanian savanna	1 (15)		
	Guinean forest-savanna mosaic	2 (28)	127 (126S / 1D)	
	Kalahari Acacia-Baikiaea woodlands	18 (18S)		
	Northern Congolian forest-savanna mosaic	21 (218)		
Tropical and Subtropical Grasslands, Savannas and Shrublands	Sahelian Acacia savanna	1 (1S)		
	Southern Africa bushveld Southern Congolian forest-savanna mosaic	5 (55)		
	Southern Miombo woodlands	5 (55)		
	Terai-Duar savanna and grasslands	1 (1S)		
	Victoria Basin forest-savanna mosaic	5 (5S)		
	West Sudanian savanna Wastern Congolian forest savanna messia	2 (25)		
	Zambezian and Mopane woodlands	16 (168)		
	Zambezian Baikiaea woodlands	3 (3S)		
	Annamite Range moist forests	1 (1S)		
	Brahmaputra Valley semi-evergreen forests	21 (17S / 4M)		
Tropical and Subtropical Moist Broadleaf Forest	Chao Phraya lowland moist deciduous forests	2 (2M)		
	Congolian Coastal Forests	6 (6S)		
	East African montane forests	4 (3S / 1D)		
	Eastern Arc Montane Forests	1 (1S)		
	Eastern Deccan plateau moist forests	4 (45)		
	Eastern Java-Bali rain forests	3 (25 / 4M)		
	Ethiopian montane forests	1 (1S)		
	Guinean Moist Forests	1 (1S)		
	Guizhou Plateau broadleaf and mixed forests	1 (18)		
	rumanayan suburopical broadical forests Kayah-Karen/Tenasserim maist forests	7 (75) 37 (218 / 16M)		
	Malabar Coast moist forests	7 (6S / 1M)		
	Meghalaya subtropical forests	2 (2S)	197 (1378 / 1D / 59M)	
	Niger Delta swamp forests	2 (2S)		
	North Indochina subtropical moist forests	2 (2S)		
	North Western Ghats moist deciduous forests	2 (28)		
	Northeastern Congo Basin moist forests	6 (6S)		
	Northern Zanzibar-Inhambane coastal forest mosaic	3 (3S)		
	Northwestern Congolian lowland forests	2 (2S)		
	Peninsular Malaysian rain forests South Western Ghats moist deciduous forests	21 (28 / 19M) 2 (2M)		
	Southeast China-Hainan moist forests	7 (7S)		
	Southwestern Ghats moist forest	3 (3S)		
	Sri Lankan moist forest	7 (6S / 1M)		
	Upper Gangetic Plains moist deciduous forests	10 (10S)		
	western Longo Basin moist forests	4 (45)		
	Western Java nontane rain forests	* (4M) 8 (6S / 2M)		

Table 2

Biomo	Statistics	Leopard Groups		Total
Diome	Statistics	Non-melanistic	Melanistic	Total
	Count	69	0	69
	Expected	61.5	7.5	69.0
Desert and Xeric Shrublands	% within landscape	100.0%	0.0%	100.0%
	% within groups	12.5%	0.0%	11.1%
	% of Total	11.1%	0.0%	11.1%
	Adjusted Residual	3.1	-3.1	
	Count	13	0	13
	Expected	11.6	1.4	79
Mediterranean Forests. Woodlands. and Scrub	% within landscape	100.0%	0.0%	100.0%
	% within groups	2.4%	0.0%	2.1%
	% of Total	2.1%	0.0%	2.1%
	Adjusted Residual	1.3	-1.3	
	Count	2	0	2
	Expected	1.8	0.2	2.0
Tundra	% within landscape	100.0%	0.0%	100.0%
	% within groups	0.4%	0.0%	0.3%
	% of Total	0.3%	0.0%	0.3%
	Adjusted Residual	0.5	-0.5	=
	Count	47	3	50
	Expected	44.6	5.4	50.0
Montane Grasslands and Shrublands	% within landscape	94.0%	6.0%	100.0%
	% within groups	8.5%	4.5%	8.1%
	% of Total	7.6%	0.5%	8.1%
	Adjusted Residual	1.1	-1.1	
	Count	108	3	111
	Expected	99.0	12.0	111.0
Temperate Broadleaf and Mixed Forests	% within landscape	97.3%	2.7%	17.00/
	% within groups	19.6%	4.5%	17.9%
	% of 1 otal	17.4%	0.5%	17.9%
	Adjusted Residual	3	-3	-
	Count	5	0	5
	Expected	4.5	0.5	5.0
Temperate Coniferous Forest	% within landscape	100.0%	0.0%	100.0%
	% within groups	0.9%	0.0%	0.8%
	% of 1 otal	0.8%	0.0%	0.8%
	Adjusted Residual	0.8	-0.8	2
	Expected	2	0.2	20
	expected % within landsoone	1.8	0.2	2.0
Temperate Grasslands. Savannas and Shrublands	% within groups	100.0%	0.0%	0.20/
	% of Total	0.4%	0.0%	0.3%
	70 01 10tal	0.5%	0.0%	0.5%
	Count	0.3	-0.3	5
	Expected	15	0.5	5.0
	% within landscape	100.0%	0.0%	100.0%
Tropical and Subtropical Coniferous Forests	% within groups	0.0%	0.0%	0.80/
	% of Total	0.270	0.0%	0.070
	Adjusted Residual	0.870	-0.8	0.070
	Count	38	2	40
	Expected	35 7	43	40.0
	% within landscape	95.0%	5.0%	100.0%
Tropical and Subtropical Dry Broadleaf Forests	% within groups	6.9%	3.0%	6.5%
	% of Total	6.1%	0.3%	6.5%
	Adjusted Residual	1.2	-1.2	51270
	Count	126	0	126
	Expected	112.4	13.6	126.0
	% within landscape	100.0%	0.0%	100.0%
Tropical and Subtropical Grasslands. Savannas and Shrublands	% within groups	22.8%	0.0%	20.4%
	% of Total	20.4%	0.0%	20.4%
	Adjusted Residual	4.4	-4.4	
	Count	137	59	196
	Expected	174.8	21.2	196.0
	% within landscape	69.9%	30.1	100.0
Tropical and Subtropical Moist Broadleaf Forest	% within groups	24.8%	88.1%	31.7%
	% of Total	22.1%	9.5%	31.7%
	Adjusted Residual	-10.5	10.5	
	Count	552	67	196
	% of Total	89.2%	10.8%	100.0%

Chi-square = 112.608, likelihood ratio = 118.450, linear-bylinear association = 43.897; with 619 valid cases.

Figure 2

104

Figure 4

Figure 5

Environmental predictor

CAPÍTULO 5:

DISCUSSÃO GERAL

Para elaborar modelos computacionais de distribuição espacial do melanismo em P. onca, P. pardus e P. yagouaroundi em função de condicionantes ambientais, e propôr mapas de distribuição presumida do melanismo nessas três espécies ao longo de suas distribuições geográficas, foi necessária a compilação de dados georreferenciados de várias fontes distintas, englobando métodos invasivos e não invasivos. O banco de amostras compreendeu indivíduos provenientes de capturas de animais vivos, imagens de armadilhas fotográficas, peles depositadas em coleções científicas e amostras de DNA fecal. Somando-se os dados das três espécies, obtivemos quase dois mil pontos de ocorrência contendo informação de coloração para cada um destes indivíduos, o que pode ser considerado como um banco de dados muito expressivo para o estudo de variação fenotípica, principalmente em mastozoologia onde a obtenção de amostras em geral é bastante difícil. Por conta disso, além de servir de base para o estudo da distribuição e relevância adaptativa do melanismo, o banco de dados resultante atualiza as distribuições conhecidas atuais publicadas pela IUCN das três espécies em questão (Figura 5 desse presente capítulo para P. onca e P. yagouaroundi e Figura 3 do capítulo 4 para P. pardus).

Como citado anteriomente, os relatos anedóticos acerca da presença e a relevância adaptativa do melanismo em felinos selvagens são postulados muito antigos na literatura científica, porém o presente estudo pela primeira vez apresenta um mapa de distribuição geográfica para o melanismo em espécies representantes da família. Esse entendimento sobre а presença/ausência dos felinos melânicos expande significativamente o conhecimento, preenchendo uma lacuna de mais de 130 anos desde a citação bibliográfica de ocorrência das "panteras negras" (em referência aos leopardos melânicos) feita por Wallace (1877), após viagem pela Ásia. Ao mesmo tempo serve como base para teste de hipóteses sobre os padrões de distribuição e a influência de fatores bióticos e abióticos sobre esses padrões.

O presente estudo utilizou como hipótese nula a ideia de que o melanismo em felinos selvagens representa um polimorfismo de coloração neutro. Neste contexto, determinado fenótipo seletivamente neutro deve mostrar um padrão de variação aleatório entre populações demograficamente conectadas, enquanto padrões não aleatórios sugeririam a ação de seleção natural. Assim sendo, a existência de variação geográfica não aleatória dentro das espécies provavelmente é a maior fonte de evidência da existência de seleção natural, e distinguir esses padrões é o principal foco deste estudo. Portanto, foram consideradas duas hipóteses concorrentes: (I) O cenário esperado e considerado como nulo seria o melanismo presente em toda a área de distribuição de cada uma das espécies (ou ao menos no âmbito de regiões que apresentem conectividade genética e demográfica interna), ocorrendo de forma aleatória entre os ambientes (ou seja, ausência de qualquer associação com variáveis de paisagem ou parâmetros ambientais preditores da sua distribuição). Como hipótese concorrente consideramos: (II) O melanismo distribuído em função de parâmetros ambientais e/ou condicionantes biogeográficos (por exemplo, biomas ou ecorregiões). Nas três espécies analisadas, a distribuição do melanismo mostrou ser não aleatória, o que constituiu um resultado bastante relevante em cada um dos estudos aqui apresentados. As frequências observadas foram significativamente diferentes das esperadas em determinadas conformações da paisagem, levando-nos a assumir a hipótese concorrente como verdadeira, e sugerindo relevância adaptativa do melanismo em diferentes contextos ecológicos (possivelmente efeito de forças evolutivas históricas, especialmente da seleção natural, sobre a atual distribuição geográfica do melanismo nestes felinos).

Outro ponto interessante é o fato de que as diferentes espécies estudadas apresentaram distintos padrões geográficos. No caso de onças-pintadas, existe uma clara ausência do melanismo em conformações de paisagem (ecoregiões) abertas e periodicamente inundadas como o Pantanal e o Llanos, além de uma maior aparição de indivíduos melânicos na América do Sul, em comparação com áreas mais setentrionais da distribuição da espécie. Já nos leopardos, a presença do melanismo está diretamente associada a florestas úmidas tropicais e subtropicais, especialmente no sudeste da Ásia, apresentando alta frequência em algumas áreas (por exemplo, na Tailândia e Malásia ao sul do Istmo de Kra), corroborando um padrão já reportado anteriormente por Kawanishi et al. (2010). No jaguarundi, fica visível que o padrão fenotípico derivado (melânico) é mais comum na natureza do que o padrão ancestral (avermelhado). O padrão ancestral tem distribuição mais associada a conformações de paisagem onde predominam áreas abertas (Pampa, Chaco, Patagônia, Caatinga e áreas abertas das Américas Central e do Norte) e está ausente em regiões como a Amazônia, enquanto o fenótipo melânico está presente em todas as conformações de paisagem onde a espécie ocorre, não havendo um padrão evidente de associação a ecoregiões específicas. Todos esses resultados são apoiados por mapas de distribuição potencial gerados a partir dos algoritmos de análise comparados com modelos-controle, os quais utilizaram como base a totalidade das amostras do banco de dados. O melanismo em onças-pintadas, jaguarundis e leopardos deriva de três distintas e independentes mutações com padrões

de herança dominante, semidominante e recessiva, respectivamente. Também espécies muito semelhantes e de diferente ocorrência geográfica como a onça-pintada e o leopardo apresentam padrões genéticos e de distribuição bem distintos em relação ao melanismo. Por isso, conectando os padrões geográficos encontrados neste estudo com as informações genéticas já conhecidas, pode-se levantar a possibilidade de que os mecanismos evolutivos que atuam nestas três espécies sejam distintos (por exemplo os agentes da seleção natural).

Além disso, a fim de interpretar os resultados que obtvemos nas análises de distribuição, utilizamos resultados de estudos paralelos em nível molecular já desenvolvidos por nosso grupo de pesquisa. Por exemplo, levamos em consideração as análises que levaram à identificação da mutação nos genes causadores do melanismo em onças-pintadas e jaguarundis (Eizirik *et al.*, 2003), bem como em leopardos (Schneider *et al.*, 2012), estudos de filogeografia de onças-pintadas (Eizirik *et al.*, 2001) e de jaguarundis (Pires, 2012) e o trabalho ainda em andamento sobre a genética de populações de onças-pintadas em biomas brasileiros (especialmente no que tange ao fluxo gênico historico entre regiões como o Pantanal e a Mata Atlântica; Valdez [2010]). Além desses, também incorporamos os resultados do estudo de filogeografia de leopardo, desenvolvido por grupo de pesquisa parceiro (Uphyrkina *et al.*, 2001). Desta forma, além de atender ao principal foco desta investigação, centrado na identificação de todos esses estudos para avaliar relevância adaptativa deste fenótipo, e hipotetizar sobre evidências da seleção natural atuando nas variantes de coloração avaliadas.

Os resultados também evidenciam o potencial da ferramenta de modelagem de nicho para gerar mapas de distribuição não só de espécies (como classicamente é utilizado), mas também para a prever distribuição de características e variações intraespecíficas, tais como fenótipos. Obtivemos ótimos resultados com os modelos, com altos valores de AUC para modelagens de grande escala geográfica (e consequentemente, com grande variação de valores absolutos dentro dos parâmetros preditores), com a utilização de um número reduzido de preditores minimizando problemas de correlação paramétrica (10-12 preditores dependendo da espécie focal). Talvez modelagens em escalas regional se mostrassem mais precisas em relação aos grupos-controle do presente estudo (tal como realizado por Ferraz *et al.* [2012]), mas perderíamos a capacidade de análises comparativas entre os controles e os modelos de distribuição dos animais melânicos, o que nos parece justificar a opção

pela abordagem realizada. Mesmo assim, foi possível identificar efeitos locais de deriva genética já inferidos para onças-pintadas (Parque Estadual do Morro do Diabo [São Paulo] e Parque Nacional da Serra da Capivara [Piauí], ambos no Brasil), bem como a aferir pontos duvidosos de ocorrência de leopardos melânicos. Também foi realizada a análise de distribuição do melanismo em leopardos tirando parte dos pontos de ocorrência confirmada de melanismo (por exemplo, África e Java) com a mesma configuração de modelagem, e os resultados continuavam apontando alta adequabilidade para a ocorrência do melanismo nessas áreas, corroborando a boa capacidade preditiva dos modelos gerados.

Aumentou-se também significativamente o conhecimento em relação aos possíveis parâmeros ambientais que podem influenciar a distribuição dos fenótipos, com sugestões de tendências de relação com camuflagem e termorregulação. Porém, algum preditor importante pode ter sido perdido quando das pré-análises visando à remoção do efeito de correlação, ou fatores ambientais bióticos podem não ter sido contemplados pelas análises (por exemplo: seleção natural dependente de frequências ou relações mais complexas entre predadores e presas que podem variar espacialmente). Desta forma, a questão dos parâmetros envolvidos diretamente na distribuição dos diferentes fenótipos na natureza ainda carece de novas investigações. A grande dificuldade é delinear um experimento que seja operacional e viável, em felinos selvagens, para testes da hipótese de seleção natural que avaliem a relação entre camuflagem, termorregulação e parâmetros abióticos, tal como já realizados com alguns outros sistemas (por exemplo o estudo realizado por Hoekstra [2006]).

Em suma, o trabalho considerou aspectos de biogeografia história e biogeografia ecológica, baseando-se em técnicas modernas de ecologia para a análise da distribuição espacial do melanismo em felinos. Os resultados obtidos podem ser utilizados como suporte para o delineamento de novos experimentos e investigações acerca da variação de coloração animal. Especialmente em mamíferos, pode ser considerado como base para testes de hipóteses sobre deriva genética e seleção natural atuando em populações naturais, subsidiando projetos de conservação da diversidade de fenótipos polimórficos.

Figura 5 - Atualização da distribuição geográfica atual da onça-pintada (A) e do jaguarundi (B) com os dados obtidos no presente estudo. As áreas em vermelho representam regiões onde a ocorrência da espécie não se encontrava documentada na base de dados da IUCN, e para as quais nossos dados proveram confirmação de presença.

PERSPECTIVAS

A geração de mapas e modelos das áreas geográficas de ocorrência do melanismo, a avaliação de não aleatoriedade na distribuição deste fenótipo, e demais análises aqui realizadas visando testar a relevância adaptativa dessa característica fenotípica, compõem um campo bastante interessante dentro da pesquisa em outras espécies de felinos e também outros mamíferos. Adicionalmente ao banco de dados utilizado na composição do presente estudo, obtivemos registros de outras espécies que não foram contempladas nesse momento. Esse banco de dados adicional com procedências geográficas e informação de coloração de cada indivíduo conta com registros de Lynx rufus (lince-fulvo: 138 não-melânicos e 12 melânicos), complexo 'tigrinus' formado por *Leopardus tigrinus* e *Leopardus guttulus* (gato-do-mato-pequeno: 268 não-melânicos e 8 melânicos), Leopardus geoffroyi (gato-do-mato-grande: 102 nãomelânicos e 24 melânicos), além de registros pontuais adicionais de indivíduos de ambos os fenótipos para Leopardus guigna (guiña), Leopardus colocolo (gato-palheiro), Caracal serval (serval) e Pardofelis temminckii (gato dourado asiático), totalizando 36 registros dessas quatro espécies. A complementação desse banco adicional de amostras com novos dados pode subsidiar mapas de distribuição e modelos para estudos futuros. Dentro dessa base de dados, alguns registros possuem material biológico disponível para estudos genéticos, visando a identificar a mutação causadora do melanismo naquelas espécies onde ela ainda não é conhecida. A perspectiva principal para os próximos anos é a identificação das mutações e a caracterização da distribuição geográfica do melanismo em todas as 13 espécies de felídeos em que essa variação fenotípica ocorre.

Além disso, uma segunda via de pesquisa futura é a melhoria dos modelos de distribuição de forma que possamos interpretar melhor os parâmetros ambientais preditores e identificar de forma clara efeitos de seleção natural sobre os fenótipos. A ferramenta de análise mostrou-se eficiente para esse propósito, e o teste com outras variações de pelagem e não somente o melanismo é uma temática bastante interessante, que pode dar origem a novas frentes de trabalho. Outra possibilidade é o teste desses modelos em outros grupos de carnívoros para os quais também temos acesso a dados semelhantes, como canídeos, mustelídeos e mefitídeos. Assim sendo, a melhoria dos modelos e seu teste com outros grupos de mamíferos, especialmente carnívoros, constituem um campo bastante promissor.

REFERÊNCIAS BIBLIOGRÁFICAS

Allen, W.L., Cuthill, I.C., Samuel, N.E. & Baddeley, R. (2010) Why the leopard got its spots: relating pattern development to ecology in felids. *Proceedings of The Royal Society: Biological Sciences* **277**, online.

Almeida, L.B., Queirolo, D., Beisiegel, B.M. & Oliveira, T.G. (2013) Avaliação do estado de conservação do gato-mourisco *Puma yagouaroundi* (É. Geoffroy Saint-Hilaire, 1803) no Brasil. *Biodiversidade Brasileira* **3**(1), 99-106.

Anderson, T.M., Vonholdt, B.M., Candille, S.I., Musiani, M., Greco, C., Stahler, D.R., Smith, D.W., Padhukasahasram, B., Randi, E., Leonard, J., Bustamarte, C., Ostrander, E.A., Tang, H., Wayne, R.K., Barsh, G.S. (2009) Molecular and evolutionary history of melanism in North American gray wolves. *Science* **323**, 1339-1343.

Araújo, M.B. & Guisan, A. (2006) Five (or so) challenges for species distribution modelling. *Journal of Biogeography* **33**(10), 1677-1688.

Azlam, J. M. & Sharma, D. S. K. (2006) The diversity and activity patterns of wild felids in a secondary forest in Peninsular Malaysia. *Oryx* 40(1), 36-41.

Balme, G., Hunter, L. & Slotow, R. (2010) Evaluating methods for counting cryptic carnivores. *The Journal of Wildlife Management* **73**(3), 433-441.

Balme, G., Lindsey, P.A., Swanepoel, L. & Hunter, L. (2013) Failure of research to address the rangewide conservation needs of large carnivores: leopards in South Africa as a case study. *Conservation Letters*, c12028.

Barsh, G.S. (1995) Pigmentation, pleiotropy, and genetic pathways in humans and mice. *American Journal of Human Genetics* **57**, 743-747.

Barsh, G.S. (1996) The genetics of pigmentation: from fancy genes to complex traits. *Trends In Genetics* **12**, 299-305.

Beddard, F.E. (1985) Animal coloration: Colour and markins of animals 2nd Ed. Swan Sonnenschein: London.

Bianchi, R.D., Rosa, A.F., Gatti, A. & Mendes, S.L. (2011) Diet of margay, *Leopardus wiedii*, and jaguarundi, *Puma yagouaroundi* (Carnivora: Felidae), in Atlantic Rainforest, Brazil. *Zoologia* **28**, 127-132.

Breiman, L. (2001) Random Forests. Machine Learning 45(1), 5-32.

Brown, D.E. & Gonzalez, C.A.L. (2000) Notes on the occurrences of jaguars in Arizona and New Mexico. *The Southwestern Naturalist* **45**(4), 537-542.

Buckley, L.B., Urban, M.C., Angilletta, M.J., Crozier, L.G., Rissler, L.J. & Sears, M.W. (2010) Can mechanism inform species distribution models? *Ecology Letters* **13**, 1041-1054.

Buermann, W., Saatchi, S., Smith, T.B., Zutta, B.R., Chaves, J.A., Mila, B. & Graham, C.H. (2008) Predicting species distributions across the Amazonian and Andean regions using remote sensing data. *Journal of Biogeography* **35**, 1160–1176.

Burtt, E.H. & Ichida, J.M. (2004) Gloger's rule, feather-degrading bacteria, and color variation among song sparrows. *The Condor* **106**, 681-686.

Busby J.R. (1991) *BIOCLIM - A bioclimatic analysis and prediction system*. pp. 64-68. In: Margules, C.R. & Austin, M.P. (Eds.). Nature Conservation: cost effective biological surveys and data analysis. Intl Specialized Book Service Inc.

Calabrese, J.M., Certain, G., Kraan, C. & Dormann, C.F. (2013) Stacking species distribution models and adjusting bias by linking them to macroecological models. *Global Ecology and Biogeography*, geb.12102.

Campos, M.F., Neto, D.G. & Haddad, V. (2011) Attacks by jaguars (*Panthera onca*) on humans in central Brazil: report of three cases, with observation of a death. *Wilderness & Environmental Medicine* **22**, 130–135.

Candille, S. I., Kaelin, C.B., Cattanach, B.M., Yu, B., Thompson, D.A., Nix, M.A., Kerns, J.A., Schmutz, S.M., Millhauser, G.L. & Barsh, G.S. (2007) A-defensin mutation causes black coat color in domestic dogs. *Science* **318**, 1418-1423.

Carillo, E, Fuller, T.K. & Saenz, J.C. (2009) Jaguar (*Panthera onca*) hunting activity: effects of prey distribution and availability. *Journal of Tropical Ecology* **25**, 563-567.

Carnaval, A.C. & Moritz, C. (2008) Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. *Journal of Biogeography* **35**, 1187-1201.

Carpenter, G., Gillison, A.N. & Winter, J. (1993) DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals. *Biodiversity and Conservation* **2**(6), 667-680.

Carvalho, E.A.R. & Morato, R.G. (2013) Factors affecting big cat hunting in Brazilian protected areas. *Tropical Conservation Science* **6**(2), 303-310.

Caso, A., Lopez-Gonzalez, C., Payan, E., Eizirik, E., Oliveira, T.G., Leite-Pitman, R., Kelly, M. & Valderrama, C. (2013) *Puma yagouaroundi*. In: IUCN 2013. IUCN Red List of Threatened Species. <<u>www.iucnredlist.org</u>> Downloaded on **02 December 2013**.

Caso, A., Lopez-Gonzalez, C., Payan, E., Eizirik, E., de Oliveira, T., Leite-Pitman, R., Kelly, M. & Valderrama, C. (2014) *Panthera onca*. In: IUCN 2014. IUCN Red List of Threatened Species. <<u>www.iucnredlist.org</u>> Downloaded on **03 January 2014**.

Cavalcanti, S.M.C. & Gese, E.M. (2009) Spatial eclogy and social interactions of jaguars (*Panthera onca*) in the southern Pantanal, Brazil. *Journal of Mammalogy* **90**(4), 935-945.

Caro, T. (2005) The adaptive significance of coloration in mammals. *BioScience* **55**(2), 125-136.

Chauhan, D.S. Harihar, A., Goyal, S.P., Qamar, Q., Lal, P. & Mathur, V.B. (2005) *Estimating leopard population using camera traps in Sariska Tiger Reserve*. Wildlife Institute of India: Report.

Chavez, C. & Ceballos, G. (2006) *El Jaguar Mexicano en el siglo XXI: situación cctual y manejo*. Alianza WWF Telcel-Universidad Nacional Autónoma de México.

Collevatti, R.G., Terribile, L.C., Ribeiro, M.S.L., Nabout, J.C., Oliveira, G., Rangel, T.F., Rabelo, S.G. & Diniz-Filho, J.A.F. (2012) A coupled phylogeographical and species distribution modelling approach recovers the demographical history of a Neotropical seasonally dry forest tree species. *Molecular Ecology* **21**, 5845-5863.

Collevatti, R.G., Terribile, L.C., Oliveira, G., Ribeiro, M.S.L., Nabout, J.C., Rangel, T.F., & Diniz-Filho, J.A.F. (2013) Drawbacks to palaeodistribution modelling: the case of South American seasonally dry forests. *Journal of Biogeography* **40**, 345-358.

Colosimo, P.F., Hosemann, K.E., Balabhadra, S., Villareal Jr., G., Dickson, M., Grimwood, J., Schmutz, J., Myers, R.M., Schluter, D. & Kingsley, D.M. (2005) Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. *Science* **307**, 1928-1933.

Conforti, V.A. & Azevedo, F.C. (2003) Local perceptions of jaguars (*Panthera onca*) and pumas (*Puma concolor*) in the Iguaçu National Park area, south Brazil. *Biological Conservation* **111**, 215-221.

Costa, G.C., Nogueira, C., Machado, R.B. & Colli, G.R. (2010) Sampling bias and the use of ecological niche modeling in conservation planning: a field evaluation in a biodiversity hotspot. *Biodiversity Conservation* **19**, 883-899.

Coterc, C. (2008). *The jaguarundi*. Avulse publication of Canadian Organization for Tropical Education and Rainforest Conservation: Canada.

Cott, H.B. (1940) Adaptative coloration in mammals. London: Methuen.

Colwell, R.K. & Rangel, T.F. (2009) Hutchinson's duality: the once and future niche. *Proceedings of the National Academy of Sciences* **106**, 19651-19658.

Cuervo, A., Hernandez, J. & Cadena, A. (1986) Lista atualizada de los mamíferos de Colombia: anotaciones sobre su distribución. *Caldasia* **15**, 471-501.

Cullen Jr, L., Abreu, K.C., Sana, D. & Nava, A.F. (2006) As onças-pintadas como detetives da paisagem no corredor do Alto Paraná, Brasil. *Natureza & Conservação* **3**(1), 43-58.

Davis, B.W., Li, G. & Murphy, W.J. (2010) Supermatrix and species tree methods resolve phylogenetic relationships within the big cats, *Panthera* (Carnivora: Felidae). *Molecular Phylogenetics and Evolution* **56**, 64–76.

Dinets, V. & Polechla Jr, P. (2007) First Documentation of melanism in a jaguar from northern Mexico. *CatNews* **42**, 17.

Diniz-Filho, J.A.F & Loyola, R.D. (2012) A Conceptual and methodological synthesis on modeling: Ecological niches and geographical distributions. *Natureza & Conservação* **10**(2), 235-238.

Dittrich, L. (1979) Die verenbung des melanismus beim jaguar (Panthera onca). Zoologische Garten **49**, 417-428.

Dutta, T., Sharma, S., Maldonado, J.E., Wood, T.C., Panwar, H.S. & Seidensticker, J. (2012) Fine-scale population genetic structure in a wide-ranging carnivore, the leopard (*Panthera pardus fusca*) in central India. *Diversity and Distributions* **19**, 760–771.

Dutta, T., Sharma, S., Maldonado, J.E., Wood, T.C., Panwar, H.S. & Seidensticker, J. (2013) Gene flow and demographic history of leopards (*Panthera pardus*) in the central Indian highlands. *Evolutionary Applications* **6**(6), 949-959.

Eizirik, E., Kim, J.H., Raymond, M.M., Crawshaw Jr, P.G., O'Brien, S.J. & Johnson, W.E. (2001) Phylogeography, population history and conservation genetics of jaguars (*Panthera onca*, Mammalia, Felidae). *Molecular Ecology* **10**, 65-79.

Eizirik, E. & O'Brien, S.J. (2003) Evolution of the melanism in the Felidae. CatNews 38, 37-39.

Eizirik, E., Yuhki, N., Johnson, W.E., Raymond, M., Hannah, S.S. & O'Brien, S.J. (2003) Molecular genetics and evolution of melanism in the cat family. *Current Biology* **13**, 448-453.

Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Philips, S.J., Richardson, K., Pereira, R.S., Schapire, R.E., Soberón, J., Williams, J., Wisz, M.S. & Zimmermann, N.E. (2006) Novel methods improve prediction of species' distributions from occurrence data. *Ecography* **29**(2), 129-151.

Elith, J., Phillips, S.J., Hastie, T., Dudik, M., Chee, Y.E. & Yates, C.J. (2010) A statistical explanation of Maxent for ecologists. *Diversity and Distributions* **17**, 43–57.

Feijó, A. & Lugguth, A. (2013) Mamíferos de médio e grande porte do nordeste do Brasil: distribuição e taxonomia, com descrição de novas espécies. *Revista Nordestina de Biologia* 1-2, 3-225. Ferraz, K.M.P.M.B., Ferraz, S.F.B., Paula, R.C., Beisiegel, B. & Breitenmoser, C. (2012) Species distribution modeling for conservation purposes. *Natureza & Conservação* **10**(2), 214-220.

Franklin, J. (2009) *Mapping species distributions: spatial inference and prediction*. Cambridge University Press.

Friedman, J.H. (1991) Multivariate adaptive regression splines. Annals of Statistics 19(1), 1-141.

Friedman, J.H. (2001) Greedy function approximation: a gradient boosting machine. *Annals of Statistics* **29**(5), 1189-1232.

Galetti, M., Eizirik, E., Beisiegel, B., Ferraz, K., Cavalcanti, S., Araujo, A.C., Crawshaw Jr., P., Paviolo, A., Galetti Jr, P.M., Jorge, M.L., Marinho-Filho, J., Vercillo, U. & Morato, R.G. (2013) Atlantic Rainforest's jaguars in decline. *Science* **342**, 930.

Gavashelishvili, A. & Lukarevskiy, V. (2008) Modelling the habitat requirements of leopard *Panthera pardus* in west and central Asia. *Journal of Applied Ecology* **45**, 579-588.

Ghimirey, Y. (2006) *Status of common leopard Panthera pardus (Linnaeus, 1758) in Kunjo VDC of Mustang District, Nepal.* School of Environmental Management and Sustainable Development: Shantinagar, Kathmandu.

Ghoddousi, A., Hamidi, A.K., Ghadirian, T., Ashayeri, D. & Qashqaei, A.T. (2008) Persian leopard project in Iran. *Wildlife Middle East* **3**(3), 04.

Gloger, C.W.L. (1833) *Das Abändern der Vögel durch Einfluss des Klimas* [The evolution of birds through the impact of climate]. Breslau: <u>August Schulz</u>.

Grassman, L.I. & Tewes, M.E. (2004) Jaguarundi the weasel cat of Texas. *South Texas Wildlife* **8**(4), 1-2.

Graham, C.H. & Hijmans, R.J. (2006) A comparison of methods for mapping species ranges and species richness. *Global Ecology and Biogeography* **15**, 578–587.

Gray, T.M. & Prum, S. (2011) Leopard density in post-conflict landscape, Cambodia: Evidence from spatially explicit capture–recapture. *The Journal of Wildlife Management* **99**, 1-7.

Grigione, M., Scoville, A., Scoville, G. & Crooks, K. (2007) Neotropical cats in southeast Arizona and surrouding areas: Past and present status of jaguars, ocelots and jaguarundis. *Mastozoología Neotropical* **14**(2), 189-199.

Guisan, A. & Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology. *Ecological Modelling* **135**, 147–186.

Guisan, A., Edwards, T.C. & Hastie, T. (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. *Ecological Modelling* **157**, 89-100.

Haag, T., Santos, A.S., Valdez, F.P., Sana, D., Silveira, L., Cullen Jr, L., De Angelo, C., Morato, R.G., Crawshaw Jr, P.G., Salzano, F.M. & Eizirik, E. (2010I) Molecular tracking of jaguar melanism using faecal DNA. *Conservation Genetics* **11**(3), 1239-1242.

Haag, T., Santos, A.S., Sana, D., Morato, R.G., Cullen Jr, L., Crawshaw Jr, P.G.; De Angelo, C., Di Bitteti, M., Salzano, F.M. & Eizirik, E. (2010II) The effect of habitat fragmentation on the genetic structure of a top predator: loss of diversity and high differentiation among remnant populations of Atlantic forest jaguars (*Panthera onca*). *Molecular Ecology* **19**(22), 4906-4921.

Habblewhite, M., Miquelle, D.G., Murzin, A.A., Aramilev, V.V. & Pikunov, D.G. (2011) Predicting potential habitat and population size for reintroduction of the far eastern leopards in the Russian Far East. *Biological Conservation* **144**, 2403-2413.

Harihar, A., Pandav, B. & Goyal, S.P. (2011) Responses of leopard *Panthera pardus* to the recovery of a tiger *Panthera tigris* population. *Journal of Applied Ecology* **48**(3), 806-814.

Hastie, T. & Tibshirani, R. (1986) Generalized Additive Models. *Statistical Science* **1**(3), 297-310.

Hatten, J.R., Murray, A.A. & Van Pelt, W.E. (2005) A spatial model of potential jaguar habitat in Arizona. *Journal of Wildlife Management* **69**(3), 1024-1033.

Henschel, P., Hunter, L., Breitenmoser, U., Purchase, N., Packer, C., Khorozyan, I., Bauer, H., Marker, L., Sogbohossou, E. & Breitenmoser-Wursten, C. (2013) *Panthera pardus*. In: IUCN

2013. IUCN Red List of Threatened Species Version 2013.1. <<u>www.iucnredlist.org</u>>. Downloaded on **19 November 2013**.

Henschel, P. & Ray, J.C. (2003) *Leopards in African Rainforests: Survey and Monitoring Techniques*. Wildlife Conservation Society: Report.

Hernandez, P.A., Graham, C.H., Master , L.L. & Albert, D.L. (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography **29**, 773-785.

Hoekstra, H.E. (2006) Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity **97**, 222-234.

Hirzel, A.H., Hausser, J., Chessel, D. & Perrin, N. (2002) Ecological-niche factor analysis: How to compute habitat-suitability maps without absence data? *Ecology* **83**, 2027-2036.

Hubbard, J.K, Hauber, M.E., Hoekstra, H.H. & Safran, R.J. (2010) Vertebrate pigmentation: from underlying genes to adaptive function. *Trends In Genetics* **26**(5), 231-239.

Indrusiak, C. & Eizirik, E. (2003) *Carnívoros*. pp. 507-533. In: Fontana, C.S., Bencke, G.A. & Reis, R.E. (Eds.) Livro vermelho da fauna ameaçada de extinção no Rio Grande do Sul. EdiPUCRS.

Ishida, Y., David, V.A., Eizirik, E., Schaffer, A.A., Neelam, B.A., Roelke, M.E., Hannah, S.S., O'Brien, S.J. & Raymond, M.M. (2006) A homozygous single-base deletion in *MLPH* causes the dilute coat color phenotype in the domestic cat. *Genomics* **88**(6), 698-705.

Jackson, I.J. (1994) Molecular and developmental genetics of mouse coat color. *Annual Review* of Genetics **28**, 189-217.

Jedrzejewski, W., Abarca, M., Viloria, A., Cerda, H., Lew, D., Takiff, H., Abadia, E., Velozo, P. & Schmidt, K. (2011) Jaguar conservation in Venezuela against the backdrop of current knowledge in its biology and evolution. *Interciencia* **36**(12), 954-966.

Johnsingh, A.J.T. & Negi, A.S. (2003) Status of tiger and leopard in Rajaji–Corbett Conservation Unit, northern India. *Biological Conservation* **111**, 385–393.

Johnson, W.E., Eizirik, E., Slattery, J., Murphy, W.J., Antunes, A., Teeling, E. & O'Brien, S.J. (2006) The late miocene radiation of modern Felidae: a genetic assessment. *Science* **311**, 73-77.

Joppa, L.N., McInemy, G., Harper, R., Salido, L., Takeda, K., O'Hara, K., Gavaghan, D. & Emmott, S. (2013) Troubling trends in scientific software use. *Science* **340**, 814-815.

Jorge, M.L., Galetti, M., Ribeiro, M.C. & Ferraz, K.M.P.M.B. (2013) Mammal defaunation as surrogate of trophic cascades in a biodiversity hotspot. *Biological Conservation* **163**, 49-57.

Jutzeler, E., Zhigang, W., Weishi, L. & Breitenmoser, U. (2010) Leopard Panthera pardus. CatNews Special Issue 5, 30-33.

Kasper, C.B., Mazim, F.D., Soares, J.B.G., Oliveira, T.G. & Fabian, M.E. (2007) Composição e abundância relativa dos mamíferos de médio e grande porte no Parque Estadual do Turvo, Rio Grande do Sul, Brasil. *Revista Brasileira de Zoologia* **24**(4), 1087-1100.

Kawanishi, K., Sunquist, M.E., Eizirik, E., Lynam, A.J., Ngoprasert, D., Wan Shahruddin, W.N., Rayan, D.M., Sharma, D.S.K. & Steinmetz, R. (2010) Near fixation of melanism in leopards of the Malay Peninsula. *Journal of Zoology* **282**(3), 201-206.

Khorozyan, I. (2000) *The leopard* Panthera pardus *surveys in the Artvin Province, north-eastern Turkey*. Armenian Leopard Conservation Society: Report.

Khorozyan, I. (2003) *Camera photo-trapping of the endangered leopards* (Panthera pardus) *in Armenia: a key element of species status assessment*. Armenian Leopard Conservation Society: Report.

Kijas, J.M.H., Wales, R., Tornsten, A., Chardon, P., Moller, M. & Anderson, L. (1998) Melanocortin receptor 1 (*MC1R*) mutations and coat color in pigs. *Genetics* **150**, 1177-1185.

Kingdon, J. (2001) The field guide to African mammals. Academic Press: London.

Kingsley, E.P., Manceau, M., WIley, C.D. & Hoekstra, H.E. (2009) Melanism in peromyscus is caused by independent mutations in agouti. *PlosOne* **4**(7), e6435.

Kittle, A. & Watson, A. (2009) *The status, distribution, ecology and behaviour of the Sri Lankan leopard* (Panthera pardus kotiya) *in the central highlands of Sri Lanka*. The Wilderness & Wildlife Conservation Trust: Report.

Klungland, H., Vage, D.I., Raya, L.G., Adalsteinsson, S. & Lien, S. (1995) The role of melanocyte-stimulating hormone (*MSH*) receptor in bovine coat color determination. *Mammalian Genome* **6**(9), 636-639.

Kozak, K.H., Graham, C.H. & Wiens, J.J. (2008) Integrating GIS-based environmental data into evolutionary biology. Trends in Ecology and Evolution **23**, 141-148.

Kumar, S. & Stohlgren, T.J. (2009) Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and Natural Environment **1**, 94-98.

Kuramoto, T., Nomoto, T., Sugimura, T. & Ushijima, T. (2001) Cloning of the rat agouti gene and identification of the rat nonagouti mutation. Mammalian Genome **12**(6), 469-471.

Lawning, A.M. & Polly, P.D. (2011) Pleistocene climate, phylogeny, and climate envelope models: An integrative approach to better understand species' response to climate change. *PlosOne* **6**(12), e28554.

Lima, E.F., Homem, D.H. & Rosas, P.F. (2013) Mammalia, Felidae, *Panthera onca* (Linneaus, 1758): recent records in east Mato Grosso do Sul, Brazil. *Checklist* **9**(1), 121-124.

Ling, M. K., Lagerstrom, M.C., Fredriksson, R., Okimoto, R., Mundy, N.I., Takeuchi, S & Schioth, H.B. (2003) Association of feather colour with constitutively active melanocortin 1 receptors in chicken. *European Journal of Biochemistry* **270**(7), 1441-1449.

Loiselle, B.A., Graham, C.H., Goerck, J.M. & Ribeiro, M.C. (2010) Assessing the impact of deforestation and climate change on the range size and environmental niche of birds species in the Atlantic forests, Brazil. *Journal of Biogeography* **37**, 1288-1301.

Maffei, L., Cuellar, E. & Noss, A. (2004) One thousand jaguars (*Panthera onca*) in Bolivia's Chaco? Camera trapping in the Kaa-Iya National Park. *Journal of Zoology* **262**, 295-304.

Maffei, L., Noss, A. & Fiorello, C. (2007) The jaguarundi (*Puma yagouaroundi*) in the Kaa-Iya Del Gran Chaco National Park, Santa Cruz, Bolivia. *Mastozoología Neotropical* **14**(2), 263-266.

Majerus, M.E.N. (1998) Melanism - Evolution in action. Oxford University Press.

Manel, S., Dias, J.M., Buckton, S.T. & Ormerod, S.J. (1999) Alternative methods for predicting species distribution: an illustration with Himalayan river birds. *Journal of Applied Ecology* **36**(5), 734-747.

Marco Jr., P. & Siqueira, M.F. (2009) Como determinar a distribuição potencial de espécies sob uma abordagem conservacionista? *Megadiversidade* **5**, 65-76.

Mazzoli, M. (2008) Loss of historical range of jaguars in southern Brazil. *Biodiversity Conservation*, s10531.

Mazzoli, M. (2009) Arabian leopard *Panthera pardus nimr* status and habitat assessment in northwest Dhofar, Oman (Mammalia: Felidae). *Zoology in the Middle East* **47**, 3-12.

McCain, E.B. & Childs, J.L. (2008) Evidence of resident jaguars (*Panthera onca*) in the southwestern United States and the implications for conservation. *Journal of Mammalogy* **89**(1), 1–10.

McRobie, H., Thomas, A. & Kelly, J. (2009) The genetic basis of melanism in the gray squirrel (*Sciurus carolinensis*). *Journal Of Heredity* **100**(6), 709-714.

Meijaard, E. (2004) Biogeographic history of the Javan leopard *Panthera pardus* based on a craniometric analysis. *Journal of Mammalogy* **85**(2), 302-310.

Merow, C., Smith, M.J. & Silander, J.A. (2013) A practical guide to Maxent for modeling species' distributions: What it does, and why inputs and settings matter. *Ecography* **36**, 1058-1069.

Michalski, F., Crawshaw, P.G., Oliveira, T.G. & Fabián, M.E. (2006) Notes on home range and habitat use of three small carnivore species in a disturbed vegetation mosaic of southeastern Brazil. *Mammalia* **70**, 52-57.

Miththapala, S., Seidensticker, J., Phillips, L.G., Fernando, S.B. & Smallwood, J.A. (1989) Identification of individual leopards (*Panthera pardus kotiya*) using spot pattern variation. *Journal of Zoology* **218**, 527-536.

Morato, R.G., Beisiegel, B.M., Ramalho, E.E., Campos, C.B & Boulhosa, R.L.P. (2013) Avaliação do risco de extinção da onça-pintada *Panthera onca* (Linnaeus, 1758) no Brasil. *Biodiversidade Brasileiral* **3**(1), 122-132.

Mountjoy, K.G., Robbins, L.S., Mortrud, M.T. & Cone, R.D. (1992) The cloning of a family of genes that encode the melanocortin receptors. *Science* **257**, 1248-1251.

Mukherjee, S., Krishnan, A., Tamma, K., Home, C., Navya, R., Joseph, S., Das, A. & Ramakrishnan, U. (2010) Ecology driving genetic variation: A comparative phylogeography of jungle cat (*Felis chaus*) and leopard cat (*Prionailurus bengalensis*) in India. *PlosOne* **5**(10), e13724.

Mundy, N.I. & Kelly, J. (2003) Evolution of a pigmentation gene, the melanocortin-1 receptor, in primates. *American Journal of Physical Anthropology* **121**(1), 67-80.

Nachman, M.W., Hoekstra, H.E. & D'Agostino, S.L. (2003) The genetic basis of adaptive melanism in pocket mice. Proceedings of the National Academy of Sciences **100**, 5268-5273.

Nelson, E.W. & Goldman, E.A. (1933) Revision of the jaguars. Journal of Mammalogy **14**(3), 221-240.

Oliveira, T.G. (1998) Herpailurus yagouaroundi. Mammalian Species 578: 1-6.

Oliveira, T.G., Tortato, M.A., Silveira, L., Kasper, C.B., Mazim, F.D., Lucherini, M., Jácomo, A.T., Soares, J.B.G., Rosane, V.M. & Sunquist, M. (2010) Ocelot ecology and its effects on the small-felid guild in the lowland neotropics. pp. 559-580. In: Macdonald, D.W. & Loveridge, A.J. (Eds.). Biology and conservation of wild felids. Oxford University Press.

Olden, J.D.; Lawler, J.J. & Poff, N.L. (2008) Machine learning methods without tears: a primer for ecologists. The Quarterly Review of Biology **83**(2), 171-193.

Ortega, M.A. & Medley, K.E. (1999) Landscape analysis of jaguar (Panthera onca) habitat using sighting records in the Sierra de Tamaulipas, Mexico. Environmental Conservation **26**(4), 257–269.

Ortolani, A. & Caro, T. M. (1996) *The adaptative significance of color patterns in carnivores*. In: Gittleman, J.L. (Ed.) Carnivores Behavior, Ecology and Evolution – Volume 2. Cornell University Press.

Peterson, A.T., Soberón, J., Pearson, R.G., Anderson, R.P., Meyer, E., Nakamura, M. & Araujo, M.B. (2011) *Ecological niches and geographic distributions*. Princeton University Press.

Peterson, A.T. & Soberón, J. (2012) Species distribution modeling and ecological niche modeling: Getting the concepts right. *Natureza & Conservação* **10**(2), 102-107.

Patterson, B.D., Kasiki, S.M., Selempo, E. & Kays, R.W. (2004) Livestock predation by lions (*Panthera leo*) and other carnivores on ranches neighboring Tsavo National Park, Kenya. *Biological Conservation* **119**, 507–516.

Paviolo, A., DeAngelo, C., DiBlanco, Y., Ferrari, C., DiBitteti, M., Kasper, C.B., Mazim, F., Soares, J.B. & Oliveira, T.G. (2006) The need of transboundary efforts to preserve the southernmost jaguar population in the world. *CatNews* **45**, 12-14.

Paviolo, A., DeAngelo, C., DiBlanco, Y. & DiBitteti, M. (2008) Jaguar *Panthera onca* population decline in the Upper Paraná Atlantic forest of Argentina and Brazil. *Fauna & Flora International* **42**(4), 554–561.

Paviolo, A., DiBlanco, Y. E., DeAngelo, C. & DiBitetti, M. S. (2009) Protection affects the abundance and activity patterns of pumas in the Atlantic rainforest. *Journal of Mammalogy* **90**(4), 926-934.

Pearson, R.G. (2007) Species' distribution modeling for conservation educators and practitioners. American Museum of Natural History Press.

Perez, I., Geffen, E. & Mokady, O. (2006) Critically endangered Arabian leopards *Panthera pardus nimr* in Israel: Estimating population parameters using molecular scatology. *Oryx* **40**(3), 295-301.

Perez, R., Carillo, E., Saenz, J.C. & Mora, J.M (2007) Critical condition of the jaguar *Panthera onca* population in Corcovado National Park, Costa Rica. *Oryx* **41**, 51-56.

Perez, R. (2011) Estimating jaguar population density using camera-traps: A comparison with radio-telemetry estimates. *Journal of Zoology* **285**, 39-45.

Perry, R. (1970) The world of the jaguar. New York: Taplinger.

Perry, W.L., Nakamura, T., Swing, D.A., Secrest, L., Eagleson, B., Hustad, C.M., Copeland, N.G. & Jenskins, N.A. (1996) Coupled site-directed mutagenesis/transgenesis identifies important functional domains of the mouse agouti protein. *Genetics* **144**, 255-264.

Philips, S.J., Anderson, R.P. & Schapired, R.E. (2006) Maximum entropy modeling of species geographic distributions. *Ecological Modelling* **190**, 231-259.

Philips, S.J. & Dudik, M. (2008) Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. *Ecography* **31**,161-175.

Pires, C.B. (2012) *Diversidade genética e filogeografia de* Puma yagouaroundi (*Mammalia, Carnivora, Felidae*). Pontifícia Universidade Católica do Rio Grande do Sul: Dissertação de Mestrado.

Pocock, R. (1929) Black panthers, an inquiry. *Journal Bombay Natural History Society* **33**, 673-674.

Pocock, R. (1930) The panthers and ounces of Asia. *Journal of the Bombay Natural History Society* **34**, 64-82.

Poulton, E.B. (1890) *The Colours of Animals, their meaning and use, especially considered in the case of insects.* London: Kegan Paul, Trench & Trübner.

Quigley, H.B. & Crwshaw, P.G. (1992) A conservation plan for the jaguar *Panthera onca* in the Pantanal region of Brazil. *Biological Conservation* **26**, 257-269.

Rabinowitz, A. & Zeller, K.A. (2010) A range-wide model of landscape connectity and conservation for the jaguar, *Panthera onca. Biological Conservation* **143**, 939-945.

Raes, N., Roos, M.C., Slik, J.W.F, Van Loon, E.E. & Steege, H. (2009) Botanical richness and endemicity patterns of Borneo derived from species distribution models. *Ecography* **32**, 180-192.

Ramakrishnan, U., Coss, R.G. & Pelkey, N.W. (1999) Tiger decline caused by the reduction of large ungulate prey: Evidence from a study of leopard diets in southern India. *Biological Conservation* **89**, 113-120.

Rangel, T.F. & Loyola, R. D. (2012) Labeling ecological niche models. *Natureza* & *Conservação* **10**(2), 119-126.

Ray, J.C., Hunter, L. & Zigouris, J. (2005) Setting conservation and research priorities for large African carnivores. Wildlife Conservation Society: New York.

Ribeiro, M.S.1 & Diniz-Filho, J.A.F. (2012) Modelando a distribuição geográfica das espécies no passado: uma abordagem promissora em paleoecologia. *Revista Brasileira de Paleontologia* **15**(3), 371-385.

Rieder, S., Taourit, S., Mariat, D., Langlois, B. & Guerin, G. (2001) Mutations in the agouti (*ASIP*), the extension (*MC1R*), and the brown (*TYRP1*) loci and their association to coat color phenotypes in horses (*Equus caballus*). *Mammalian Genome* **12**(6), 450-455.

Robbins, L.S., Nadeau, J.H., Johnson, K.R., Kelly, M.A., Rehfuss, L., Baak, E., Mountjoy, K.G. & Cone, R.D. (1993) Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter *MSH* receptor function. *Cell* **72**, 827-834.

Robinson, R. (1969) The breeding of spotted and black leopards. *Journal Bombay Natural History Society* **66**, 423-429.

Robinson, R. (1970) Inheritance of the black form of the leopard *Panthera pardus*. *Genetica* **41**, 190-197.

Robinson, R. (1976) Homologous genetic variation in the Felidae. Genetica 46, 1-31.

Rompler, H., Rohland, N., Fox, C.L., Willerslev, E., Kuznetsova, T., Rabeder, G., Bortranpetit, J., Schoneber, T. & Hofreiter, M. (2006) Nuclear gene indicates coat-color polymorphysm in mammoths. *Science* **313**, 62.

Rosenblum, E.B. (2006) Convergent evolution and divergent selection: lizards at the white sands ecotone. *The American Naturalist* **167**(1), 1-15.

Ruiz-Garcia, M., Payan, E., Murillo, A. & Alvarez, D. (2006) DNA microsatellite characterization of the jaguar (*Panthera onca*) in Colombia. *Genes & Genetics Systems* **81**, 115-127.

Sanderson, E.W., Redford, K.H., Chetkiewicz, C.B., Medellin, R.A., Rabinowitz, A., Robinson, J.G. & Taber, A.B. (2002) Planning to save a species: the jaguar as a model. *Conservation Biology* **16**(1), 58-72.

Sanei, A.(2007) Analysis of leopard (Panthera pardus) status in Iran. Sepehr Publication Center.

Sanei, A., Zakaria, M., Yusof, E. & Roslan, M. (2011) Estimation of leopard population size in a secondary forest within Malaysia's capital agglomeration using unsupervised classification of pugmarks. *Tropical Ecology* **52**(2), 209-217

Sangay, T. & Vernes, K. (2008) Human–wildlife conflict in the Kingdom of Bhutan: Patterns of livestock predation by large mammalian carnivores. *Biological Conservation* **141**, 1272-1282.

Santos, M.F., Pellanda, M., Tomazzoni, A.C., Hasenack, H. & Hartz, S.M. (2004) Mamíferos carnívoros e sua relação com a diversidade de habitats no Parque Nacional dos Aparados da Serra, sul do Brasil. *Iheringia Serie Zoologia* **94**, 235-245.

Schaller, G. B. & Crawshaw, P.G. (1980) Movement patterns of jaguar. Biotropica 12, 161-168.

Schneider, A., David, V.A., Johnson, W.E., O'Brien, S.J., Barsh, G.S., Maymond, M.M. & Eizirik, E. (2012) How the leopard hides its spots: *ASIP* mutations and melanism in wild cats. *PlosOne* **7**, e50386.

Schneider, A. (2013) *Investigação da base molecular e história evolutiva do melanismo em felídeos selvagens*. Pontifícia Universidade Católica do Rio Grande do Sul: Tese de Doutorado.

Searle, A. G. (1968) Comparative genetics of coat colour in mammals. London: Logos Press.

Seymour, K. L. (1989) Panthera onca. Mammalian Species 340, 01-09.

Shoender, J. & Main, M.B. (2013) Differences in stakeholder perceptions of the jaguar *Panthera onca* and puma *Puma concolor* in the tropical lowlands of Guatemala. *Fauna & Flora International* **47**(1), 109–112.

Silveira, L., Jácomo, A.T.A., Astete, S., Sollmann, R., Tôrres, N.M., Furtado, M.M. & Marinho-Filho, J. (2009) Density of the near threatened jaguar *Panthera onca* in the Caatinga of northeastern Brazil. *Fauna & Flora International Oryx* **44**, 104-109.

Silver, S.C., Ostro, L.T., Marsh, L.K., Maffei, L., Noss, A.J., Kelly, M.J., Wallace, R.B., Gomez, H. & Ayala, G. (2004) The use of camera traps for estimating jaguar *Panthera onca* abundance and density using capture/recapture analysis. *Oryx* **38**(2), 01-07.

Silvers, W.K. (1979) *The coat colors of mice: a model for mammalian gene action and interaction*. New York: Springer-Verlag.

Simon, L.M., Oliveira, G., Barreto, B.S., Nabout, J.C., Rangel, F.L.V.B. & Diniz-Filho, J.A.F. (2013) Effects of global climate changes on geographical distribution patterns of economically important plant species in Cerrado. *Revista Árvore* **37**(2), 267-274.

Soisalo, M.K. & Cavalcanti, S.M.C. (2006) Estimating the density of a jaguar population in the Brazilian Pantanal using camera-traps ans capture-recapture sampling in combination with GPS radio-telemetry. *Biological Conservation* **129**, 487-496.

Stockwell, D.R.B. & Noble, I.R. (1992) Induction of sets of rules from animal distribution data: A robust and informative method of data analysis. *Mathematics and Computers in Simulation* **33**(5-6), 385-390.

Sunquist, M. & Sunquist, F. (2002) Wild Cats Of The World. University of Chicago Press.

Swanepoel, L.H., Lindsey, P., Somers, M.J., Hoven, W. & Dalerum, F. (2013) Extent and fragmentation of suitable leopard habitat in South Africa. *Animal Conservation* **16**, 41-49.

Swank, W. G. & Teer, J. G. (1989) Status of the jaguar. Oryx 23, 14-21.

Taghdisi, M., Mohammadi, A., Nourani, E., Shokri, S., Rezaei, A. & Kaboli, M. (2013) Diet and habitat use of the endangered persian leopard (*Panthera pardus saxicolor*) in northeastern Iran. *Turkish Journal of Zoology* **37**, 1301-1320.

Takeuchi, S., Suzuki, H., Yabuuchi, M. & Takahashi, S. (1996) A possible involvement of melanocortin 1-receptor in regulating feather color pigmentation in the chicken. *Biochimica Biophysica Acta* **1308**, 164-168.

Terribile, LC., Diniz-Filho, J.A.F., & De Marco Jr., P. (2010) How many studies are necessary to compare niche-based models for geographic distributions? Inductive reasoning may fail at the end. *Brazilian Journal of Biology* **70**(2), 263-269.

Tewes, M.E. & Schmidly, D.J. 1987. *The neotropical felids: jaguar, ocelot, margay and jaguarundi*. pp. 697-711. In: Novak, M., Baker, J.A., Obbard, M.E. & Malloch, B. (Eds.). Wild furbearer management and conservation in North America. OMNR Canada.

Thapa, K., Pradhan, N.B., Barker, J., Dhakal, M., Bhandari, A.R., Gurung, G.S., Rai, D.P., Thapa, G.J., Shrestha, S. & Singh, G.R. (2013) High elevation records of a leopard cat in the Kangchenjunga Conservation Area, Nepal. *Catnews* **58**, 26-27.

Theron, E., Hawkins, K., Bermingham, E., Ricklefs, R.E. & Mundy, N.I. (2001) The molecular basis of an avian plumage polymorphism in the wild: A melanocortin-1-receptor point mutation is perfectly associated with the melanic plumage morph of the bananaquit, *Coereba flaveola*. *Current Biology* **11**(8), 550-557.

Thomé, M.T.C., Zamudio, K.R., Giovanelli, J.G.R., Haddad, C.F.B., Baldissera, F.A. & Alexandrino, J. (2010) Phylogeography of endemic toads and post-pliocene persistence of the Brazilian Atlantic forest. *Molecular Phylogenetics and Evolution* **55**, 1018-1031.

Tobler, M.W., Percastegui, S.E.C., Hartley, A.Z. & Powell, G.V.N (2013) High jaguar densities and large population sizes in the core habitat of the southwestern Amazon. *Biological Conservation* **159**, 375–381.

Tófoli, C.F., Rohe, F. & Setz, E.Z.F. (2009) Jaguarundi (*Puma yagouaroundi*) (Geoffroy, 1803) (Carnivora, Felidae) food habits in a mosaic of Atlantic rainforest and eucalypt plantations of southeastern Brazil. *Brazilian Journal of Biology* **69**(3), 871-877.

Tôrres, N.M, De Marco Jr., P., Santos, T., Silveira, L., Jácomo, A.T.A & Diniz-Filho, J.A.F. (2012) Can species distribution modelling provide estimates of population densities? A case study with jaguars in the neotropics. *Diversity and Distributions* **18**, 615-627.

Trovati, R.G., Campos, C.B. & Brito, B.A. (2008) Nota sobre convergência e divergência alimentar de canídeos e felídeos (Mammalia: Carnivora) simpátricos no Cerrado brasileiro. *Neotropical Biology and Conservation* **3**, 95-100.

Tseng, Z.J., Wang, X., Slater, G.J., Takeuchi, G.T.; Li, Q. & Xie, G. (2013) Himalayan fossils of the oldest known pantherine established ancient origin of big cats. *Proceedings of the Royal Society: Biological Sciences* **281**, 20132686.

Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E. & Steininger, M. (2003) Remote sensing for biodiversity science and conservation. Trends in Ecology and Evolution **18**, 306-314.

Ulmer, F.A. (1941) Melanism in the Felidae, with special reference to the genus *Lynx*. *Journal of Mammalogy* **11**, 185-188.

Uphyrkina, O., Johnson, W.E., Quigley, H., Miquelle, D.G., Marker, L., Bush, M. & O'Brien, S.J. (2001) Pylogenetics, genome diversity and origin of modern leopard, *Panthera pardus*. *Molecular Ecology* **10**, 2617-2633.

Vage, D., Lu, D., Klungland, H., Lien, S., Adalsteinsson, S. & Cone, R.D. (1997) A nonepistatic interaction of agouti and extension in the fox, *Vulpes vulpes*. *Nature Genetics* **15**, 311-315.

Vage, D.I., Klungland, H., Lu, D. & Cone, R.D. (1999) Molecular and pharmacological characterization of dominant black coat color in sheep. *Mammalogy Genome* **10**, 39-43.

Valdez, F.P. (2010) *Genética de populações de onça-pintada* (Panthera onca) *em biomas brasileiros*. Pontifícia Universidade Católica do Rio Grande do Sul: Dissertação de Mestrado.

Vilchis, O.M., Sanchez, O., Reyes, U.A., Suarez, P. & Rios, V. (2008) The jaguar (*Panthera onca*) in the state of Mexico. *The Southwestern Naturalist* **53**(4), 533-537.
Wallace, A.R. (1877) The colours of animals and plants. *Macmillan's Magazine* **36**, 384-408 e 464-471.

Wallace, R.B., Gomez, H., Ayala, G. & Espinoza, F. (2003) Camera trapping for jaguar (*Panthera onca*) in the Tuichi Valley, Bolivia. *Journal of Neotropical Mammalogy* **10**(1), 133-139.

Waltari, E., Hijmans, R.J., Peterson, A.T., Nyari, A.S., Perkins, S.L. & Guralnick, R.P. (2007) Locating pleistocene refugia: Comparing phylogeographic and ecological niche model predictions. PlosOne **7**, e563.

Wang, S. & Macdonald, D.W. (2009I) The use of camera traps for estimating tiger and leopard populations in the high altitude mountains of Bhutan. Biological Conservation **142**, 606-613.

Wang, S. & Macdonald, D.W. (2009II) Feeding habits and niche partitioning in a predator guild composed of tigers, leopards and dholes in a temperate ecosystem in central Bhutan. Journal of Zoology **277**, 275-283.

Warren, R.J., McAfee, P. & Bahn, V. (2011) Ecological differentiation among key plant mutualists from a cryptic ant guild. Insectes Sociaux **58**, 505-512.

Waseem, M. (2010) Human-leopard conflict assessment in and around Pir Lasora National Park Dist. Kotli, AJ&K. World Wild Fund: Report.

Weber, W. & Rabinowitz, A. (1996) A global perspective on large carnivore conservation. *Conservation Biology* **10**(4), 1046-1054.

Whittaker, R.J., Araujo, M.B., Jepson, P., Ladle, R.J., Watson, J.E.M. & Willis, K.J. (2005) Conservation biogeography: Assessment and prospect. *Diversity and Distributions* **11**, 3-23.

Wiens, J.J. & Donoghue, M.J. (2004) Historical biogeography, ecology, and species richness. *Trends in Ecology and Evolution* **19**, 639–644.

Wiens, J.J., Ackerly, D.D., Allen, A.P., Anacker, B.L., Buckley, L.B., Cornell, H.V., Damschen, E.I., Davies, T.J., Grytnes, J.A., Harrison, S.P., Hawkins, B.A., Holt, R.D., McCain, C.M. & Stephens, P.R. (2010) Niche conservatism as an emerging principle in ecology and conservation biology. *Ecology Letters* **13**, 1310-1324.

Wiens, J.J. (2011) The niche, biogeography and species interactions. *Proceedings of the Royal Society: Biological Sciences* **366**, 2336-2350.

Wilson, D.E. & Mittermeier, R.A. (2009) *Handbook of the mammals of the world: Volume 1*. Lynx Edictions.

Wisz, M.S., Pottier, J., Kissling, W.D., Pellissier, L., Lenoir, J., Damgaard, C.F., Dormann, C.F., Forchhammer, M.C., Grytnes, J.A., Guisan, A., Heikkinen, R.K., Hoye, T.T., Kuhn, I., Luoto, M., Maiorano, L., Schmidt, N.M., Termansen, M., Timmermann, A., Wardle, D.A., Aastrup, P. & Svenning, J.C. (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: Implications for species distribution modelling. *Biological Reviews* **88**, 15-30.

Wozencraft, W. C. (1993) Mammal species of the world: a taxonomic and geographic reference. pp. 288-300. In: Wilson, D. E. & Reeder, D. M. (Eds.). Smithsonian Institution Press.

Zeilhofer, P., Cezar, A., Tôrres, N.M., Jacomo, A.T. & Silveira, L. (2014) Jaguar *Panthera onca* habitat modeling in landscapes facing high land-use transformation pressure - findings from Mato Grosso, Brazil. *Biotropica* **46**(1), 98-105.

Zeller, K.A., Nijhawan, S., Perez, R, Potosme, S.H. & Hines, J.E. (2011) Integrating occupancy modeling and interview data for corridor identification: A case study for jaguars in Nicaragua. *Biological Conservation* **144**, 892-901.

APÊNDICES:

APÊNDICE 1: TABELA SUPLEMENTAR CAPÍTULO 2 Registros *Panthera onca* APÊNDICE 2: TABELA SUPLEMENTAR CAPÍTULO 3 Registros *Puma yagouaroundi* APÊNDICE 3: TABELA SUPLEMENTAR CAPÍTULO 4 Registros *Panthera pardus*

APÊNDICE 1: TABELA SUPLEMENTAR CAPÍTULO 2

Registros Panthera onca

Supplementary table 1 - Location records for Panthera onca.	
	Dec WC

6l	To a Pter / Community	Deg-W	/GS84	D ¹	E la	61- t	¥	Toleron de Como
Samples	Locality / Country	Lat	Long	Biome	Ecoregion	Sample type	Year	Information Source
Melanistic 01	Amanã, Amazonas, Brazil	-2,3309	-64,7553	Tropical and Subtropical Moist Broadleaf Forest	Japurá-Solimoes-Negro moist forests	Photograph	2012	Instituto Mamirauá Amazonas
Melanistic 02	Barreirinha de Baixo, Amazonas, Brazil	-2,1002	-66,4628	Tropical and Subtropical Moist Broadleaf Forest	Solimões-Japurá moist forests	Photograph	no data	Instituto Mamirauá Amazonas
Melanistic 03	South Manaus, Amazonas, Brazil	-3,4576	-59,6558	Tropical and Subtropical Moist Broadleaf Forest	Purus-Madeira moist forests	Photograph	2000	National Museum of Natural History USA
Melanistic 04	South Manaus, Amazonas, Brazil	-3,6729	-60,0753	Tropical and Subtropical Moist Broadleaf Forest	Purus-Madeira moist forests	Faecal DNA	2009	Instituto Mamirauá Amazonas
Melanistic 05	Uarina, Amazonas River, Brazil	-3,0520	-64,8400	Tropical and Subtropical Moist Broadleaf Forest	Purus varzeá	Photograph	2012	Instituto Mamirauá Amazonas
Melanistic 06	Uarina, Amazonas River, Brazil	-3,0230	-64,8570	Tropical and Subtropical Moist Broadleaf Forest	Purus varzeá	Photograph	2012	Instituto Mamirauá Amazonas
Melanistic 07	Uarina, Amazonas River, Brazil	-3,0290	-64,8700	Tropical and Subtropical Moist Broadleaf Forest	Purus varzeá	Capture	2012	Instituto Mamirauá Amazonas
Melanistic 08	Calçoene, Amapá, Brazil	2,6576	-51,3178	Tropical and Subtropical Moist Broadleaf Forest	Guianan moist forests	Report	no data	MPB Amapá Brazil
Melanistic 09	Calçoene, Amapá, Brazil	2,5853	-51,3416	Tropical and Subtropical Moist Broadleaf Forest	Guianan moist forests	Report	no data	MPB Amapá Brazil
Melanistic 10	Grande Sertão Veredas National Park, Bahia, Brazil	-14,9294	-45,7444	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2010	Instituto Biotrópicos
Melanistic 11	Santo Sé, Bahia, Brazil	-9,9042	-40,9596	Desert and Xeric Shrublands	Caatinga	Photograph	2011	CENAP ICMBio
Melanistic 12	Aruanã, Goiás, Brazil	-14,2400	-50,7751	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2006	Jaguar Conservation Fund
Melanistic 13	Araguaia River, Goiás, Brazil	-12,5554	-50,6030	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	1914	MUZUSP Brazil
Melanistic 14	Planaltina de Goiás, Brazil	-15,4606	-47,7707	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Report	2013	CENAP ICMBio
Melanistic 15	Reserva Extrativista Lago do Cedro, Goiás, Brazil	-14,7378	-51,0169	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Report	2012	ICMBio Brazil
Melanistic 16	Grande Sertão Veredas National Park, Minas Gerais, Brazil	-14,9056	-45,7404	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2012	Instituto Biotrópicos
Melanistic 17	Grande Sertão Veredas National Park, Minas Gerais, Brazil	-14,9741	-46,0273	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2010	Instituto Biotrópicos
Melanistic 18	Grande Sertão Veredas National Park, Minas Gerais, Brazil	-15,2730	-45,8167	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Report	2010	Instituto Biotrópicos
Melanistic 19	Grande Sertão Veredas National Park, Minas Gerais, Brazil	-15,2608	-45,8156	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Report	2010	Instituto Biotrópicos
Melanistic 20	Grande Sertão Veredas National Park, Minas Gerais, Brazil	-14,9861	-45,7900	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Report	2010	Instituto Biotrópicos
Melanistic 21	Grande Sertão Veredas National Park, Minas Gerais, Brazil	-14,9753	-45,8067	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Report	2010	Instituto Biotrópicos
Melanistic 22	Rio Doce State Park, Minas Gerais, Brazil	-19.6031	-42.6046	Tropical and Subtropical Moist Broadleaf Forest	Bahia coastal forests	Photograph	1999	UFMG Brazil
Melanistic 23	Fazenda Ariranha, Bataguassu, Mato Grosso do Sul, Brazil	-21.9861	-52.3772	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Photograph	2006	CENAP ICMBio
Melanistic 24	Ivinhema, Mato Grosso do Sul, Brazil	-22.8928	-53,7335	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Canture	2002	Instituto de Pesquisas Ecológicas
Melanistic 25	Nova Andradina. Mato Grosso do Sul. Brazil	-21.8890	-53.4247	Tropical and Subtropical Grasslands. Savannas and Shrublands	Cerrado	Photograph	2005	IBAMA
Melanistic 26	Porto Primavera Mato Grosso do Sul, Brazil	-22 4354	-53 3634	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Photograph	1992	CENAP ICMBio
Melanistic 27	Porto Primavera, Mato Grosso do Sul, Brazil	-22,7808	-53,5068	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Photograph	1992	CENAP ICMBio
Melanistic 28	Porto Primavera, Mato Grosso do Sul. Brazil	-22.9678	-53,7775	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Photograph	1994	CENAP ICMBio
Melanistic 29	Porto Primavera Fazenda Guatemala Anaurilândia Mato Grosso do Sul Brazil	-22 3941	-52 9452	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	1994	CENAP ICMBio
Melanistic 30	Taquarussu, Ivinhema, Mato Grosso do Sul, Brazil	-22,7449	-53.4828	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	2005	Instituto de Pesquisas Ecológicas
Melanistic 31	Alta Floresta, Mato Grosso, Brazil	-9.7995	-56.0909	Tropical and Subtropical Moist Broadleaf Forest	Madeira-Tanaiós moist forests	Capture	2012	CENAP ICMBio
Melanistic 32	Diauarum, São Felix do Araguaia, Mato Grosso, Brazil	-11.4984	-50,7689	Tropical and Subtropical Grasslands. Savannas and Shrublands	Cerrado	Photograph	2009	Jaguar Conservation Fund
Melanistic 33	Caraiás. Pará. Brazil	-5.9867	-50.0275	Tropical and Subtropical Moist Broadleaf Forest	Xingu-Tocantins-Araguaia moist forests	Photograph	1992	CENAP ICMBio
Melanistic 34	Sacará-Taquera National Forest, Porto Trombetas, Pará, Brazil	-1.5571	-56.4643	Tropical and Subtropical Moist Broadleaf Forest	Uatuma-Trombetas moist forests	Photograph	no data	Jaguar Conservation Fund
Melanistic 35	Juruti, Ramal do Pacoval, Pará, Brazil	-2.5282	-56,2265	Tropical and Subtropical Moist Broadleaf Forest	Madeira-Tapaiós moist forests	Photograph	no data	UFPA Brazil
Melanistic 36	Cantão National Park, Pará, Brazil	-9.6690	-50,1626	Tropical and Subtropical Grasslands. Savannas and Shrublands	Cerrado	Report	2006	Jaguar Conservation Fund
Melanistic 37	Cantão National Park, Pará, Brazil	-9.5724	-50.2675	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Report	2005	Jaguar Conservation Fund
Melanistic 38	Santana do Araguaia Pará Brazil	-9 3347	-50 3698	Tropical and Subtropical Moist Broadleaf Forest	Xingu-Tocantins-Araguaia moist forests	Photograph	no data	Pedro Martinelli
Melanistic 39	Serra da Canivara National Park Piauí Brazil	-8 7586	-42 5120	Desert and Xeric Shruhlands	Caatinga	Photograph	2007	UNB Brazil
Melanistic 40	Serra da Capivara National Park, Piauí, Brazil	-8.7736	-42.5245	Desert and Xeric Shrublands	Caatinga	Photograph	2007	UNB Brazil
Melanistic 41	Serra da Canivara National Park. Piauí, Brazil	-8.6941	-42.5377	Desert and Xeric Shrublands	Caatinga	Photograph	2007	UNB Brazil
Melanistic 42	Serra da Canivara National Park. Piauí, Brazil	-8.6058	-42.6074	Desert and Xeric Shrublands	Caatinga	Photograph	2007	UNB Brazil
Melanistic 43	Serra da Capivara National Park, Piauí, Brazil	-8 8590	-42 6301	Desert and Xeric Shrublands	Caatinga	Photograph	2007	Jaguar Conservation Fund
Melanistic 44	Serra da Capivara National Park, Piauí, Brazil	-8 5804	-42 7000	Desert and Xeric Shrublands	Caatinga	Photograph	2010	Jaguar Conservation Fund
Melanistic 45	Serra da Capivara National Park, Piauí, Brazil	-8 7825	-42 6190	Desert and Xeric Shrublands	Caatinga	Photograph	2010	Jaguar Conservation Fund
Melanistic 46	Serra da Capivara National Park, Piauí, Brazil	-8 7121	-42 6117	Desert and Xeric Shrublands	Caatinga	Photograph	2009	Jaguar Conservation Fund
Melanistic 40	Serra da Capivara National Park, Piauí, Brazil	-8 6378	-42,0117	Desert and Xeric Shrublands	Caatinga	Report	2009	Jaguar Conservation Fund
Melanistic 48	Serra da Capivara National Park, Piauí, Brazil	-8,7755	-42,7124	Desert and Xeric Shrublands	Caatinga	Report	2007	Jaguar Conservation Fund
Melanistic 40	Alto Paraná Paraná Brazil	-22 9562	-52 8840	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	1000	Instituto de Pesquisas Ecológicas
Melanistic 50	Palmeiras Guaiará Mirim Rondônia Brazil	-10.6354	-65 4040	Tropical and Subtropical Moist Broadleaf Forest	Madeira-Tanaiós moist forests	Faecal DNA	2007	Parque Ambiental Chico Mendes
Molanistic 50	Ilha Soltaira São Paulo Brazil	20,4501	51 2745	Tropical and Subtropical Moist Broadlaaf Foract	Alto Parené Atlantic forests	Faceal DNA	2007	Gojâria Zoo
Melanistic 57	Maraba Paulieta São Paulo Brazil	-20,4091	-51,5745	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic foreste	Capture	1008	Rio de Janeiro Zoo
Melanistic 53	Morro do Diabo State Park São Paulo Brazil	-22,0072	-52,1171	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	1998	Instituto de Pesquises Ecológices
Melanistic 54	Morro do Diabo State Park, São Paulo, Brazil	-22, 4979	-52 1679	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic foreste	Capture	2003	Instituto de Pesquisas Ecológicas
Melanistic 55	Morro do Diabo State Park, São Paulo, Brazil	-22,0278	-52,1079	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic foreste	Photograph	2005 no data	Instituto de Pesquisas Ecológicas
Melanistic 55	Morro do Diabo State Park, São Paulo, Brazil	-22,5731	-52,5421	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic foreste	Capture	2003	Instituto de Pesquisas Ecológicas
Molonistic 57	Fie Palam Cueve del Tigra Nagro, Vugatan, Paliga	-22,0520	-52,2005	Tropical and Subtropical Moist Broadloof Eccent	Patén Varaaniz majat farasta	Dhotogran	1070	Mourr 1004
wielanistic 57	EK Datati Cueva del Tigle Negro, 1 ucatati, DellZe	17,7454	-00,9941	riopical and Subtropical Motst Broadlear Porest	reten-veracruz moist torests	rnotograph	1970	Meyer, 1994

Samplas	Locality / Country	Deg-V	VGS84	Piomo	Econogian	Sample trees	Voor	Information Source
Samples	Locanty / Country	Lat	Long	вюте	Ecoregion	Sample type	rear	information Source
Melanistic 58	Rancho Grande River, Belize	16,7900	-88,7200	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	no data	National Museum of Natural History USA
Melanistic 59	Reserva Biológica El Amargal, Nuquí, Departamento de Chocó, Colombia	5,6423	-77,1498	Tropical and Subtropical Moist Broadleaf Forest	South American Pacific mangroves	Report	2011	Panthera
Melanistic 60	Rio Calderón, Amazonas, Colombia	-4,0058	-69,9172	Tropical and Subtropical Moist Broadleaf Forest	Solimões-Japurá moist forests	Photograph	2007	Panthera
Melanistic 61	Tiputini Biological Station, Equador	0,0439	-78,6811	Tropical and Subtropical Moist Broadleaf Forest	Northwestern Andean montane forests	Photograph	no data	National Museum of Natural History USA
Melanistic 62	El Fuerte River, Sinaloa, Mexico	27,0077	-108,0114	Tropical and Subtropical Dry Broadleaf Forest	Sinaloan dry forests	Photograph	2007	Dinets & Polechla 2007
Melanistic 63	Napo Reserve, Peru	-1,5908	-75,3493	Tropical and Subtropical Moist Broadleaf Forest	Napo moist forests	Photograph	2008	National Museum of Natural History USA
Melanistic 64	Tamshiyacu, Peru	-4.0313	-73.0035	Tropical and Subtropical Moist Broadleaf Forest	Southwest Amazon moist forests	Photograph	2002	Panthera
Melanistic 65	Beni River, Bolivia	-10.4024	-65,5274	Tropical and Subtropical Moist Broadleaf Forest	Southwest Amazon moist forests	Photograph	1922	National Museum of Natural History USA
Melanistic 66	Iquitos. Maynas	-4.0606	-72.8442	Tropical and Subtropical Moist Broadleaf Forest	Southwest Amazon moist forests	Photograph	1926	American Museum of Natural History USA
Melanistic 67	Iquitos. Maynas	-3.8283	-72.4903	Tropical and Subtropical Moist Broadleaf Forest	Southwest Amazon moist forests	Photograph	1930	American Museum of Natural History USA
Melanistic 68	Iquitos Maynas	-3 5756	-72 9091	Tropical and Subtropical Moist Broadleaf Forest	Southwest Amazon moist forests	Photograph	1930	American Museum of Natural History USA
Melanistic 69	Purus River Brazil	-7 7928	-66 1362	Tropical and Subtropical Moist Broadleaf Forest	Purus varzeá	Photograph	2013	British Museum
on-melanistic 01	Assis Brasil Acro Brazil	-10.9341	-69 5183	Tropical and Subtropical Moist Broadleaf Forest	Southwest Amazon moist forests	Faecal DNA	2013	Parque Ambiental Chico Mendes
on-melanistic 07	Cruzeiro do Sul Acre Brazil	-7 6673	-72 6627	Tropical and Subtropical Moist Broadleaf Forest	Southwest Amazon moist forests	Faecal DNA	2007	Campinas Zoo
on malanistic 02	Eniió Acro Brazil	8 2124	70 3570	Tropical and Subtropical Moist Broadlaaf Forest	Southwest Amazon moist forests	Faceal DNA	2007	Paraua Ambiantal Chico Mondos
on-melanistic 0.0	Amanã Amazonas Brazil	-2 3300	-64 7552	Tropical and Subtropical Moist Broadleaf Forest	Janurá-Solimos-Negro moist foreste	Photograph	2007	Instituto Mamirauá Amazonas
on-metanistic 04	Codafás Amazonas Prazil	-2,3309	-0+,/333	Tropical and Subtropical Moist Broadlast Forest	Japuna-Sommoes-Negro moist forests	Capture	2012	CENAD ICMDio
on-melallistic 0.5	Couaros, Amazonas, Drazil	-2,2092	-30,6277	Transian and Subtransian Maint Drandland Former	Datuma- frombetas moist forests	Dhotoor	2008	CEINAF ICIVIDIO
on-metanistic 00	Maraua, Amazonas, Brazil	-2,8384	-03,0010	Transial and Subtransial Maist Broadleaf Forest	r urus varzea	Filotograph	2012	Instituto Mainifaua Amazonas
on-meianistic 07	Manaus, Amazonas, Brazil	-3,0604	-39,8578	Tropical and Subtropical Moist Broadleat Forest	Uatuma- irombetas moist forests	Capture	1995	CENAP ICMBio
on-melanistic 08	Manaus, Amazonas, Brazil	-2,86/0	-59,5234	Tropical and Subtropical Moist Broadleat Forest	Uatuma-Irombetas moist forests	Faecal DNA	2007	Curitiba Zoo
on-melanistic 09	Manaus, Amazonas, Brazil	-2,7681	-59,3404	Tropical and Subtropical Moist Broadleat Forest	Uatuma-Irombetas moist forests	Faecal DNA	2007	Curitiba Zoo
on-melanistic 10	Manaus, Amazonas, Brazil	-3,2427	-59,8380	Tropical and Subtropical Moist Broadleaf Forest	Japurá-Solimoes-Negro moist forests	Faecal DNA	2007	Limeira Zoo
on-melanistic 11	Manicoré, Amazonas, Brazil	-5,8259	-61,2851	Tropical and Subtropical Moist Broadleaf Forest	Madeira-Tapajós moist forests	Capture	2006	CENAP ICMB10
on-melanistic 12	Miriti, Amazonas, Brazil	-6,6598	-62,3131	Tropical and Subtropical Moist Broadleaf Forest	Madeira-Tapajós moist forests	Report	1970	Panthera
on-melanistic 13	Presidente Figueiredo, Amazonas, Brazil	-1,9847	-60,1656	Tropical and Subtropical Moist Broadleaf Forest	Uatuma-Trombetas moist forests	Capture	2006	CENAP ICMBio
on-melanistic 14	Reserva Biologica Auatí-Paraná, Murinzal, Amazonas, Brazil	-2,0335	-66,2569	Tropical and Subtropical Moist Broadleaf Forest	Purus varzeá	Photograph	no data	Instituto Mamirauá Amazonas
on-melanistic 15	Reserva Biológica do Uatumã, Amazonas, Brazil	-0,5880	-59,7264	Tropical and Subtropical Moist Broadleaf Forest	Uatuma-Trombetas moist forests	Photograph	no data	Jaguar Conservation Fund
on-melanistic 16	Reserva de Desenvolvimento Sustentavel de Amanã, Amazonas, Brazil	-2,9482	-64,6556	Tropical and Subtropical Moist Broadleaf Forest	Purus varzeá	Photograph	2012	Instituto Mamirauá Amazonas
on-melanistic 17	APA do Curiaú, Amapá, Brazil	0,1894	-51,0773	Tropical and Subtropical Moist Broadleaf Forest	Guianan savanna	Report	no data	MPB Amapá Brazil
on-melanistic 18	Floresta Estadual do Amapá, Brazil	3,4596	-51,8600	Tropical and Subtropical Moist Broadleaf Forest	Guianan moist forests	Report	no data	MPB Amapá Brazil
on-melanistic 19	Cabo Orange National Park, Amapá, Brazil	3,6518	-51,2203	Tropical and Subtropical Moist Broadleaf Forest	Marajó varzeá	Report	no data	MPB Amapá Brazil
on-melanistic 20	Cabo Orange National Park, Amapá, Brazil	3,2428	-51,2468	Tropical and Subtropical Moist Broadleaf Forest	Uatuma-Trombetas moist forests	Photograph	2010	Kwata Association
on-melanistic 21	Cabo Orange National Park, Amapá, Brazil	3,2428	-51,2468	Tropical and Subtropical Moist Broadleaf Forest	Uatuma-Trombetas moist forests	Photograph	2010	Kwata Association
on-melanistic 22	Cabo Orange National Park, Amapá, Brazil	3,2428	-51,2468	Tropical and Subtropical Moist Broadleaf Forest	Uatuma-Trombetas moist forests	Photograph	2010	Kwata Association
on-melanistic 23	Reserva Biologica Lago Piratuba, Amapá, Brazil	1,5712	-50,2094	Tropical and Subtropical Moist Broadleaf Forest	Marajó varzeá	Report	no data	MPB Amapá Brazil
on-melanistic 24	Reserva Extrativista do Cajari, Amapá, Brazil	-0,6865	-51,9568	Tropical and Subtropical Moist Broadleaf Forest	Uatuma-Trombetas moist forests	Report	no data	MPB Amapá Brazil
on-melanistic 25	Rio Araguari, Amapá, Brazil	0,8459	-51,3217	Tropical and Subtropical Moist Broadleaf Forest	Uatuma-Trombetas moist forests	Photograph	1940	Emilio Gueldi Museum
on-melanistic 26	Caatinga da Bahia, Brazil	-9.7625	-40.7718	Desert and Xeric Shrublands	Caatinga	Photograph	no data	Morato et al 2007
on-melanistic 27	Boqueirão da Onca National Park, Bahia, Brazil	-9.8466	-41.1734	Desert and Xeric Shrublands	Caatinga	Photograph	no data	CENAP ICMBio
on-melanistic 28	Aruanã. Goiás. Brazil	-14.6955	-51.0066	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Report	2008	Jaguar Conservation Fund
on-melanistic 29	Aruanã, Gojás, Brazil	-14.3310	-50.8188	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	no data	Jaguar Conservation Fund
on-melanistic 30	Emas National Park Goiás Brazil	-17 9199	-52,8323	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Report	2002	Jaguar Conservation Fund
on-melanistic 31	Emas National Park Goiás Brazil	-18 3352	-52 8256	Tropical and Subtropical Grasslands, Savannas and Shiublands	Cerrado	Report	2010	Jaguar Conservation Fund
on-melanistic 22	Emas National Park Coixis, Diazil	-10,0000	-52,8250	Tropical and Subtropical Grasslands, Savannas and Shrublands	Corrado	Papart	2010	Jaguar Conservation Fulld
on-melanistic 32	Emas National Park, Ootas, Diazii	-10,2729	-32,9094	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Report Remont	2010	Jaguar Conservation Fund
on-melallistic 55	Emas National Park, Oolas, Diazli	-10,2034	-32,9610	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cemeda	Contract	2010	Jaguar Conservation Fund
on-melanistic 34	Emas National Park, Golas, Brazil	-18,0646	-52,9881	Tropical and Subtropical Grassiands, Savannas and Shrublands	Cerrado	Capture	2000	CENAP ICMBIO
on-melanistic 35	Emas National Park, Gotas, Brazil	-18,1000	-52,8184	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2009 ma data	Jaguar Conservation Fund
on-meianistic 36	Emas National Park, Gotas, Brazil	-18,1989	-53,0222	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Pnotograph	no data	Jaguar Conservation Fund
on-melanistic 37	Emas National Park, Goiás, Brazil	-18,2267	-52,/877	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	no data	Jaguar Conservation Fund
on-melanistic 38	Emas National Park, Goiás, Brazil	-18,2620	-52,8252	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	no data	Jaguar Conservation Fund
on-melanistic 39	Emas National Park, Goiás, Brazil	-17,9077	-52,9595	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	no data	Jaguar Conservation Fund
on-melanistic 40	Emas National Park, Goiás, Brazil	-17,8949	-52,8988	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	no data	Jaguar Conservation Fund
on-melanistic 41	Emas National Park, Goiás, Brazil	-17,9632	-52,8569	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	no data	Jaguar Conservation Fund
on-melanistic 42	Emas National Park, Goiás, Brazil	-17,9792	-52,8904	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	no data	Jaguar Conservation Fund
on-melanistic 43	Emas National Park, Goiás, Brazil	-17,9994	-52,9197	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	no data	Jaguar Conservation Fund
on-melanistic 44	Emas National Park, Goiás, Brazil	-18,2857	-52,9012	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2008	Furtado et al 2008
on-melanistic 45	Emas National Park, Goiás, Brazil	-18,3029	-52,7852	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	no data	Jaguar Conservation Fund
on-melanistic 46	Emas National Park, Goiás, Brazil	-18,1296	-53,0660	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	no data	Jaguar Conservation Fund
on-melanistic 47	Emas National Park. Goiás. Brazil	-17.9770	-52,9459	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	no data	Jaguar Conservation Fund
						0 . p.		

61	La sellar / Constant	Deg-W	/GS84	D!	E	6l- t	V	L.C. C.
Samples	Locality / Country	Lat	Long	вюте	Ecoregion	Sample type	rear	information Source
Non-melanistic 49	São Miguel do Araguaia, Goiás, Brazil	-13,4297	-50,5468	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Report	2010	Jaguar Conservation Fund
Non-melanistic 50	São Miguel do Araguaia, Goiás, Brazil	-13,4220	-50,5518	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Report	2010	Jaguar Conservation Fund
Non-melanistic 51	Fazenda Lagoinha, Santa Luzia, Maranhão, Brazil	-3,9511	-45,8447	Tropical and Subtropical Moist Broadleaf Forest	Maranhão Babaçu forests	Photograph	1993	Emilio Gueldi Museum
Non-melanistic 52	Alto Rio Doce, Minas Gerais, Brazil	-21,0747	-43,4063	Tropical and Subtropical Moist Broadleaf Forest	Bahia interior forests	Photograph	2003	National Museum of Natural History USA
Non-melanistic 53	São Bento, Minas Gerais, Brazil	-21,7523	-45,2338	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	2008	Instituto Pro-Carnívoros
Non-melanistic 54	São Bento, Minas Gerais, Brazil	-21,7521	-45,2606	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	2008	Instituto Pro-Carnívoros
Non-melanistic 55	São Bento, Minas Gerais, Brazil	-21,7610	-45,2622	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	2008	Instituto Pro-Carnívoros
Non-melanistic 56	Rio Doce State Park, Minas Gerais, Brazil	-19,7532	-42,5640	Tropical and Subtropical Moist Broadleaf Forest	Bahia interior forests	Photograph	2006	UFMG Brazil
Non-melanistic 57	Rio Doce State Park, Minas Gerais, Brazil	-19,7255	-42,5264	Tropical and Subtropical Moist Broadleaf Forest	Bahia interior forests	Photograph	2006	UFMG Brazil
Non-melanistic 58	Rio Doce State Park, Minas Gerais, Brazil	-19,6742	-42,5389	Tropical and Subtropical Moist Broadleaf Forest	Bahia interior forests	Photograph	2006	UFMG Brazil
Non-melanistic 59	Rio Doce State Park, Minas Gerais, Brazil	-19,6923	-42,5771	Tropical and Subtropical Moist Broadleaf Forest	Bahia interior forests	Photograph	2006	UFMG Brazil
Non-melanistic 60	Serra do Cabral State Park, Minas Gerais, Brazil	-17,5786	-44,2610	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	no data	Instituto Biotrópicos
Non-melanistic 61	Grande Sertão Veredas National Park, Minas Gerais, Brazil	-14,9408	-45,7548	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Report	2012	Instituto Biotrópicos
Non-melanistic 62	Grande Sertão Veredas National Park, Minas Gerais, Brazil	-15,1683	-45,7128	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2011	Instituto Biotrópicos
Non-melanistic 63	Grande Sertão Veredas National Park, Minas Gerais, Brazil	-14,9403	-45,8065	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Report	2010	Instituto Biotrópicos
Non-melanistic 64	Grande Sertão Veredas National Park, Minas Gerais, Brazil	-14,9409	-45,7550	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2011	Instituto Biotrópicos
Non-melanistic 65	Grande Sertão Veredas National Park, Minas Gerais, Brazil	-15,2611	-45,7538	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Report	2010	Instituto Biotrópicos
Non-melanistic 66	Grande Sertão Veredas National Park, Minas Gerais, Brazil	-15,3132	-45,7682	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2010	Instituto Biotrópicos
Non-melanistic 67	Veredas do Peruaçu National Park, Minas Gerais, Brazil	-14,9593	-44,6702	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2010	Instituto Biotrópicos
Non-melanistic 68	Pouso Alegre, Minas Gerais, Brazil	-22,1437	-45,8317	Tropical and Subtropical Moist Broadleaf Forest	Alto Parana Atlantic forests	Photograph	2006	CENAP ICMBio
Non-melanistic 69	Rio Doce State Park Boundaries, Minas Gerais, Brazil	-19,6573	-42,6213	Tropical and Subtropical Moist Broadleaf Forest	Bahia interior forests	Photograph	1981	UFMG Brazil
Non-melanistic 70	Anaurilandia, Mato Grosso do Sul, Brazil	-21,8027	-52,9789	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Faecal DNA	1999	Instituto de Pesquisas Ecologicas
Non-melanistic /1	Aquidauana, Mato Grosso do Sul, Brazil	-20,2908	-55,6278	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2008	Silveira et al 2008
Non-melanistic 72	Aquidauana, Mato Grosso do Sul, Brazil	-20,2908	-55,6278	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2008	Silveira et al 2008
Non-melanistic 73	Aquidauana, Mato Grosso do Sui, Brazil	-20,2908	-55,6278	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2008	Furtado & Filoni 2008
Non-melanistic 74	Bodoquena, Mato Grosso do Sul, Brazil	-20,1012	-56,7952	Tropical and Subtropical Grassiands, Savannas and Snrublands	Cerrado	Photograph	1960	MUZUSP Brazil
Non-melanistic 75	General Control Mate Crosses de Sul Brazil	-19,1736	-37,3491	Tropical and Subtropical Div Bloadieal Folest	Chiquitano di y fofesis	Capture Encort DNA	2000	Policia Ambientai Mis
Non-melanistic 76	Campo Grande, Mato Grosso do Sul, Brazil	-20,3703	=34,7372	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Faecal DNA	no data	Pomerode Zoo
Non-melanistic 77	Campo Grande, Mato Grosso do Sul, Brazil	-20,4205	-54,7108	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Faccal DNA	no data	Pomerode Zoo
Non-melanistic 78	Corumbá Mato Grosso do Sul, Brazil	-20,3481	-54,5458	Tropical and Subtropical Orassiands, Savannas and Sindofands	Chiquitano dry forests	Photograph	1002	CENADICMDio
Non-melanistic 79	Corumbá, Mato Grosso do Sul, Brazil	-19,0000	-57,6621	Tropical and Subtropical Dry Broadlast Forest	Chiquitano dry forests	Captura	2006	Embrana Brazil
Non-melanistic 81	Corumbá, Mato Grosso do Sul, Brazil	-18 9969	-57 6621	Tropical and Subtropical Dry Broadleaf Forest	Chiquitano dry forests	Capture	2000	Embrana Brazil
Non-melanistic 82	Corumbá, Mato Grosso do Sul, Brazil	-18 5881	-57 5362	Tropical and Subtropical Dry Broadleaf Forest	Chiquitano dry forests	Photograph	2006	Embrana Brazil
Non-melanistic 83	Corumbá, Mato Grosso do Sul, Brazil	-18,5881	-57,5362	Tropical and Subtropical Dry Broadleaf Forest	Chiquitano dry forests	Photograph	2006	Embrapa Brazil
Non-melanistic 84	Corumbá Mato Grosso do Sul, Brazil	-18,9969	-57.6364	Tropical and Subtropical Dry Broadleaf Forest	Chiquitano dry forests	Capture	2006	Embrana Brazil
Non-melanistic 85	Fazenda Ariranha, Porto Primavera, Mato Grosso do Sul. Brazil	-21.9882	-52.3934	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	1993	Eizirik et al 2003
Non-melanistic 86	Fazenda Barranco Alto, Pantanal do Rio Negro, Mato Grosso do Sul, Brazil	-19,5356	-56,1354	Flooded Grasslands and Savannas	Pantanal	Photograph	2008	Jaguar Conservation Fund
Non-melanistic 87	Fazenda Caiman, Miranda, Mato Grosso do Sul, Brazil	-19,9124	-56,3909	Flooded Grasslands and Savannas	Pantanal	Photograph	2012	CENAP ICMBio
Non-melanistic 88	Fazenda Casa de Pedra, Anaurilândia, Mato Grosso do Sul, Brazil	-21.8929	-52,6613	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Faecal DNA	2004	Instituto Pro-Carnívoros
Non-melanistic 89	Fazenda Casa de Pedra, Anaurilândia, Mato Grosso do Sul, Brazil	-21,8662	-52,6099	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Faecal DNA	2004	Instituto Pro-Carnívoros
Non-melanistic 90	Fazenda Morro das Pedras, Nhacolandia, Mato Grosso do Sul, Brazil	-19,3083	-55,7628	Flooded Grasslands and Savannas	Pantanal	Photograph	2011	Instituto de Pesquisas Ecológicas
Non-melanistic 91	Fazenda San Francisco, Mato Grosso do Sul, Brazil	-18,6641	-56,3946	Flooded Grasslands and Savannas	Pantanal	Foto	2012	CENAP ICMBio
Non-melanistic 92	Fazenda San Francisco, Mato Grosso do Sul, Brazil	-18,6641	-56,3946	Flooded Grasslands and Savannas	Pantanal	Foto	no data	CENAP ICMBio
Non-melanistic 93	Fazenda San Francisco, Mato Grosso do Sul, Brazil	-18,6598	-56,4543	Flooded Grasslands and Savannas	Pantanal	Foto	no data	CENAP ICMBio
Non-melanistic 94	Fazenda São Bento, Mato Grosso do Sul, Brazil	-18,8578	-57,3220	Flooded Grasslands and Savannas	Pantanal	Foto	no data	UFRGS Brazil
Non-melanistic 95	Fazenda São Bento, Mato Grosso do Sul, Brazil	-18,8888	-57,3210	Flooded Grasslands and Savannas	Pantanal	Foto	no data	UFRGS Brazil
Non-melanistic 96	Fazenda São Bento, Mato Grosso do Sul, Brazil	-19,5011	-57,0078	Flooded Grasslands and Savannas	Pantanal	Capture	1995	Instituto Pro-Carnívoros
Non-melanistic 97	Fazenda São Bento, Mato Grosso do Sul, Brazil	-19,4989	-57,0665	Flooded Grasslands and Savannas	Pantanal	Capture	2008	Instituto Pro-Carnívoros
Non-melanistic 98	Fazenda São Bento, Mato Grosso do Sul, Brazil	-19,4989	-57,0665	Flooded Grasslands and Savannas	Pantanal	Capture	2008	Instituto Pro-Carnívoros
Non-melanistic 99	Fazenda São Bento, Mato Grosso do Sul, Brazil	-19,4956	-57,0547	Flooded Grasslands and Savannas	Pantanal	Capture	2008	Instituto Pro-Carnívoros
Non-melanistic 100	Fazenda São Bento, Mato Grosso do Sul, Brazil	-19,5890	-56,9934	Flooded Grasslands and Savannas	Pantanal	Capture	2008	Instituto Pro-Carnívoros
Non-melanistic 101	Fazenda São Bento, Mato Grosso do Sul, Brazil	-19,4583	-56,8893	Flooded Grasslands and Savannas	Pantanal	Capture	2008	Instituto Pro-Carnívoros
Non-melanistic 102	Fazenda São Bento, Mato Grosso do Sul, Brazil	-19,4300	-56,9080	Flooded Grasslands and Savannas	Pantanal	Capture	2008	Instituto Pro-Carnívoros
Non-melanistic 103	Fazenda São Bento, Mato Grosso do Sul, Brazil	-19,4773	-56,8310	Flooded Grasslands and Savannas	Pantanal	Capture	2008	Instituto Pro-Carnívoros
Non-melanistic 104	Fazenda São Bento, Mato Grosso do Sul, Brazil	-19,5320	-56,9246	Flooded Grasslands and Savannas	Pantanal	Capture	2008	Instituto Pro-Carnívoros
Non-melanistic 105	Fazenda São Bento, Mato Grosso do Sul, Brazil	-19,6153	-56,9246	Flooded Grasslands and Savannas	Pantanal	Photograph	2012	CENAP ICMBio
Non-melanistic 106	Fazenda São Bento, Mato Grosso do Sul, Brazil	-19,6488	-56,8898	Flooded Grasslands and Savannas	Pantanal	Photograph	2012	CENAP ICMBio
Non-melanistic 107	Fazenda São Bento, Mato Grosso do Sul, Brazil	-19,4475	-56,8890	Flooded Grasslands and Savannas	Pantanal	Capture	2008	Instituto Pro-Carnívoros
Non-melanistic 108	Fazenda Sete, Aquidauana, Mato Grosso do Sul, Brazil	-19,9038	-55,7686	Flooded Grasslands and Savannas	Pantanal	Capture	2001	CENAP ICMBio

Josek Landy. Monty Josek			Deg-W	/GS84					
Immunication 10 Franchises, applications, Name and Ander Samphan, Name and Name and Ander Samphan, Name and Name and Name and Ander Samphan, Name and Na	Samples	Locality / Country	Lat	Long	Biome	Ecoregion	Sample type	Year	Information Source
Benefaction 11 Prescale No. Networks No. Ne	Non-melanistic 109	Fazenda Sete, Aquidauana, Mato Grosso do Sul, Brazil	-19,9419	-55,7258	Flooded Grasslands and Savannas	Pantanal	Capture	2001	CENAP ICMBio
Netbodie Patiality Patiality <th< td=""><td>Non-melanistic 110</td><td>Fazenda Sete, Aquidauana, Mato Grosso do Sul, Brazil</td><td>-20,0000</td><td>-55,7042</td><td>Flooded Grasslands and Savannas</td><td>Pantanal</td><td>Capture</td><td>2001</td><td>CENAP ICMBio</td></th<>	Non-melanistic 110	Fazenda Sete, Aquidauana, Mato Grosso do Sul, Brazil	-20,0000	-55,7042	Flooded Grasslands and Savannas	Pantanal	Capture	2001	CENAP ICMBio
Number No. Paradia Sin, Againan Merone Jok Linus Paradia Sin, Againa Merone Jok Linus Paradia Sin, Aga	Non-melanistic 111	Fazenda Sete, Aquidauana, Mato Grosso do Sul, Brazil	-20,0000	-55,7410	Flooded Grasslands and Savannas	Pantanal	Capture	2002	CENAP ICMBio
NeurantsPaceb Soc. National Name Game Soc. Name Game Soc. Name Soc. Name Soc. Name Game Soc. Name Soc	Non-melanistic 112	Fazenda Sete, Aquidauana, Mato Grosso do Sul, Brazil	-19,9576	-55,7701	Flooded Grasslands and Savannas	Pantanal	Capture	2003	CENAP ICMBio
Name and in the standard in th	Non-melanistic 113	Fazenda Sete, Aquidauana, Mato Grosso do Sul, Brazil	-20,0383	-55,7792	Flooded Grasslands and Savannas	Pantanal	Capture	2003	CENAP ICMBio
Mexalanisi, 11Frank Sk. Apalama, MacGauso, Sk. Rati-11,1331,23Tapical Balance Sc.Cank </td <td>Non-melanistic 114</td> <td>Fazenda Sete, Aquidauana, Mato Grosso do Sul, Brazil</td> <td>-20,0000</td> <td>-55,8026</td> <td>Flooded Grasslands and Savannas</td> <td>Pantanal</td> <td>Capture</td> <td>2003</td> <td>CENAP ICMBio</td>	Non-melanistic 114	Fazenda Sete, Aquidauana, Mato Grosso do Sul, Brazil	-20,0000	-55,8026	Flooded Grasslands and Savannas	Pantanal	Capture	2003	CENAP ICMBio
Summary DifferencePanal. Six, AppLann. Mach Courd - Stab. BundSouth SixPanal Six SixPanal SixPa	Non-melanistic 115	Fazenda Sete, Aquidauana, Mato Grosso do Sul, Brazil	-20,1135	-55,8232	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Capture	2003	CENAP ICMBio
ImageFrank Sc, Aplana, Max, Caso Sc, KarlanaSameFrank Sc, Caso Sc, MariaCharlanaCongreSameCongreSameNon-andressNon-andressSame Sc, MariaCasoSame Sc, MariaCasoSame Sc, MariaSame Sc, MariaSam	Non-melanistic 116	Fazenda Sete, Aquidauana, Mato Grosso do Sul, Brazil	-20,0804	-55,7595	Flooded Grasslands and Savannas	Pantanal	Capture	2003	CENAP ICMBio
Immunitari II Frank Ext, Apalama, Man Gross, A.S.R. Jacol OFEN PERMIN Frank Ext, Sampa Campa Frank Ext, Sampa Campa Frank Ext, Sampa Campa Frank Ext, Sampa Campa Frank Ext, Sampa Non-minisci II Barbar, Mar, Gross, A.S.R., Barbar -2007 3277 Tripici and Shenge Athan Ext, Sampa Atha Peark Athan Extens Campa 500 Halman Pear Campa Non-minisci II Barbar, Mar, Gross, A.S.R., Barbar -2007 3278 Tripici and Shenge Athan Extens Atha Peark Athan Extens Cappa 500 Halman Pear Campa Non-minisci II Barbar, Mar, Gross, A.S.R., Barbar -2007 3288 Tripici and Shenge Athan Extens Cappa 300 Halman Pear Campa Non-minisci II Barbar, Mar, Mar, Gross, A.S.R., Barbar -2007 Tripici and Shenge Athan Extens Cappa 300 Halman Pear Campa	Non-melanistic 117	Fazenda Sete, Aquidauana, Mato Grosso do Sul, Brazil	-20,0000	-55,8432	Flooded Grasslands and Savannas	Pantanal	Capture	2003	CENAP ICMBio
Summaniani III Bine A face. Mach Caron. do SL, Bard Carpet Carpet Carpet Carpet	Non-melanistic 118	Fazenda Sete, Aquidauana, Mato Grosso do Sul, Brazil	-19,9563	-55,8591	Flooded Grasslands and Savannas	Pantanal	Capture	2001	CENAP ICMBio
Non-matrix 12 Instrum. Mon Game & Sol. Burn Capet Sol Instrum Procession Non-matrix 12 Instrum. Non Game & Sol. Burn Capet Sol Instrum. Non Game & Sol. Burn Capet Sol Instrum. Non Game & Sol. Burn Non-matrix 12 Instrum. Non Game & Sol. Burn Capet Sol Instrum. Non Game & Sol. Burn Capet Sol Instrum. Non Game & Sol. Burn Non Bur	Non-melanistic 119	Ilha do Jazao, Mato Grosso do Sul, Brazil	-22,1799	-52,6166	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	1993	Eizirik et al 2003
Non-matrix1IndexNucleone box, Intrai21,20235,154Trongla and Margong Mose Induced FreeAndo Fande Adatase InteresCarguer2014Interes Pro-CardroverNon-matrix12Nucleone box, Intrai22,27735,283Trongla and Margong Mose Induced FreeAndo Fande Adatase InteresPaced INF2015Interes Pro-CardroverNon-matrix12Nucleone box, Intrai22,27735,283Trongla and Margong Mose Induced FreeAndo Fande Adatase InteresPaced INF2015Interes Pro-CardroverNon-matrix12Nucleone box, Intrai22,27735,283Trongla and Margong Mose Induced FreeAndo Fande Adatase InteresCarguer2015Interes Pro-CardroverNon-matrix12Nucleone box, Intrai22,27735,263Trongla and Margong Mose Induced FreeAndo Fande Adatase InteresCarguer2015Interes Pro-CardroverNon-matrix12Nucleone box, Intrai22,27735,263Trongla and Margong Mose Induced FreeAndo Fande Adatase InteresCarguer2015Interes Pro-CardroverNon-matrix13Nutres, Nucleone box, Intrai202,07535,004Induced FreeNon-Margong Non-Nucleone box, IntraiInteres Pro-CardroverNon-matrix13Nutres, Nucleone box, Intrai202,07535,004Induced FreeNon-Nucleone box, IntraiInteres Pro-CardroverNon-matrix14NutresNutres202,07535,004Induced FreeNucleone box, IntraiNucleone box, IntraiNon-matrix </td <td>Non-melanistic 120</td> <td>Ivinhema, Mato Grosso do Sul, Brazil</td> <td>-22,8592</td> <td>-53,6333</td> <td>Tropical and Subtropical Moist Broadleaf Forest</td> <td>Alto Paraná Atlantic forests</td> <td>Capture</td> <td>2004</td> <td>Instituto Pro-Carnívoros</td>	Non-melanistic 120	Ivinhema, Mato Grosso do Sul, Brazil	-22,8592	-53,6333	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	2004	Instituto Pro-Carnívoros
Numerical 21 Index decision & 3d. Intral 21/27 75/27 Treptical ad Submipued Main Induced Priors Abb Print Munic Notes Cepter 200 Interptical Prior Numeradaris 15 Index Munic Name & 5d. Final 227/37 51/58 Treptical ad Submipued Main Induced Priors Abb Print Munic Name Cepter 202 Interptic Prior Name Numeradaris 15 Index Munic Name & 5d. Final 227/37 51/58 Treptical ad Submipued Main Induced Priors Abb Print Munic Name Cepter 202 Interptic Prior Name Numeradaris 12 Manda Munic Orone & 5d. Final 2037 54/07 Treptical ad Submipued Main Induced Priors Abb Print Munic Name Cepter 202 LLLLK/ Arran Numeradaris 12 Manda Munic Orone & 5d. Final 2038 54/070 Priord Carland And Summa Priord Carland Summa Priord 201 Interptic Prior Carland Summa Priord Carland Summa Priord 201 Interptic Prior Carland Summa Numeradaris 17 Manda Munic Orone & 5d. Final 2038 54/070 Priord Carland Summa Priord Carland Summa Priord Carland Summa Priord Carland Summ	Non-melanistic 121	Ivinhema, Mato Grosso do Sul, Brazil	-22,0322	-53,7647	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	2004	Instituto Pro-Carnívoros
Non-andira: 1 Intern. Moc Gross & Sh. Intral 21/27 51/27 Trapic and Manage Mole Housed Proce About Proceed Mole House Mole House Proceed Mole House Procee	Non-melanistic 122	Ivinhema, Mato Grosso do Sul, Brazil	-22,7909	-53,6723	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	2005	Instituto Pro-Carnívoros
Non-matrix: 14 Indust. Name Group. 56. Bardi -2,1276 4,2427	Non-melanistic 123	Ivinhema, Mato Grosso do Sul, Brazil	-22,7909	-53,6723	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	2005	Instituto Pro-Carnívoros
Numedianic 12 Indust, Nuo Gano, D. M., Baril 2,277 34.08 Toppic and Shampich Nuo Imadie Frenze Aller Paris Copen 200 Instantion Pro-Conference Numedianic 12 Mirenk, Nuo Gano, S. B., Baril 2,0277 54.07 Topic and Shampich Nuo Imadie Frenze Aller Paris Propendianic 10 Numedianic 10 Numedianic 10 Numedianic 10 Status, Marca Cano, S. B., Baril 2,0277 54.07 Topic and Shampich Nuo Image Name Parental Copen 200 Intell Nuo Numedianic 10 Mirank, Marc Cano, S. B., Baril 2,0037 54.001 Proped and Shampich Nuo Image Name Parental Copen 200 Intell Nuo Nuo Numedianic 10	Non-melanistic 124	Ivinhema, Mato Grosso do Sul, Brazil	-22,9376	-53,6858	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Faecal DNA	2005	Instituto Pro-Carnívoros
Name addition 153 Index Mane Group do Sal, Baral 23278 53,668 Tuppical ad Sharipet Main Boulad Press Alle Provide Addition froms Currents 2005 Index Bounca Name addition 127 Maine Mane Group do Sal, Baral 23371 Tuppical ad Sharipet Maine Maine Group do Sal, Baral 20081 Provide Group do Sal, Baral Provide Group do Sal, Baral Provid Group do Sal, Baral Provide Group	Non-melanistic 125	Ivinhema, Mato Grosso do Sul, Brazil	-22,8787	-53,6558	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	2002	Instituto Pro-Carnívoros
Non-statistic 17 Isulam, Man Gauso Ab, Januti 2,770 Statistic Ab, Statistic Process, Statisti Process, Statistic Process, Statisti Process, Statisti	Non-melanistic 126	Ivinhema, Mato Grosso do Sul, Brazil	-22,7739	-53,6666	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	2006	Instituto Pro-Carnívoros
Non-ediantis151Munda Mand Gross do Sh, Brail-20,207-5,470Traje and Margina Gross do Sh, MarciaCarolaPerturb <td>Non-melanistic 127</td> <td>Ivinhema, Mato Grosso do Sul, Brazil</td> <td>-22,7863</td> <td>-53,6673</td> <td>Tropical and Subtropical Moist Broadleaf Forest</td> <td>Alto Paraná Atlantic forests</td> <td>Faecal DNA</td> <td>2005</td> <td>Instituto Pro-Carnívoros</td>	Non-melanistic 127	Ivinhema, Mato Grosso do Sul, Brazil	-22,7863	-53,6673	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Faecal DNA	2005	Instituto Pro-Carnívoros
Numerication:19Munch, Made Onco & Su, Encar-0.0000-0.0000Provide Granithan all SymmesPrenalCapter203Internet Pro-CardroneNumerication:123Munch, Made Onco & Su, Encar-0.0000Set. SociProvide Granithan all SymmesPrenalCapter203Internet Pro-CardroneNumerication:123Munch, Made Onco & Su, Encar-0.0000Set. SociProvide Granithan all SymmesPrenalCapter203Internet Pro-CardroneNumerication:134Munch, Made Onco & Su, Encar-0.0000Set. SociProvide Granithan all SymmesPrenalCapter203Internet Pro-CardroneNumerication:134Munch, Made Onco & Su, Encar-0.0000Set. SociProvide Granithan all SymmesPrenalCapter204Internet Pro-CardroneNumerication:137Munch, Made Onco & Su, Encar-0.0000Set. SociProvide Granithan all SymmesPrenalCapter204Internet Pro-CardroneNumerication:139Munch, Made Onco & Su, Encar-0.0000Set. SociProvide Granithan all SymmesPrenalCapter204Internet Pro-CardroneNumerication:139Munch, Made Onco & Su, Encar-0.0000Set. SociProvide Granithan all SymmesPrenalCapter204Internet Pro-CardroneNumerication:139Munch, Made Onco & Su, Encar-0.0000Set. SociProvide Granithan all SymmesPrenalCapter204Internet Pro-CardroneNumerication:139<	Non-melanistic 128	Miranda, Mato Grosso do Sul, Brazil	-20,2077	-56,4771	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2012	ULBRA Brazil
Non-endimic 10 Mamal, Max Group ob 81, Brazi 2003 8,6001 Prooded Grainfia and Sorman Partial Cepure 200 Institut Pro-Carivrons Non-endimic 11 Mamal, Max Group ob 81, Brazi -2003 5,6001 Prooded Grainfia and Sorman Partial Cepure 203 Institut Pro-Carivrons Non-endimic 11 Mamal, Max Group ob 81, Brazi -2003 5,6001 Prooded Grainfia and Sorman Partial Cepure 203 Institut Pro-Carivrons Non-endimic 12 Mamal, Max Group ob 81, Brazi -2003 5,6001 Prooded Grainfia and Sorman Partial Cepure 203 Institut Pro-Carivrons Non-endimic 12 Mamal, Max Group ob 81, Brazi -2003 5,6001 Prooded Grainfia and Sorman Partial Cepure 204 Institut Pro-Carivrons Non-endimic 12 Mamal, Max Group ob 81, Brazi -2003 5,6001 Prooded Grainfia and Sorman Partial Report 204 Institut Pro-Carivrons Non-endimic 14 Partial A Man, Max Group ob 81, Brazi -2015 5,7237 Prooded Grainfia and Sorman Partial Report	Non-melanistic 129	Miranda, Mato Grosso do Sul, Brazil	-20,0835	-56,6001	Flooded Grasslands and Savannas	Pantanal	Capture	2003	Instituto Pro-Carnívoros
Non-endianti: 11 Manak. Mate Grosso Sok. Brazil 2008 Sok.000 Product Grainalian and Samana Partanal Ceptor 203 Instituto Pro-Carivoros Non-endianti: 12 Marak. Mate Grosso Sok. Brazil 2003 Sok.001 Product Grainalian and Samana Partanal Ceptor 203 Instituto Pro-Carivoros Non-endianti: 13 Marak. Mate Grosso Sok. Brazil 2033 Sok.001 Product Grainalian and Samana Partanal Ceptor 203 Instituto Pro-Carivoros Non-endianti: 13 Marak. Mate Grosso Sok. Brazil 2033 Sok.001 Product Grainalian and Samana Partanal Ceptor 203 Instituto Pro-Carivoros Non-endianti: 13 Marak. Mate Grosso Sok. Brazil 2033 Sok.001 Product Grainalian and Samana Partanal Ceptor 203 Instituto Pro-Carivoros Non-endianti: 14 Marak. Mate Grosso Sok. Brazil 4926 Sok.301 Product Grainalian and Samana Partanal Report 203 Instituto Pro-Carivoros Non-endianti: 14 Paranal de Marak. Mate Gross	Non-melanistic 130	Miranda, Mato Grosso do Sul, Brazil	-20,0835	-56,6001	Flooded Grasslands and Savannas	Pantanal	Capture	2003	Instituto Pro-Carnívoros
Non-entries:13Menda, Marc Grosso de Sil, Brazil-9.0031-9.0040Pocked Greandean al SemansPattanalCapture2003Institute Pro-CardwordNon-entries:13Menda, Marc Grosso de Sil, Brazil-2.00835.6000Pocked Greandean al SemansPattanalCapture203Institute Pro-CardwordNon-entries:13Menda, Marc Grosso de Sil, Brazil-2.00835.6000Pocked Greandean al SemansPattanalCapture204Institute Pro-CardwordNon-entries:13Menda, Marc Grosso de Sil, Brazil-2.00835.6000Pocked Greandean al SemansPattanalCapture204Institute Pro-CardwordNon-entries:14Menda, Marc Grosso de Sil, Brazil-2.00835.6000Pocked Greandean al SemansPattanalCapture204Institute Pro-CardwordNon-entries:14Patranal de Menda, Marc Grosso de Sil, Brazil-2.037Pocked Greandean al SemansPattanalReport203Inger-Conservation FindNon-entries:14Patranal de Menda, Marc Grosso de Sil, Brazil-1.957756.337Pocked Greandean al SemansPattanalPattanalPatranalReport204Inger-Conservation FindNon-entries:14Patranal de Menda, Marc Grosso de Sil, Brazil-1.957756.337Pro-Pocked Greandean al SemansPattanalPatranalReport204Inger-Conservation FindNon-entries:14Patranal de Menda, Marc Grosso de Sil, Brazil-1.957756.337Portel Adadda Marc Marc Marc Marc Ma	Non-melanistic 131	Miranda, Mato Grosso do Sul, Brazil	-20,0835	-56,6001	Flooded Grasslands and Savannas	Pantanal	Capture	2003	Instituto Pro-Carnívoros
Non-endinatio: 13 Manda, Mao Carono do, B., Brail -20083 56.601 Ploade Grassina and Sources Partial Coptor 203 Institute for Cardwoods Non-endinatio: 14 Manda, Mao Carono do, B., Brail -20083 56.601 Ploade Grassina and Sources Paranat Coptor 203 Institute for Cardwoods Non-endinatio: 157 Manda, Mao Carono do, B., Brail -20083 56.601 Ploade Grassina and Sources Plantal Coptor 204 Institute for Cardwoods Non-endinatio: 137 Manda, Mao Carono do, Su, Brail -20083 56.601 Ploade Grassina and Sources Plantal Coptor 204 Institute for Cardwoods Non-endinatio: 14 Plantal do Manda, Mao Carono do, Su, Brail -10057 -2237 Ploade Grassina and Sources Plantal Report 204 Agaar Concervation Find Non-endinatio: 14 Plantal do Manda, Mao Carono do, Su, Brail -101757 -22374 Ploade Grassina and Sources Plantal Report 201 Agaar Concervation Find Non-endinatio: 14 Plantal do Manda, Mao Carono do, Su, Brail -2234 -27374 Torpical and So	Non-melanistic 132	Miranda, Mato Grosso do Sul, Brazil	-20,0835	-56,6001	Flooded Grasslands and Savannas	Pantanal	Capture	2003	Instituto Pro-Carnívoros
Nonequisity: 13Munkak, Mun Crosso do, B., Brazil-20083> 56,600Phode Grassiana al SwamakPanualCopure2018Isolation by, CaralwoosNonequisity: 13Munkak, Mun Crosso do, B., Brazil-20083-66,000Phode Grassiana al SwamakPanualCapure2014Isolation by, CaralwoosNonequisity: 13Munkak, Mun Crosso do, B., Brazil-20083-66,000Phode Grassiana al SwamakPanualCapure204Isolation by, CaralwoosNonequisity: 140Panual de Minak, Mun Crosso do, Su, Brazil-20083-66,000Phode Grassiana al SwamakPanualReport202Isolation by, CaralwoosNonequisity: 140Panual de Minak, Mun Crosso do, Su, Brazil-19053-56,000Phode Grassiana al SwamakPanualReport201Agaur Conservation FindNonequisity: 141Panual de Minak, Mun Crosso do, Su, Brazil-19053-56,000Phode Grassiana al SwamakPanualReport201Agaur Conservation FindNonequisity: 141Panual de Minak, Mun Crosso do, Su, Brazil-21208-70064Report2014Agaur Conservation FindNonequisity: 141Panual de Minak, Mun Crosso do, Su, Brazil-21208-70064ReportAlbrazinReport2019Isolation FindNonequisity: 142Panual de Minak, Mun Crosso do, Su, Brazil-21209-70064ReportAlbrazinReport2019Isolation FindReport2019Isolation FindR	Non-melanistic 133	Miranda, Mato Grosso do Sul, Brazil	-20,0835	-56,6001	Flooded Grasslands and Savannas	Pantanal	Capture	2003	Instituto Pro-Carnívoros
Nonemalistic 15 Minack, Mac Grosso 6. M., Brazil -2005 -5.6000 Flooded Grasikada and Savamas Pattatal Capute 203 Instituto Pro-Camivorso Nonemalistic 17 Mirack, Mac Grosso 6. M., Brazil -20055 -5.6001 Photod Grasikada and Savamas Phattad Capute 204 Instituto Pro-Camivorso Nonemalistic 17 Mirack, Mac Grosso 6. M., Brazil -20055 -5.6001 Photod Grasikada and Savamas Phattad Capute 204 Instituto Pro-Camivorso Nonemalistic 140 Patranal de Mirack, Mac Grosso 6. M., Brazil -19757 -5.6237 Photod Grasikada and Savamas Phattad Reput 2005 Instituto Pro-Camivorso Nonemalistic 143 Patranal de Mirack, Mac Grosso 6. M., Brazil -19758 -5.2378 Photod Grasikada and Savamas Phattad Reput 2010 Photod Grasikada and Savamas Phattad Reput Photod Savamas Photod Grasikada and Savamas Phattad Reput 2010 Photod Savamas Photod Grasikada and Savamas Phattad Reput 2010 Photod Savamas Mark Mac Grosso 6 M. Neput Neput 2010	Non-melanistic 134	Miranda, Mato Grosso do Sul, Brazil	-20,0835	-56,6001	Flooded Grasslands and Savannas	Pantanal	Capture	2003	Instituto Pro-Carnívoros
Non-endunity 156 Manula, Mado Cosso do Sul, Brazil 25.6001 Flooded Grandanda Savanas Patnalal Cepter 2014 Instituto Po-Carnivors Non-endunity 138 Marada, Mato Cosso do Sul, Brazil 20183 5.6001 Piotoded Grandanda Savanas Patnalal Cepter 2014 Instituto Po-Carnivors Non-endunity Marada, Mato Cosso do Sul, Brazil 20153 5.6001 Piotoded Grandanda Savanas Patnala Cepter 2014 Instituto Po-Carnivors Non-endunity Patnatad Marca, Mato Cosso do Sul, Brazil 20154 5.5310 Piotoded Grandanda Savanas Patnatad Report 2005 Agaar Conservation Find Non-endunity Patnatad Marca, Mato Cosso do Sul, Brazil 17.658 S.7560 Trojeal and Shorepada Shorepada Sovanas Patnatal Report 200 Agaar Conservation Find Non-endunity Porto Mintow, Mato Crosso do Sul, Brazil 2.2163 S.7560 Trojeal and Shorepada Shorepada Sovanas Patnatal Alutinic fores Capter 199 Report 199 Report 2004 Report 199 Report 199 <td< td=""><td>Non-melanistic 135</td><td>Miranda, Mato Grosso do Sul, Brazil</td><td>-20,0835</td><td>-56,6001</td><td>Flooded Grasslands and Savannas</td><td>Pantanal</td><td>Capture</td><td>2003</td><td>Instituto Pro-Carnívoros</td></td<>	Non-melanistic 135	Miranda, Mato Grosso do Sul, Brazil	-20,0835	-56,6001	Flooded Grasslands and Savannas	Pantanal	Capture	2003	Instituto Pro-Carnívoros
Non-mediantici, 137Mirnada, Mado Grosso do Sul, Harail20,0835,6001Phoceda Grasalanda and SavananaPartanalCeptor:204Instituto Po-CarnivorusNon-mediantici, 140Paranat de Miraca, Marco Grosso do Sul, Brazil20,0835,6001Phoceda Grasalanda and SavananaPartanalCeptor:204Instituto Po-CarnivorusNon-mediantici, 141Pharanat de Miraca, Marco Grosso do Sul, Brazil19,0505,5331Phoceda Grasalanda and SavananaPartanalPhorpst203Agaar Conservation FinalNon-mediantici, 142Pharanat de Miraca, Marco Grosso do Sul, Brazil19,0595,5331Phoceda Grasalanda and SavananaPartanalPhorpst204Agaar Conservation FinalNon-mediantici, 142Pharanat de Miraca, Marco Grosso do Sul, Brazil19,7885,5301Phoceda Grasalanda SavananaPartanalPhorpst201Agaar Conservation FinalNon-mediantici, 143Phorpst Marcinko, Marco Grosso do Sul, Brazil2,22407,25241Tropical and Saberopical Molas Broadal ForestAlb Parral Allantic forestsCeptor:198CCENAP KMBioNon-mediantici, 147Proto Pinnerex-Amarilladia, Man Grosso do Sul, Brazil2,22407,22414Tropical and Saberopical Molas Broadal ForestAlb Parral Allantic forestsCeptor:198CCENAP KMBioNon-mediantici, 147Proto Pinnerex-Amarilladia, Man Grosso do Sul, Brazil2,22407,22438Tropical and Saberopical Molas Broadal ForestAlb Parral Allantic forestsCeptor:198CCENAP KMBioNon-mediantici, 147Proto Pinnerex-Am	Non-melanistic 136	Miranda, Mato Grosso do Sul, Brazil	-20,0835	-56,6001	Flooded Grasslands and Savannas	Pantanal	Capture	2003	Instituto Pro-Carnívoros
Non-mediatrikMarnak, Mato Grosso & Sal, Brazil-0.008-6.5001Flooded Grasalads and SavamaPartualCqrue2004Initiation PoccarivorosNon-mediatrikPartual de Minak, Mato Grosso & Sal, Brazil-20035-6.2001Picoded Grasalads and SavamaPartualRpro202Agaz Consvortion FuedNon-mediatrikPartual de Minak, Mato Grosso & Sal, Brazil-19053-6.2301Picoded Grasalads and SavamaPartualRpro202Agaz Consvortion FuedNon-mediatrikPartual de Minak, Mato Grosso & Sal, Brazil-19788-6.5331Picoded Grasalank and SavamaPartualRpro2031Agaz Consvortion FuedNon-mediatrikPartua Mato Minak, Mato Grosso & Sal, Brazil-21768-6.5331Picoded Grasalank and SavamaPartualRproPicodeg Grasalank, Savama and ShuthalPartuaRproPicodeg Grasalank, Savama and ShuthalPartualRproPicodeg Grasalank, Savama and ShuthalPicodeg Grasalank, Savama and ShuthalPicodeg Grasalank, Savama and ShuthalPicodeg Grasalank, Savama and ShuthalPicodeg Grasalank, Savama and ShuthalPicode Grasalank, Savama and ShuthalPicodeg Grasalank, Savama and ShuthalPicodeg Grasalank, Savama and ShuthaliaPicodeg Grasalank, Savama and ShuthaliaPicodeg Grasalank, Savama and ShuthaliaPicodeg Grasalank, Savama and ShuthaliaPicodeg Grasalank, Savama and ShuthaliaPicode Grasalank, Savama and Shuthaliank, Grasso & Sal, BrazilPicode Grasalank, Savama and Shuthaliank, Grasso & Sal, BrazilPicode Grasalank, Savama and Shuthaliank, Grasso & Sal, BrazilPicode Grasalank, Savama and Shuthaliank, Grasso & S	Non-melanistic 137	Miranda, Mato Grosso do Sul, Brazil	-20,0835	-56,6001	Flooded Grasslands and Savannas	Pantanal	Capture	2004	Instituto Pro-Carnívoros
Non-melanistis19Marada, Mao Grosso do Sul, Brazil-0,0083556,0207Flooded Grasslands and SavanasPantanalReport2002Instaura Conservation FuedNon-melanistis141Pantanal de Minand, Mao Grosso do Sul, Brazil-19,926156,2377Flooded Grasslands and SavanasPantanalReport2003Jagare Conservation FuedNon-melanistis, 142Pantanal de Minand, Mao Grosso do Sul, Brazil-19,926156,3311Flooded Grasslands and SavanasPantanalReport2004Jagare Conservation FuedNon-melanistis, 144Parton Wintino, Mao Grosso do Sul, Brazil-12,101857,2571Tropical and Sabreogical Granulus, SavanasNamedianistis, Conservation Fued1019Namedianistis, Conservation FuedNon-melanistis, 146Porto Finansera, Anamiliada, Mao Grosso do Sul, Brazil-22,1013-22,1041-770pical and Sabreogical Granulus, SavanasAlto Pannai Altanis foressCapture198CENAP CMBioNon-melanistis, 147Porto Finansera, Anamiliada, Mao Grosso do Sul, Brazil-22,0143-22,0141-770pical and Sabreogical ForestAlto Pannai Altanis foressCapture198CENAP CMBioNon-melanistis, 151Porto Finansera, Anamiliada, Mao Grosso do Sul, Brazil-22,1714-52,025Tropical and Sabreogical Granulus, Savanas and ShubhanaCerradoCapture198CENAP CMBioNon-melanistis, 152Porto Finansera, Anamiliada, Mao Grosso do Sul, Brazil-22,1704-52,285Tropical and Sabreogical ForestAlto Pannai Altanis forestsCapture199CENAP CMBio<	Non-melanistic 138	Miranda, Mato Grosso do Sul, Brazil	-20,0835	-56,6001	Flooded Grasslands and Savannas	Pantanal	Capture	2004	Instituto Pro-Carnívoros
Non-melanistic 140Partinial de Mirada, Maro Grosso do Sul, Brazil1-19, 5733-5, 278Photode Grasaland and SvanitasPantanalPantanalReport2002Jagaar Conservation FundNon-melanistic 142Partanal de Mirada, Maro Grosso do Sul, Brazil1-19, 6885-5, 6100Photode Grasaland and SvanitasPantanalReport2003Jagaar Conservation FundNon-melanistic 143Porto Murtiduo, Mano Grosso do Sul, Brazil1-19, 7485-5, 5100Tropical and Subtopical Grasaland. SvanitasPantanalReport2011Photica Faciaria BrazilNon-melanistic 143Porto Murtiduo, Mano Grosso do Sul, Brazil2-2, 17185-2, 5741Tropical and Subtopical Grasaland. SvanitasAlto Pantal Adamic GrossCapture1998CENAP CMBioNon-melanistic 146Porto Pirnivera, Amuriliandi, Mano Grosso do Sul, Brazil2-2, 17135-2, 5414Tropical and Subtopical Most Broadial ForestAlto Pantal Adamic GrossCapture1998CENAP CMBioNon-melanistic 148Porto Pirnivera, Amuriliandi, Mano Grosso do Sul, Brazil2-2, 25, 741Tropical and Subtopical Most Broadial ForestAlto Pantal Adamic GrossCapture1998CENAP CMBioNon-melanistic 151Porto Pirnivera, Amuriliandi, Mano Grosso do Sul, Brazil2-2, 25, 74Tropical and Subtopical Grassinak. SumansStantal Mano GrossoCapture1998CENAP CMBioNon-melanistic 151Porto Pirnivera, Amuriliandi, Mano Grosso do Sul, Brazil2-2, 25, 74Tropical and Subtopical Grassinak. SumansStantal Mano GrossoCapture1998CENAP CMBio <td>Non-melanistic 139</td> <td>Miranda, Mato Grosso do Sul, Brazil</td> <td>-20,0835</td> <td>-56,6001</td> <td>Flooded Grasslands and Savannas</td> <td>Pantanal</td> <td>Capture</td> <td>2004</td> <td>Instituto Pro-Carnívoros</td>	Non-melanistic 139	Miranda, Mato Grosso do Sul, Brazil	-20,0835	-56,6001	Flooded Grasslands and Savannas	Pantanal	Capture	2004	Instituto Pro-Carnívoros
Non-melanistic 141Paratanal & Manda, Mao Crosso do Sui, Brazil-19/201-5/309Protode Crassian and SystemsParatanalReport20/31Jaguar Conservation FundNon-melanistic 142Paramal & Manda, Mao Crosso do Sui, Brazil-19/3485/331Protode Crassian and SystemsParatanalNegrort20/31Jaguar Conservation FundNon-melanistic 143Proto Pinnever, Anauribina, Mar Crosso do Sui, Brazil-19/348S/331Propical and Systemscal Massi Monda, Mar Crosso20/31Parata Manda Mar CrossoAgaar Conservation FundNon-melanistic 143Proto Pinnever, Anauribina, Mar Crosso do Sui, Brazil-22/1135/2/141Trycical and Subtropical Mois Biorealiad ForestAlto Parata Altanic forestsCapure19/8CCNAP E/MBioNon-melanistic 144Proto Pinnever, Anaurilhania, Mar Grosso do Sui, Brazil-22/14-32/147Trycical and Subtropical Mois Biorealed ForestAlto Parata Altanic forestsCapure19/8CENAP E/MBioNon-melanistic 151Porto Pinnever, Anaurilhania, Mar Grosso do Sui, Brazil-22/147-32/247Trycical and Subtropical Constants, Savamas and ShrubhadsCerradoCapure19/8CENAP E/MBioNon-melanistic 151Porto Pinnever, Anaurilhania, Mar Grosso do Sui, Brazil-22/147-32/247Tropical and Subtropical Constants, Savamas and ShrubhadsCerradoCapure20/0Bio Sola Faria ZoNon-melanistic 151Porto Pinnever, Anaurilhania, Mar Grosso do Sui, Brazil-22/147-52/257Tropical and Subtropical Constants, Savamas and ShrubhadsCerradoCapure20/	Non-melanistic 140	Pantanal de Miranda, Mato Grosso do Sul, Brazil	-19,5757	-56,2287	Flooded Grasslands and Savannas	Pantanal	Report	2002	Jaguar Conservation Fund
Non-melanistic 142Pantanal de Munada, Maio Grosso do Sul, Brazil-19.0939-60.311Fhooded Grasianda and SavannasPantanal de Marinet, Maio Grosso do Sul, Brazil-2014Jaguar Conservation FundNon-melanistic 144Potro Muritalo, Mano Grosso do Sul, Brazil-21.7168-56.310Tropical and Sateropical Grossinols, SavannasPantanal de GrossoCapture2011Poličia Poderal BrazilNon-melanisticPotro Finanevar, Anuntifiada, Mano Grosso do Sul, Brazil-22.123-22.7541Tropical and Sateropical Most Broadlar GrossAlto Pannal Altantic forestsCapture1998CENAVF KMBioNon-melanisticPotro Finanevar, Anuntifiada, Mano Grosso do Sul, Brazil-22.104-22.04232.414Tropical and Sateropical Most Broadlar GrossAlto Pannal Altantic forestsCapture1998CENAVF KMBioNon-melanisticPotro Finanevar, Anuntifiada, Mano Grosso do Sul, Brazil-22.04232.414Tropical and Sateropical Most Broadlar GrossCartadoCapture1998CENAVF KMBioNon-melanisticPotro Finanevar, Anuntifiada, Mano Grosso do Sul, Brazil-21.14-33.022Tropical and Sateropical Grossoftax, Savannas and SitubhadaCartadoCapture1998CENAVF KMBioNon-melanisticPotro Finanevar, Anuntifiada, Mano Grosso do Sul, Brazil-21.14-33.022Tropical and Sateropical Grossoftax, Savannas and SitubhadaCartadoCapture1998CENAVF KMBioNon-melanisticPotro Finanevar, Anuntifiada, Mano Grosso do Sul, Brazil-21.14-23.235Tropical and Sateropical Grossoftax, Savannas and Situbhada	Non-melanistic 141	Pantanal de Miranda, Mato Grosso do Sul, Brazil	-19,9261	-56,3049	Flooded Grasslands and Savannas	Pantanal	Report	2003	Jaguar Conservation Fund
Non-melanisticPartiani de Miranka, Mado Crosso do Sul, Brazil19/28853,060Protoska Univalianti and SavaniasPartianiaPartianiaReport2001Jaggar Conservation FundNon-melanisticPorto Primavera, Anaurillandi, Mato Grosso do Sul, Brazil22,24057,27541Tropical and Subtropical Mosils Broalled ForestAlto Parnai Altanic ForestsCapture19/8CEXAPI CMBIoNon-melanisticPorto Primavera, Anaurillandi, Mato Grosso do Sul, Brazil22,204752,414Tropical and Subtropical Mosils Broalled ForestAlto Parnai Altanic ForestsCapture19/8CEXAPI CMBIoNon-melanisticPorto Primavera, Anaurillandi, Mato Grosso do Sul, Brazil22,104752,4147Tropical and Subtropical Mosils Broalled ForestAlto Parnai Altanic ForestsCapture19/8CEXAPI CMBIoNon-melanisticPorto Primavera, Anaurillandi, Mato Grosso do Sul, Brazil22,114752,4147Tropical and Subtropical Mosils Broalled ForestAlto Parnai Altanic ForestsCapture19/8CEXAPI CMBIoNon-melanisticPorto Primavera, Anaurillandi, Mato Grosso do Sul, Brazil22,114752,4282Tropical and Subtropical Mosils Broalled ForestAlto Parnai Altanic forestsCapture20/0CEXAPI CMBIoNon-melanisticPorto Primavera, Anaurillandi, Mato Grosso do Sul, Brazil22,121652,4282Tropical and Subtropical Mosils Broalled ForestAlto Parnai Altanic forestsCapture20/0Rebar ParticeNon-melanisticPorto Primavera, Raunilandi, Mato Grosso do Sul, Brazil22,121652,4282Tropical and Subtropic	Non-melanistic 142	Pantanal de Miranda, Mato Grosso do Sul, Brazil	-19,6950	-56,3311	Flooded Grasslands and Savannas	Pantanal	Photograph	2004	Jaguar Conservation Fund
Non-melanisticPorto Narritholy, Made Crosso do Sul, Brazil-21/168>7.0820Tropical and Subtropical Crossindia, Savanas and SutrobinadisHume CacaoProfo tograpsPolitic Federal BrazilNon-melanisticPorto Primavera, Anauriliadia, Mado Crosso do Sul, Brazil-22/24052,7431Tropical and Subtropical Crossindia, Mois Broadeller ForestAlto Parnia Altantic forestsCapture1998CENAP ICMBioNon-melanisticPorto Primavera, Anauriliadia, Mato Crosso do Sul, Brazil-22.04752,7414Tropical and Subtropical ForestAlto Parnia Altantic forestsCapture1998CENAP ICMBioNon-melanisticPorto Primavera, Anauriliadia, Mato Crosso do Sul, Brazil-22.04952,8167Tropical and Subtropical Grossinah, Savanas and ShurbhandsCerradoCapture1998CENAP ICMBioNon-melanisticPorto Primavera, Anauriliadia, Mato Grosso do Sul, Brazil-21.848Tropical and Subtropical Grossinah, Savanas and ShurbhandsCerradoCapture1998CENAP ICMBioNon-melanisticPorto Primavera, Anauriliadia, Mato Grosso do Sul, Brazil-21.848Tropical and Subtropical Grossinah, Savanas and ShurbhandsCerradoCapture1909CENAP ICMBioNon-melanisticPorto Primavera, Anauriliadia, Mato Grosso do Sul, Brazil-22.049-52.058Tropical and Subtropical Grossinah, Savanas and ShurbhandsCerradoCapture1900Rick al 2003Non-melanisticPorto Primavera, Anauriliadia, Mato Grosso do Sul, Brazil-22.1046-52.058Tropical and Subtropical Grossinah, Savanas and ShurbhandsCerradoCapt	Non-melanistic 143	Pantanal de Miranda, Mato Grosso do Sul, Brazil	-19,7488	-56,3610	Flooded Grasslands and Savannas	Pantanal	Report	2003	Jaguar Conservation Fund
Non-melanisticPorto Primavera, Anuurilandi, Mato Grosso do Sul, Brazil-22,113-22,614Propical and Sottropical Mosis Broadled ForestAlto Parna Allantic forestsCapture1999Instituto Pro-LamvorosNon-melanisticPorto Primavera, Anuurilandi, Mato Grosso do Sul, Brazil-22,0141Tropical and Sottropical Mosis Broadled ForestAlto Parna Allantic forestsCapture1998CENAP ICMBioNon-melanisticPorto Primavera, Anuurilandi, Mato Grosso do Sul, Brazil-22,0141-72,024252,2144Tropical and Sottropical Mosis Broadled ForestAlto Parna Allantic forestsCapture1998CENAP ICMBioNon-melanisticPorto Primavera, Anuurilandi, Mato Grosso do Sul, Brazil-22,1941-52,0242Stropical and Sottropical Grasslands, Savamas and ShrubhandsCerradoCapture1999CENAP ICMBioNon-melanisticPorto Primavera, Anuurilandi, Mato Grosso do Sul, Brazil-22,0191-52,6282Tropical and Sottropical Grasslands, Savamas and ShrubhandsCerradoCapture1999CENAP ICMBioNon-melanisticPorto Primavera, Anuurilandi, Mato Grosso do Sul, Brazil-22,191-52,6282Tropical and Sottropical Grassland, Savamas and ShrubhandsCerradoCapture2009Riba Soltraiz ZooNon-melanisticPorto Primavera, Anuurilandi, Mato Grosso do Sul, Brazil-21,834-52,648Tropical and Sottropical Grasslands, Savamas and ShrubhandsCerradoCapture1999Eixink et al 2003Non-melanisticPorto Primavera, Anuurilandi, Mato Grosso do Sul, Brazil-21,834-52,648Tropical and Sottrop	Non-melanistic 144	Porto Murtinho, Mato Grosso do Sul, Brazil	-21,/168	-57,8560	Tropical and Subtropical Grasslands, Savannas and Shrublands	Humid Chaco	Photograph	2011	Policia Federal Brazil
Non-melanistisPorto Primaver, Auaurillania, Mano Grosso do Sul, Brazil-22,0430Iropical and Subtropical Moist Broadleaf ForestAuto Pranta Aduatic forestsCapture1998CENAP ICABIONon-melanistisPorto Primaver, Auaurillania, Mano Grosso do Sul, Brazil-22,0497-52,4147Tropical and Subtropical Moist Broadleaf ForestAlto Pranta Aduatic forestsCapture1998CENAP ICABIONon-melanistisPorto Primaver, Auaurillania, Mano Grosso do Sul, Brazil-22,2147-52,2467Tropical and Subtropical Grasslands, Savanas and ShrubhandsCerradoCapture1998CENAP ICABIONon-melanistisPorto Primaver, Auaurillania, Mano Grosso do Sul, Brazil-22,2147-52,2488Tropical and Subtropical Grasslands, Savanas and ShrubhandsCerradoCapture2000CENAP ICABIONon-melanistisPorto Primaver, Auaurillania, Mano Grosso do Sul, Brazil-22,049-52,258Tropical and Subtropical Moist Broadleaf ForestAlto Paratá Alunitic forestsCapture2000CENAP ICABIONon-melanistisPorto Primaver, Auaurillania, Mano Grosso do Sul, Brazil-22,1216-52,255Tropical and Subtropical Moist Broadleaf ForestAlto Paratá Alunitic forestsCapture2000Einzie AlucaNon-melanistisPorto Primaver, Auaurillania, Mano Grosso do Sul, Brazil-21,216-22,2121Tropical and Subtropical Moist Broadleaf ForestAlto Paratá Alunitic forestsCapture2000Einzie AlucaNon-melanistisPorto Primaver, Rauguassi, Mato Grosso do Sul, Brazil-21,015-22,212Tropical and Subtropical Grasslands,	Non-melanistic 145	Porto Primavera, Anaurilandia, Mato Grosso do Sul, Brazil	-22,2420	-52,/541	Tropical and Subtropical Moist Broadleaf Forest	Alto Parana Atlantic forests	Capture	1999	Instituto Pro-Carnivoros
Non-melanistic 147Porto Primavera, Anuruliandia, Nado Crosso do Sul, Brazil-22,094-52,4147Tropical and Subtropical NoiseAlto Parana Alumic forestsCapture1998CEAVAP (CMBioNon-melanistic 149Porto Primavera, Anuruliandia, Mao Crosso do Sul, Brazil-22,094-53,022Tropical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture1908CEAVAP (CMBioNon-melanistic 151Porto Primavera, Anuruliandia, Mato Crosso do Sul, Brazil-22,1701-52,4384Tropical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture1909CEAVAP (CMBioNon-melanistic 151Porto Primavera, Anuruliandia, Mato Grosso do Sul, Brazil-22,1701-52,6398Tropical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture2000Rio de Janeiro ZooNon-melanistic 153Porto Primavera, Anuruliandia, Mato Grosso do Sul, Brazil-21,824-52,6398Tropical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture2000Rio de Janeiro ZooNon-melanistic 154Porto Primavera, Banguassu, Mato Grosso do Sul, Brazil-21,824-52,4048Tropical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture1909Eizrink et al 2003Non-melanistic 154Porto Primavera, Banguassu, Mato Grosso do Sul, Brazil-21,915-52,2312Tropical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture1909Eizrink et al 2003Non-melanistic 155Porto Primavera, Banguassu, Mato Grosso do Sul, Brazil-21,065-52,4212Tropica	Non-melanistic 146	Porto Primavera, Anaurilandia, Mato Grosso do Sul, Brazil	-22,1133	-52,6430	Tropical and Subtropical Moist Broadlear Forest	Alto Parana Atlantic forests	Capture	1998	CENAP ICMBIO
Non-melanistic 148Porto Primavera, Anuarilladia, Mato Grosso do Sul, Brazil $-22,1147$ $-22,1147$ -700 (Trojical and Subtropical Noish Broadel ForestAuto Parata Anuariline torestsCapture1998CENAP (CMBioNon-melanistic 150Porto Primavera, Anuarilladia, Mato Grosso do Sul, Brazil $-22,147$ $-52,048$ Trojical and Subtropical Grasslands, Savananas and ShrublandsCerradoCapture1908CENAP (CMBioNon-melanistic 151Porto Primavera, Anuarilladia, Mato Grosso do Sul, Brazil $-22,1101$ $52,8255$ Tropical and Subtropical Moist Broadleaf ForestAlto Parata Atlantic forestsCapture2000CENAP (CMBioNon-melanistic 152Porto Primavera, Anuarilladia, Mato Grosso do Sul, Brazil $-22,1161$ $52,5255$ Tropical and Subtropical Moist Broadleaf ForestAlto Parata Atlantic forestsCapture2000CENAP (CMBioNon-melanistic 153Porto Primavera, Anuarilladia, Mato Grosso do Sul, Brazil $-21,1935$ $52,2255$ Tropical and Subtropical Moist Broadleaf ForestAlto Parata Atlantic forestsCapture2000Rina Solitera ZooNon-melanistic 155Porto Primavera, Anuarilladia, Mato Grosso do Sul, Brazil $-21,1935$ $52,2215$ Tropical and Subtropical Moist Broadleaf ForestAlto Parata Atlantic forestsCapture1998CENAP (CMBioNon-melanistic 157Porto Primavera, Anuarilladia, Mato Grosso do Sul, Brazil $-21,1935$ $52,2215$ Tropical and Subtropical Moist Broadleaf ForestAlto Parata Atlantic forestsCapture1998CENAP (CMBioNon-melanistic 157Porto Primavera, Batag	Non-melanistic 147	Porto Primavera, Anaurilandia, Mato Grosso do Sul, Brazil	-22,0697	-52,4144	Tropical and Subtropical Moist Broadlear Forest	Alto Parana Atlantic forests	Capture	1998	CENAP ICMBIO
Non-melanistic 149Protro Primavera, Anaurilandia, Maio Crosso do Sul, Brizil-22.114-32.0122Profical and Subtropical Crissiands, Savannas and ShrublandsCertradoCepture1998CENAP IC/MBIONon-melanistic 151Porto Primavera, Anaurilánda, Maio Crosso do Sul, Brazil-22.094-52.882Tropical and Subtropical Crissiands, Savannas and ShrublandsCertradoCapture2000CENAP IC/MBIONon-melanistic 152Porto Primavera, Anaurilánda, Maio Crosso do Sul, Brazil-22.119-52.6382Tropical and Subtropical Crissiands, Savannas and ShrublandsCertradoCapture2000Rito Ale CartanNon-melanistic 153Porto Primavera, Anaurilánda, Maio Crosso do Sul, Brazil-21.124-52.4484Tropical and Subtropical Moist Broadleaf ForestAlto Paraná Aluanic forestsCapture2000Rito Ale JactarNon-melanistic 155Porto Primavera, Batzguassa, Mato Grosso do Sul, Brazil-21.9165-52.42821Tropical and Subtropical Grasslands, Savannas and ShrublandsCertradoCapture1993Eizrink et al 2003Non-melanistic 157Porto Primavera, Batzguassa, Mato Grosso do Sul, Brazil-21.913-52.4821Tropical and Subtropical Grasslands, Savannas and ShrublandsCertradoCapture1993Eizrink et al 2003Non-melanistic 157Porto Primavera, Batzguassa, Mato Grosso do Sul, Brazil-20.1078-56.6281Tropical and Subtropical Grasslands, Savannas and ShrublandsCertradoCapture1998CENAP IC/MBIONon-melanistic 157Porto Primavera, Auruiliand, Mato Grosso do Sul, Brazil-20.1078-56.	Non-melanistic 148	Porto Primavera, Anaurilandia, Mato Grosso do Sul, Brazil	-22,0942	-52,4167	Tropical and Subtropical Moist Broadlear Forest	Alto Parana Atlantic forests	Capture	1998	CENAP ICMBIO
Non-melanistic 150Porto Primavera, Anaurilandia, Mato Grosso do Sul, Brazil-21,842-52,4343Iropical and Subtropical Grasslands, Savannas and ShrubindasCerradoCapture1900Inits ActoNon-melanistic 151Porto Primavera, Anaurilandia, Mato Grosso do Sul, Brazil-22,1701-52,6398Tropical and Subtropical Mois Broadleaf ForestAlto Paraná Altantic forestsCapture1900CENAP (CMBioNon-melanistic 153Porto Primavera, Anaurilándia, Mato Grosso do Sul, Brazil-22,1216-52,2525Tropical and Subtropical Mois Broadleaf ForestAlto Paraná Altantic forestsCapture2000CENAP (CMBioNon-melanistic 155Porto Primavera, Anaurilándia, Mato Grosso do Sul, Brazil-21,8342-52,4481Tropical and Subtropical Grasslands, Savannas and ShrubhadsCerradoCapture1909Eizrik et al 2003Non-melanistic 155Porto Primavera, Bataguasu, Mato Grosso do Sul, Brazil-21,151-52,4321Tropical and Subtropical Grasslands, Savannas and ShrubhadsCerradoCapture1909Eizrik et al 2003Non-melanistic 156Porto Primavera, Jazenda Arianha, Mato Grosso do Sul, Brazil-21,151-52,4321Tropical and Subtropical Grasslands, Savannas and ShrubhadsCerradoCapture1909Eizrik et al 2003Non-melanistic 157Porto Primavera, Jazenda Arianha, Mato Grosso do Sul, Brazil-20,1178-52,6320Tropical and Subtropical Grasslands, Savannas and ShrubhadsCerradoCapture2003Jaguar Conservation FundNon-melanistic 157Porto Primavera, Jazenda Arianha, Mato Grosso do Sul, Brazil-2	Non-melanistic 149	Porto Primavera, Anaurilandia, Mato Grosso do Sul, Brazil	-22,1147	-53,0229	Tropical and Subtropical Grasslands, Savannas and Snrublands	Cerrado	Capture	1998	CENAP ICMBIO
Non-melanistic 151Porto Primavera, Anaurilladia, Mato Grosso do Sul, Brazil-22,08-20Intipical and Subtropical Orisantas, Savannas and SinublandsCentrolCapture2000CENVAP CMBioNon-melanistic 153Porto Primavera, Anaurilladia, Mato Grosso do Sul, Brazil-21,121-52,5255Tropical and Subtropical Orisantas, Savannas and SinublandsCerradoCapture2000Rio de Janeiro ZooNon-melanistic 153Porto Primavera, Anaurilladia, Mato Grosso do Sul, Brazil-21,842-52,4521Tropical and Subtropical Grasslands, Savannas and SinublandsCerradoCapture1999Eizrik et al 2003Non-melanistic 155Porto Primavera, Bataguassu, Mato Grosso do Sul, Brazil-21,842-52,4821Tropical and Subtropical Grasslands, Savannas and SinublandsCerradoCapture1999Eizrik et al 2003Non-melanistic 156Porto Primavera, Bataguassu, Mato Grosso do Sul, Brazil-21,615-52,4821Tropical and Subtropical Grasslands, Savannas and SinublandsCerradoCapture1998CENAP (CMBioNon-melanistic 157Porto Primavera, Eaten Arianha, Mato Grosso do Sul, Brazil-20,1078-56,3628Tropical and Subtropical Grasslands, Savannas and SinublandsCerradoCapture2006Jaguar Conservation FundNon-melanistic 158Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,1078-56,3628Tropical and Subtropical Grasslands, Savannas and SinublandsCerradoCapture2003Jaguar Conservation FundNon-melanistic 161Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,055-5	Non-melanistic 150	Porto Frimavera, Anaurilândia, Mato Grosso do Sul, Brazil	-21,6542	-32,4046	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Capture	2000	CENAD ICMD:
Non-melanistic 152Porto Primavera, Anuurilandia, Maio Closso do Sul, Brazil-22,101-52,535Tropical and Subtropical Grasslands, Savannas and ShrublandsCapture2000CENARDNon-melanistic 154Porto Primavera, Anuurilandia, Mato Grosso do Sul, Brazil-21,842-52,4048Tropical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture1999Eizrik et al 2003Non-melanistic 155Porto Primavera, Bataguassu, Mato Grosso do Sul, Brazil-21,591-52,4321Tropical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture1999Eizrik et al 2003Non-melanistic 157Porto Primavera, Bataguassu, Mato Grosso do Sul, Brazil-21,191-52,431Tropical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture1998CENARDNon-melanistic 157Porto Primavera, Bataguassu, Mato Grosso do Sul, Brazil-20,1078-56,3421Tropical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture2006Jaguar Conservation FundNon-melanistic 158Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,1078-56,3421Tropical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture2003Jaguar Conservation FundNon-melanistic 160Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,0155-56,3421Tropical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture2003Jaguar Conservation FundNon-melanistic 161Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,0557-56,3431	Non-melanistic 151	Porto Frimavera, Anaurilândia, Mato Grosso do Sul, Brazil	-22,0949	-32,8820	Tropical and Subtropical Orassiands, Savannas and Subtropical or	Alter Demoné Atlantia famonte	Capture	2000	CENAP ICMBIO
Non-melanistic 154Forto Frinavera, Auarillania, Mato Grosso do Sul, Brazil-21,814-21,814-22,812Fortylaal an Subtropical Grasslands, Savannas and ShrublandsCerradoCapture2000Illa Solteria ZaoNon-melanistic 155Porto Prinavera, Bataguassu, Mato Grosso do Sul, Brazil-21,814-22,8142Tropical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture1993Eizirik et al 2003Non-melanistic 155Porto Prinavera, Bataguassu, Mato Grosso do Sul, Brazil-22,1131-52,6430Tropical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture1998CEICNAP ICMBioNon-melanistic 157Porto Prinavera, Bataguassu, Mato Grosso do Sul, Brazil-20,1078-56,3628Tropical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture2006Jaguar Conservation FundNon-melanistic 157Porto Prinavera, Braznda Ariranha, Mato Grosso do Sul, Brazil-20,0178-56,3628Tropical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture2006Jaguar Conservation FundNon-melanistic 160Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,0178-56,3720Flooded Grasslands, Savannas and ShrublandsCerradoCapture2003Jaguar Conservation FundNon-melanistic 161Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,0452-56,3720Flooded Grasslands and SavannasPantanalCapture2003Jaguar Conservation FundNon-melanistic 163Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,0	Non-melanistic 152	Porto Frimavera, Anaurilândia, Mato Grosso do Sul, Brazil	-22,1701	-32,0398	Tropical and Subtropical Moist Broadlaaf Forest	Alto Paraná Atlantic forests	Capture	2000	CENAF ICMBIO Rio de Janeiro Zoo
Non-melanistic 155Porto Primavera, Faxentantana, Mato Grosso do Sul, Brazil-21,954-21,954-10pical and subtropical Grasslands, Savannas and ShrublandsCerradoCapture1993Eizirik et al 2003Non-melanistic 156Porto Primavera, Bataguassu, Mato Grosso do Sul, Brazil-21,951-52,482Tropical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture1993Eizirik et al 2003Non-melanistic 157Porto Primavera, Fazenda Ariranha, Mato Grosso do Sul, Brazil-22,1131-52,6430Tropical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture1998CENAPI (CMBioNon-melanistic 157Porto Primavera, Fazenda Ariranha, Mato Grosso do Sul, Brazil-20,1078-56,3628Tropical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture2003Jaguar Conservation FundNon-melanistic 159Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,0156-56,381Tropical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture2003Jaguar Conservation FundNon-melanistic 160Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,057-56,381Tropical and Subtropical Grasslands, SavannasPantanalCapture2003Jaguar Conservation FundNon-melanistic 162Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,057-56,3451Flooded Grasslands and SavannasPantanalCapture2003Jaguar Conservation FundNon-melanistic 163Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,1163 <td>Non-melanistic 155</td> <td>Porto Primavera, Anaurilândia, Mato Grosso do Sul, Brazil</td> <td>-22,1210</td> <td>-52,5255</td> <td>Tropical and Subtropical Greeslands, Savannas and Shrublands</td> <td>Carrado</td> <td>Capture</td> <td>2000</td> <td>Ilha Soltaira Zoo</td>	Non-melanistic 155	Porto Primavera, Anaurilândia, Mato Grosso do Sul, Brazil	-22,1210	-52,5255	Tropical and Subtropical Greeslands, Savannas and Shrublands	Carrado	Capture	2000	Ilha Soltaira Zoo
Non-melanistic 153Folder I milwera, Bataguassa, Mado Grosso do Sul, Brazil-21, 933-24, 934Topical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture1979ELizirik et al 2003Non-melanistic 157Porto Primavera, Fazenda Ariranha, Mato Grosso do Sul, Brazil-21, 131-52, 6430Tropical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture1998CENAP (CMBioNon-melanistic 157Porto Primavera, Fazenda Ariranha, Mato Grosso do Sul, Brazil-20, 1078-56, 3628Tropical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture2006Jaguar Conservation FundNon-melanistic 158Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20, 1078-56, 3628Tropical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture2003Jaguar Conservation FundNon-melanistic 160Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20, 055-56, 3720Flooded Grasslands, SavannasPantanalCapture2003Jaguar Conservation FundNon-melanistic 161Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20, 057-56, 3730Flooded Grasslands and SavannasPantanalCapture2003Jaguar Conservation FundNon-melanistic 163Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20, 057-56, 3036Flooded Grasslands and SavannasPantanalCapture2005Jaguar Conservation FundNon-melanistic 164Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20, 157-56, 3015	Non-melanistic 155	Porto Primavera, Anaumandia, Mato Grosso do Sul, Brazil	-21,8342	52,4048	Tropical and Subtropical Grasslands, Savannas and Shrublands	Carrado	Capture	1000	Fizirik et al 2003
Non-melanisti: 157Porto Primavera, Fazenda Ariznaha, Mato Grosso do Sul, Brazil-22,113-32,423Tropical and Subtropical Misit Bradleaf ForestsAlto Parand Altanic forestsCapture1998CENAP ICMBioNon-melanisti: 157Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-22,113-52,453Tropical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture2006Jaguar Conservation FundNon-melanisti: 159Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,1078-56,3628Tropical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture2003Jaguar Conservation FundNon-melanisti: 160Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,085-56,373Tropical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture2003Jaguar Conservation FundNon-melanisti: 161Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,0852-56,373Flooded Grasslands and SavannasPantanalCapture2003Jaguar Conservation FundNon-melanisti: 163Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,0852-56,3036Flooded Grasslands and SavannasPantanalCapture2005Jaguar Conservation FundNon-melanisti: 163Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,113-56,3015Flooded Grasslands and SavannasPantanalCapture2005Jaguar Conservation FundNon-melanisti: 164Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,113-56,3015 <td>Non-melanistic 155</td> <td>Porto Primavera, Bataguassu, Mato Grosso do Sul, Brazil</td> <td>-21,9035</td> <td>-52,4821</td> <td>Tropical and Subtropical Grasslands, Savannas and Shrublands</td> <td>Cerrado</td> <td>Capture</td> <td>1993</td> <td>Fizirik et al 2003</td>	Non-melanistic 155	Porto Primavera, Bataguassu, Mato Grosso do Sul, Brazil	-21,9035	-52,4821	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Capture	1993	Fizirik et al 2003
Non-melanistic 158Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,105-20,105For pical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture2003Jaguar Conservation FundNon-melanistic 159Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,1056-56,3341Tropical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture2003Jaguar Conservation FundNon-melanistic 160Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,0855-56,3341Tropical and Subtropical Grasslands, Savannas and ShrublandsCerradoCapture2003Jaguar Conservation FundNon-melanistic 161Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,057-56,3351Tropical and Subtropical Grasslands, SavannasPantanalCapture2003Jaguar Conservation FundNon-melanistic 162Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,057-56,3351Flooded Grasslands and SavannasPantanalCapture2005Jaguar Conservation FundNon-melanistic 163Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,1187-56,2391Flooded Grasslands and SavannasPantanalCapture2005Jaguar Conservation FundNon-melanistic 164Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,1187-56,2391Flooded Grasslands and SavannasPantanalCapture2005Jaguar Conservation FundNon-melanistic 166Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,1187-56,3391 <td< td=""><td>Non-melanistic 157</td><td>Porto Primavera Eazenda Ariranha Mato Grosso do Sul, Brazil</td><td>-22 1131</td><td>-52 6430</td><td>Tropical and Subtropical Moist Broadleaf Forest</td><td>Alto Paraná Atlantic forests</td><td>Capture</td><td>1998</td><td>CENAP ICMBio</td></td<>	Non-melanistic 157	Porto Primavera Eazenda Ariranha Mato Grosso do Sul, Brazil	-22 1131	-52 6430	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	1998	CENAP ICMBio
Non-melanistic 159Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,105-56,334Tropical and Subtropical Grasslandas, Savannas and ShrublandsCerradoCapture2003Jaguar Conservation FundNon-melanistic 160Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,0855-56,334Tropical and Subtropical Grasslandas, Savannas and ShrublandsCerradoCapture2003Jaguar Conservation FundNon-melanistic 161Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,0452-56,3720Flooded Grasslands and SavannasPantanalCapture2003Jaguar Conservation FundNon-melanistic 162Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,0877-56,335Flooded Grasslands and SavannasPantanalCapture2005Jaguar Conservation FundNon-melanistic 163Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,187-56,3015Flooded Grasslands and SavannasPantanalCapture2005Jaguar Conservation FundNon-melanistic 164Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,1187-56,299Flooded Grasslands and SavannasPantanalCapture2005Jaguar Conservation FundNon-melanistic 166Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,1187-56,299Flooded Grasslands and SavannasPantanalCapture2005Jaguar Conservation FundNon-melanistic 166Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,1187-56,397Flooded Grasslands and SavannasPant	Non-melanistic 158	Refugio Ecologico Fazenda Caiman Mato Grosso do Sul Brazil	-20 1078	-56 3628	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Capture	2006	Iaguar Conservation Fund
Non-melanistic 160Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,085-6,6371Tropical and Subropical Grasslands, Savannas and ShrublandsCerradoCapture2003Jaguar Conservation FundNon-melanistic 161Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,0452-56,372Flooded Grasslands and SavannasPantanalCapture2003Jaguar Conservation FundNon-melanistic 161Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,0452-56,372Flooded Grasslands and SavannasPantanalCapture2003Jaguar Conservation FundNon-melanistic 163Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,0852-56,303Flooded Grasslands and SavannasPantanalCapture2005Jaguar Conservation FundNon-melanistic 164Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,1187-56,3015Flooded Grasslands and SavannasPantanalCapture2005Jaguar Conservation FundNon-melanistic 165Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,1187-56,3015Flooded Grasslands and SavannasPantanalCapture2005Jaguar Conservation FundNon-melanistic 165Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,1187-56,3015Flooded Grasslands and SavannasPantanalCapture2005Jaguar Conservation FundNon-melanistic 166Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,1187-56,3015Flooded Grasslands and SavannasPantanalCapture <td< td=""><td>Non-melanistic 159</td><td>Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil</td><td>-20,1056</td><td>-56 3841</td><td>Tropical and Subtropical Grasslands, Savannas and Shrublands</td><td>Cerrado</td><td>Capture</td><td>2003</td><td>Jaguar Conservation Fund</td></td<>	Non-melanistic 159	Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil	-20,1056	-56 3841	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Capture	2003	Jaguar Conservation Fund
Non-melanistic 161Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,452-56,377Flooded Grasslands and SavannasPantanalCapture2005Jaguar Conservation FundNon-melanistic 162Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,057-56,3451Flooded Grasslands and SavannasPantanalCapture2003Jaguar Conservation FundNon-melanistic 163Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,0852-56,3036Flooded Grasslands and SavannasPantanalCapture2005Jaguar Conservation FundNon-melanistic 164Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,1183-56,3036Flooded Grasslands and SavannasPantanalCapture2005Jaguar Conservation FundNon-melanistic 164Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,1187-56,2990Flooded Grasslands and SavannasPantanalCapture2005Jaguar Conservation FundNon-melanistic 166Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,1187-56,397Flooded Grasslands and SavannasPantanalCapture2006Jaguar Conservation FundNon-melanistic 167Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,1427-56,3977Flooded Grasslands and SavannasPantanalCapture2006Jaguar Conservation FundNon-melanistic 168Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil-20,1427-56,3977Flooded Grasslands and SavannasPantanalCapture2006Jaguar Conse	Non-melanistic 160	Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil	-20.0855	-56,3931	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Canture	2003	Jaguar Conservation Fund
Non-melanistic 162 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,057 -56,335 Flooded Grasslands and Savannas Pantanal Capture 2005 Jaguar Conservation Fund Non-melanistic 163 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,0852 -56,3036 Flooded Grasslands and Savannas Pantanal Capture 2005 Jaguar Conservation Fund Non-melanistic 164 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,1187 -56,290 Flooded Grasslands and Savannas Pantanal Capture 2005 Jaguar Conservation Fund Non-melanistic 166 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,1187 -56,290 Flooded Grasslands and Savannas Pantanal Capture 2005 Jaguar Conservation Fund Non-melanistic 166 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,1187 -56,290 Flooded Grasslands and Savannas Pantanal Capture 2005 Jaguar Conservation Fund Non-melanistic 166 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,1187 -56,397 Flooded Grasslands and Savannas Pantanal Capture 2006 Jaguar Conservation Fund Non-melanistic 167 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,1427 -56,397 Flooded Grasslands and Savannas<	Non-melanistic 161	Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil	-20.0452	-56,3720	Flooded Grasslands and Savannas	Pantanal	Canture	2003	Jaguar Conservation Fund
Non-melanistic 163 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,082 -56,305 Flooded Grasslands and Savannas Pantanal Capture 2005 Jaguar Conservation Fund Non-melanistic 164 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,1163 -56,3015 Flooded Grasslands and Savannas Pantanal Capture 2005 Jaguar Conservation Fund Non-melanistic 165 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,1187 -56,2990 Flooded Grasslands and Savannas Pantanal Capture 2005 Jaguar Conservation Fund Non-melanistic 166 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,130 -56,3034 Flooded Grasslands and Savannas Pantanal Capture 2005 Jaguar Conservation Fund Non-melanistic 167 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,1422 -56,3034 Flooded Grasslands and Savannas Pantanal Capture 2006 Jaguar Conservation Fund Non-melanistic 168 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,1422 -56,3034 Flooded Grasslands and Savannas Pantanal Capture 2006 Jaguar Conservation Fund Non-melanistic 168 <t< td=""><td>Non-melanistic 162</td><td>Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul. Brazil</td><td>-20.0597</td><td>-56,3451</td><td>Flooded Grasslands and Savannas</td><td>Pantanal</td><td>Capture</td><td>2003</td><td>Jaguar Conservation Fund</td></t<>	Non-melanistic 162	Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul. Brazil	-20.0597	-56,3451	Flooded Grasslands and Savannas	Pantanal	Capture	2003	Jaguar Conservation Fund
Non-melanistic 164 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,1163 -56,2990 Flooded Grasslands and Savannas Pantanal Capture 2005 Jaguar Conservation Fund Non-melanistic 165 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,1187 -56,2990 Flooded Grasslands and Savannas Pantanal Capture 2005 Jaguar Conservation Fund Non-melanistic 166 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,1180 -56,3291 Flooded Grasslands and Savannas Pantanal Capture 2006 Jaguar Conservation Fund Non-melanistic 167 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,1422 -56,3034 Flooded Grasslands and Savannas Pantanal Capture 2006 Jaguar Conservation Fund Non-melanistic 168 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,1422 -56,3037 Flooded Grasslands and Savannas Pantanal Capture 2006 Jaguar Conservation Fund Non-melanistic 168 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,0447 -56,3037 Flooded Grasslands and Savannas Pantanal Capture 2006 Jaguar Conservation Fund	Non-melanistic 163	Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul. Brazil	-20.0852	-56,3036	Flooded Grasslands and Savannas	Pantanal	Capture	2005	Jaguar Conservation Fund
Non-melanisti 165 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,1187 -56,2990 Flooded Grasslands and Savannas Pantanal Capture 2005 Jaguar Conservation Fund Non-melanisti 166 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,130 -56,3291 Flooded Grasslands and Savannas Pantanal Capture 2006 Jaguar Conservation Fund Non-melanisti 167 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,1422 -56,3374 Flooded Grasslands and Savannas Pantanal Capture 2006 Jaguar Conservation Fund Non-melanisti 168 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,1427 -56,3377 Flooded Grasslands Savannas Pantanal Capture 2006 Jaguar Conservation Fund	Non-melanistic 164	Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul. Brazil	-20,1163	-56,3015	Flooded Grasslands and Savannas	Pantanal	Capture	2005	Jaguar Conservation Fund
Non-melanistic 166 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,1300 -56,3291 Flooded Grasslands and Savannas Pantanal Capture 2006 Jaguar Conservation Fund Non-melanistic 167 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,142 -56,3034 Flooded Grasslands and Savannas Pantanal Capture 2006 Jaguar Conservation Fund Non-melanistic 168 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,0487 -56,3977 Flooded Grasslands and Savannas Pantanal Capture 2006 Jaguar Conservation Fund	Non-melanistic 165	Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul. Brazil	-20,1187	-56,2990	Flooded Grasslands and Savannas	Pantanal	Capture	2005	Jaguar Conservation Fund
Non-melanistic 167 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,1422 -56,3034 Flooded Grasslands and Savannas Pantanal Capture 2006 Jaguar Conservation Fund Non-melanistic 168 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,0487 -56,3977 Flooded Grasslands and Savannas Pantanal Capture 2006 Jaguar Conservation Fund	Non-melanistic 166	Refugio Ecologico Fazenda Caiman. Mato Grosso do Sul. Brazil	-20.1300	-56,3291	Flooded Grasslands and Savannas	Pantanal	Capture	2006	Jaguar Conservation Fund
Non-melanistic 168 Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil -20,0487 -56,3977 Flooded Grasslands and Savannas Pantanal Capture 2006 Jaguar Conservation Fund	Non-melanistic 167	Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul. Brazil	-20,1422	-56,3034	Flooded Grasslands and Savannas	Pantanal	Capture	2006	Jaguar Conservation Fund
	Non-melanistic 168	Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil	-20,0487	-56,3977	Flooded Grasslands and Savannas	Pantanal	Capture	2006	Jaguar Conservation Fund

Coursel on	To a selfer / Commenter	Deg-W	/GS84	D.1	E	6	V	I. C
Samples	Locality / Country	Lat	Long	Biome	Ecoregion	Sample type	Year	Information Source
Non-melanistic 169	Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil	-20,0341	-56,3877	Flooded Grasslands and Savannas	Pantanal	Capture	2006	Jaguar Conservation Fund
Non-melanistic 170	Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil	-20,0251	-56,3721	Flooded Grasslands and Savannas	Pantanal	Capture	2006	Jaguar Conservation Fund
Non-melanistic 171	Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil	-19,9690	-56,3641	Flooded Grasslands and Savannas	Pantanal	Photograph	2011	CENAP ICMBio
Non-melanistic 172	Refugio Ecologico Fazenda Caiman, Mato Grosso do Sul, Brazil	-19,9829	-56,4025	Flooded Grasslands and Savannas	Pantanal	Photograph	2011	CENAP ICMBio
Non-melanistic 173	Rio Miranda, Mato Grosso do Sul, Brazil	-19,4474	-57,2993	Flooded Grasslands and Savannas	Pantanal	Photograph	2011	CENAP ICMBio
Non-melanistic 174	Ronda do Laucides, Bataguassu, Mato Grosso do Sul, Brazil	-21,9862	-52,3771	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	1993	Jaguar Conservation Fund
Non-melanistic 175	São Carlos, Anaurilândia, Mato Grosso do Sul, Brazil	-22,1303	-52,5676	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	2002	Jaguar Conservation Fund
Non-melanistic 176	Taquari, Mato Grosso do Sul, Brazil	-18,3167	-56,9834	Flooded Grasslands and Savannas	Pantanal	Capture	2002	Jaguar Conservation Fund
Non-melanistic 177	Taquarussu, Ivinhema, Mato Grosso do Sul, Brazil	-22,7269	-53,5238	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	2007	IBAMA
Non-melanistic 178	Alta Floresta, Mato Grosso, Brazil	-10,3312	-56,4251	Tropical and Subtropical Moist Broadleaf Forest	Mato Grosso seasonal forests	Capture	2003	UNIFAP Brazil
Non-melanistic 179	Alta Floresta, Mato Grosso, Brazil	-9,9999	-56,7304	Tropical and Subtropical Moist Broadleaf Forest	Madeira-Tapajós moist forests	Capture	no data	UNIFAP Brazil
Non-melanistic 180	Alta Floresta, Mato Grosso, Brazil	-9,5484	-55,8740	Tropical and Subtropical Moist Broadleaf Forest	Mato Grosso seasonal forests	Photograph	no data	UNIFAP Brazil
Non-melanistic 181	Alta Floresta, Mato Grosso, Brazil	-9,7351	-56,1632	Tropical and Subtropical Moist Broadleaf Forest	Madeira-Tapajós moist forests	Photograph	no data	UNIFAP Brazil
Non-melanistic 182	Berrante Rio das Mortes, Ribeirão Cascalheira, , Mato Grosso, Brazil	-12,7999	-57,0329	Tropical and Subtropical Moist Broadleaf Forest	Mato Grosso seasonal forests	Capture	2006	CENAP ICMBio
Non-melanistic 183	Cáceres, Mato Grosso, Brazil	-16,0262	-57,2407	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	no data	UNIFAP Brazil
Non-melanistic 184	Ponte do Rio Arinos, Diamantino, Mato Grosso, Brazil	-14,3001	-56,1420	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2009	UNIFAP Brazil
Non-melanistic 185	Estação Ecológica do Taiamã, Mato Grosso, Brazil	-16,9694	-56,2463	Flooded Grasslands and Savannas	Pantanal	Photograph	2012	CENAP ICMBio
Non-melanistic 186	Estação Ecológica do Taiamã, Mato Grosso, Brazil	-16,8936	-56,3717	Flooded Grasslands and Savannas	Pantanal	Report	2012	CENAP ICMBio
Non-melanistic 187	Estação Ecológica do Taiamã, Mato Grosso, Brazil	-16,7469	-57,7308	Flooded Grasslands and Savannas	Pantanal	Photograph	2011	CENAP ICMBio
Non-melanistic 188	Estação Ecológica do Taiamã, Mato Grosso, Brazil	-16,7569	-57,6564	Flooded Grasslands and Savannas	Pantanal	Photograph	2011	CENAP ICMBio
Non-melanistic 189	Fazenda Barranco Alto, Mato Grosso do Sul, Brazil	-19,5722	-56,1616	Flooded Grasslands and Savannas	Pantanal	Capture	2007	Jaguar Conservation Fund
Non-melanistic 190	Fazenda Miranda, Mato Grosso do Sul, Brazil	-19,8259	-56,3364	Flooded Grasslands and Savannas	Pantanal	Capture	2007	Jaguar Conservation Fund
Non-melanistic 191	Fazenda Miranda, Mato Grosso do Sul, Brazil	-19,9542	-56,2526	Flooded Grasslands and Savannas	Pantanal	Capture	2006	Jaguar Conservation Fund
Non-melanistic 192	Fazenda Miranda, Mato Grosso do Sul, Brazil	-19,7580	-56,3293	Flooded Grasslands and Savannas	Pantanal	Capture	2007	Jaguar Conservation Fund
Non-melanistic 193	Fazenda Miranda, Mato Grosso do Sul, Brazil	-19,/580	-56,3293	Flooded Grasslands and Savannas	Pantanai	Capture	2007	Jaguar Conservation Fund
Non-melanistic 194	Fazenda Miranda, Mato Grosso do Sul, Brazil	-19,9455	-56,2370	Flooded Grasslands and Savannas	Pantanai	Capture	2008	Jaguar Conservation Fund
Non-melanistic 195	Fazenda Miranda, Mato Grosso do Sul, Brazil	-19,8532	-56,5178	Flooded Grasslands and Savannas	Pantanai	Capture	2007	Jaguar Conservation Fund
Non-melanistic 198	Fazenda Miranda, Mato Grosso do Sul, Brazil	-19,9394	-56,2090	Flooded Grasslands and Savannas	Pantanal	Capture	2000	Jaguar Conservation Fund
Non-melanistic 197	Fazenda Mitanda, Mato Grosso do Sul, Blazil	-19,9090	-30,2440	Flooded Grasslands and Savanias	Fantaliai Chievitene des formate	Capture	2007	Jaguar Conservation Fund
Non-melanistic 198	Lanioari D'Oeste, Mato Giosso, Biazii	-13,3243	-38,0043	Tropical and Subtropical Div Broadean Forest	Chiquitano di y fofests	Dhataanah	2005	Jaguar Conservation Fund
Non-melanistic 199	Lucas do Rio Verde, Mato Grosso, Brazil	-13,0276	-33,8970	Tranical and Subtropical Grasslands, Savannas and Shrublands	Certado Moto Cresco essenarel formato	Photograph	1024	IBAWA Emilia Cualdi Musaum
Non-melanistic 200	Comodoro Meto Grosso Brazil	-8,8195	-57,5502	Tropical and Subtropical Dry Proadlest Forest	Chiguitano dru foreste	Photograph	2002	National Musaum of Natural History USA
Non-melanistic 201	Pontonal Matagrassansa National Park Mata Grassa Prazil	-15,7100	-59,7852	Flooded Greeslands and Savannas	Bentanal	Photograph	2005	CENAD ICMDio
Non-melanistic 202	Pantanal Matogrossense National Park Mato Grosso, Brazil	-17 8486	-57,5106	Tropical and Subtropical Dry Broadleaf Forest	Chiquitano dry forests	Photograph	no data	CENAP ICMBio
Non-melanistic 204	Pantanal Matogrossense National Park Mato Grosso, Brazil	-17 6112	-57 6217	Tropical and Subtropical Dry Broadleaf Forest	Chiquitano dry forests	Photograph	2008	Astete et al 2008
Non-melanistic 205	Pantanal Matogrossense National Park, Mato Grosso, Brazil	-17.6692	-57.4298	Tropical and Subtropical Dry Broadleaf Forest	Chiquitano dry forests	Photograph	2009	Hunter & Rabinowitz 2009
Non-melanistic 206	Chapada dos Guimarães National Park. Mato Grosso, Brazil	-15.2962	-55.8451	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	no data	CENAP ICMBio
Non-melanistic 207	Pantanal Matogrossense National Park, Mato Grosso, Brazil	-17.8244	-57.4367	Tropical and Subtropical Dry Broadleaf Forest	Chiquitano dry forests	Photograph	1941	MUZUSP Brazil
Non-melanistic 208	Cuiabá River, Pantanal, Mato Grosso, Brazil	-16.3590	-55,9603	Flooded Grasslands and Savannas	Pantanal	Photograph	2010	CENAP ICMBio
Non-melanistic 209	Rondonópolis, Mato Grosso, Brazil	-16,4351	-54,5661	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2010	CENAP ICMBio
Non-melanistic 210	RPPN Acurizal, Mato Grosso, Brazil	-14,1839	-60,1351	Tropical and Subtropical Dry Broadleaf Forest	Chiquitano dry forests	Photograph	no data	Ecotrópica
Non-melanistic 211	RPPN Acurizal, Mato Grosso, Brazil	-14,2708	-60,1649	Tropical and Subtropical Dry Broadleaf Forest	Chiquitano dry forests	Photograph	no data	Ecotrópica
Non-melanistic 212	Belém, Pará, Brazil	-1,7662	-48,3392	Tropical and Subtropical Moist Broadleaf Forest	Tocantins/Pindare moist forests	Photograph	1982	Emilio Gueldi Museum
Non-melanistic 213	Belém, Pará, Brazil	-1,7240	-48,4809	Tropical and Subtropical Moist Broadleaf Forest	Tocantins/Pindare moist forests	Photograph	1987	Emilio Gueldi Museum
Non-melanistic 214	Belém, Pará, Brazil	-1,5466	-48,2090	Tropical and Subtropical Moist Broadleaf Forest	Tocantins/Pindare moist forests	Photograph	1940	Emilio Gueldi Museum
Non-melanistic 215	Belém, Pará, Brazil	-1,5175	-48,3405	Tropical and Subtropical Moist Broadleaf Forest	Tocantins/Pindare moist forests	Photograph	1944	Emilio Gueldi Museum
Non-melanistic 216	Pacajá, Pará, Brazil	-4,2750	-50,6824	Tropical and Subtropical Moist Broadleaf Forest	Xingu-Tocantins-Araguaia moist forests	Photograph	no data	IBAMA
Non-melanistic 217	Amazonia National Park, Pará, Brazil	-4,4155	-56,6850	Tropical and Subtropical Moist Broadleaf Forest	Madeira-Tapajós moist forests	Photograph	2009	CENAP ICMBio
Non-melanistic 218	Cantão National Park, Pará, Brazil	-9,6083	-50,1622	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Report	2006	Jaguar Conservation Fund
Non-melanistic 219	Cantão National Park, Pará, Brazil	-9,6896	-50,1744	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Report	2005	Jaguar Conservation Fund
Non-melanistic 220	Cantão National Park, Pará, Brazil	-9,5939	-50,2045	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Report	2007	Jaguar Conservation Fund
Non-melanistic 221	Rondon do Pará, Brazil	-4,7354	-48,1090	Tropical and Subtropical Moist Broadleaf Forest	Tocantins/Pindare moist forests	Capture	2008	Policia Ambiental Pará Brazil
Non-melanistic 222	Rondon do Pará, Brazil	-4,7263	-48,2638	Tropical and Subtropical Moist Broadleaf Forest	Tocantins/Pindare moist forests	Capture	2008	Policia Ambiental Pará Brazil
Non-melanistic 223	Taperinha, Pará, Brazil	-2,5721	-48,2812	Tropical and Subtropical Moist Broadleaf Forest	Tocantins/Pindare moist forests	Photograph	1920	MUZUSP Brazil
Non-melanistic 224	Tucuruí, Pará, Brazil	-3,7356	-49,7390	Tropical and Subtropical Moist Broadleaf Forest	Xingu-Tocantins-Araguaia moist forests	Capture	2008	Fundação Zoobotânica Pará Brazil
Non-melanistic 225	Vila Bravo, Tocantins River, Pará, Brazil	-4,6099	-47,9468	Tropical and Subtropical Moist Broadleaf Forest	Tocantins/Pindare moist forests	Photograph	1980	MUZUSP Brazil
Non-melanistic 226	Nascente do Parnaíba, Piauí, Brazil	-10,0948	-45,7178	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Report	2008	Jaguar Conservation Fund
Non-melanistic 227	Serra da Capivara National Park, Piauí, Brazil	-8,7106	-42,5164	Desert and Xeric Shrublands	Caatinga	Report	2010	Jaguar Conservation Fund
Non-melanistic 228	Serra da Capivara National Park, Piauí, Brazil	-8,6001	-42,5694	Desert and Xeric Shrublands	Caatinga	Report	2010	Jaguar Conservation Fund

		Deg-V	/GS84	- :				
Samples	Locality / Country	Lat	Long	Biome	Ecoregion	Sample type	Year	Information Source
Non-melanistic 229	Serra da Canivara National Park Piauí Brazil	-8 7206	-42 4889	Desert and Xeric Shruhlands	Caatinga	Photograph	2010	Jaguar Conservation Fund
Non-melanistic 229	Serra da Canivara National Park, Piauí, Brazil	-8 6558	-42 5931	Desert and Xeric Shrublands	Caatinga	Photograph	2009	Jaguar Conservation Fund
Non-melanistic 230	Serra da Canivara National Park, Piauí, Brazil	-8 6890	-42 5551	Desert and Xeric Shrublands	Caatinga	Photograph	2010	Jaguar Conservation Fund
Non-melanistic 237	Serra da Canivara National Park, Piauí, Brazil	-8 6497	-42 5266	Desert and Xeric Shrublands	Caatinga	Photograph	2010	Jaguar Conservation Fund
Non-melanistic 232	Serra da Canivara National Park, Piauf, Brazil	-8 8096	-42,5200	Desert and Xeric Shrublands	Caatinga	Photograph	2010	LINB Brazil
Non-melanistic 233	Serra da Canivara National Park, Piauf, Brazil	-8,7034	-42,5545	Desert and Xeric Shrublands	Caatinga	Photograph	2007	UNB Brazil
Non-melanistic 234	Serra da Capivara National Park, Piauf, Brazil	*8,7234 8,7660	42,4045	Desert and Verie Shrublands	Caatinga	Photograph	2007	UND Brazil
Non-melanistic 235	Serra da Capivara National Park, Piauf, Brazil	-8,7852	-42,5920	Desert and Xeric Shrublands	Caatinga	Photograph	2007	UNB Brazil
Non-melanistic 230	Serra da Canivara National Park, Piauf, Brazil	-8,7052	-42,0313	Desert and Xeric Shrublands	Caatinga	Photograph	2007	UNB Brazil
Non malanistic 237	Sorra da Capivara National Park, Piauí, Brazil	8 7562	42,0501	Desert and Xerie Shrublands	Caatinga	Photograph	2007	UNP Brazil
Non-melanistic 238	Serra da Capivara National Park, Piauf, Brazil	-8,7502	42,4818	Desert and Verie Shrublands	Caatinga	Photograph	2007	UND Brazil
Non-melanistic 239	Serra da Capivara National Park, Flaui, Blazi	-8,8000	-42,0730	Desert and Xeric Shrublands	Caatinga	Photograph	2007	UND DIAZII
Non-melanistic 240	Serra da Capivara National Park, Flaui, Blazi	-6,3934	-42,3337	Desert and Aeric Sillubiands	Caaunga Aslantia dru formata	Photograph	2007	UNB Blazii
Non-meranistic 241	Serra das Confusões National Park, Flaui, Brazil	-8,9730	-43,4431	Tropical and Subiropical Dry Broadieal Forest	Adantic dry forests	Report	2007	Jaguar Conservation Fund
Non-melanistic 242	Serra das Conrusoes National Park, Plaul, Brazil	-9,0805	-43,4120	Tropical and Subtropical Dry Broadlear Porest	Atlantic dry forests	Report	2007	Jaguar Conservation Fund
Non-melanistic 243	Uruçui-Una, Piaui, Brazii	-8,9670	-45,2641	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Report	2008	Jaguar Conservation Fund
Non-melanistic 244	Uruçui-Una, Piaui, Brazil	-8,9685	-45,2998	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Report	2008	Jaguar Conservation Fund
Non-melanistic 245	Cidade Gaúcha, Paraná, Brazil	-23,3792	-53,0129	Tropical and Subtropical Moist Broadleaf Forest	Alto Parana Atlantic forests	Photograph	1972	CENAP ICMBio
Non-melanistic 246	Iguaçu National Park, Paraná, Brazil	-25,0604	-53,6326	Tropical and Subtropical Moist Broadleaf Forest	Araucaria moist forests	Report	2012	CENAP ICMB10
Non-melanistic 247	Iguaçu National Park, Paraná, Brazil	-25,6561	-54,4461	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Faecal DNA	2007	Projeto Carnívoros do Iguaçu
Non-melanistic 248	Iguaçu National Park, Paraná, Brazil	-25,6278	-54,4630	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	1993	Projeto Carnívoros do Iguaçu
Non-melanistic 249	Iguaçu National Park, Paraná, Brazil	-25,5326	-54,0861	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	1993	Projeto Carnívoros do Iguaçu
Non-melanistic 250	Iguaçu National Park, Paraná, Brazil	-25,5537	-54,3283	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Faecal DNA	2006	Projeto Carnívoros do Iguaçu
Non-melanistic 251	Iguaçu National Park, Paraná, Brazil	-25,5093	-54,1983	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	2009	Projeto Carnívoros do Iguaçu
Non-melanistic 252	Iguaçu National Park, Paraná, Brazil	-25,6326	-54,4516	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Photograph	2009	Projeto Carnívoros do Iguaçu
Non-melanistic 253	Iguaçu National Park, Paraná, Brazil	-25,6224	-54,4058	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Faecal DNA	2007	CENAP ICMBio
Non-melanistic 254	Iguaçu National Park, Paraná, Brazil	-25,5838	-54,3955	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Faecal DNA	no data	CENAP ICMBio
Non-melanistic 255	Iguaçu National Park, Paraná, Brazil	-25,5918	-54,3644	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Photograph	no data	CENAP ICMBio
Non-melanistic 256	Iguaçu National Park, Paraná, Brazil	-25,6104	-54,4307	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	1999	Projeto Carnívoros do Iguaçu
Non-melanistic 257	Iguaçu National Park, Paraná, Brazil	-25,6104	-54,4307	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	1999	Projeto Carnívoros do Iguaçu
Non-melanistic 258	Iguaçu National Park, Paraná, Brazil	-25,6245	-54,4154	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Photograph	2004	Ceiba Argentina
Non-melanistic 259	Iguaçu National Park, Paraná, Brazil	-25,5076	-53,8969	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Photograph	1995	Ceiba Argentina
Non-melanistic 260	Iguaçu National Park, Paraná, Brazil	-25,2245	-53,7269	Tropical and Subtropical Moist Broadleaf Forest	Araucaria moist forests	Photograph	no data	Ceiba Argentina
Non-melanistic 261	Iguaçu National Park, Paraná, Brazil	-25,6760	-54,4349	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Photograph	no data	Projeto Carnívoros do Iguaçu
Non-melanistic 262	Itaipu Reserve, Paraná, Brazil	-24,9999	-54,3677	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Photograph	no data	IBAMA
Non-melanistic 263	Santa Tereza do Oeste, Paraná, Brazil	-25,0636	-53,6263	Tropical and Subtropical Moist Broadleaf Forest	Araucaria moist forests	Photograph	2012	Projeto Carnívoros do Iguaçu
Non-melanistic 264	Santa Tereza do Oeste, Paraná, Brazil	-25,1262	-53,6472	Tropical and Subtropical Moist Broadleaf Forest	Araucaria moist forests	Faecal DNA	2006	Projeto Carnívoros do Iguaçu
Non-melanistic 265	Chupinguaia, Rondônia	-12,6217	-60,9049	Tropical and Subtropical Moist Broadleaf Forest	Madeira-Tapajós moist forests	Photograph	2011	IBAMA
Non-melanistic 266	Porto Velho, Rondônia	-8,8787	-63,8231	Tropical and Subtropical Moist Broadleaf Forest	Monte Alegre varzeá	Photograph	no data	Instituto Mamirauá Amazonas
Non-melanistic 267	Viruá National Park, Roraima	1,3344	-61,2206	Tropical and Subtropical Moist Broadleaf Forest	Rio Negro campinarana	Photograph	no data	CENAP ICMBio
Non-melanistic 268	Jaquirana, Rio Grande do Sul, Brazil	-28,8130	-50,3134	Tropical and Subtropical Moist Broadleaf Forest	Araucaria moist forests	Capture	1975	ULBRA Brazil
Non-melanistic 269	Turvo State Park, Rio Grande do Sul, Brazil	-27,2006	-53,8997	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	1993	Eizirik et al 2003
Non-melanistic 270	Turvo State Park, Rio Grande do Sul, Brazil	-27,2141	-53,9701	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Photograph	2007	UFRGS Brazil
Non-melanistic 271	São José do Cedro, Santa Catarina, Brazil	-26,3849	-53,5576	Tropical and Subtropical Moist Broadleaf Forest	Araucaria moist forests	Faecal DNA	2007	Curitiba Zoo
Non-melanistic 272	Bauru, São Paulo, Brazil	-22,2996	-48,8025	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Photograph	no data	MUZUSP Brazil
Non-melanistic 273	Fazenda Ouro Verde, Marabá Paulista, São Paulo, Brazil	-22,1399	-52.0338	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Faecal DNA	2004	Ilha Solteira Zoo
Non-melanistic 274	Fazenda Ouro Verde, Marabá Paulista, São Paulo, Brazil	-22.0872	-52,1191	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	1998	Ilha Solteira Zoo
Non-melanistic 275	Mina Limeira, Ribeirão Grande, São Paulo, Brazil	-24.2169	-48.0739	Tropical and Subtropical Moist Broadleaf Forest	Serra do Mar coastal forests	Photograph	2003	Instituto Pro-Carnívoros
Non-melanistic 276	Carlos Botelho State Park. Vale do Ribeira. São Paulo. Brazil	-24.1268	-47,8781	Tropical and Subtropical Moist Broadleaf Forest	Serra do Mar coastal forests	Capture	2008	CENAP ICMBio
Non-melanistic 277	Carlos Botelho State Park, Vale do Ribeira, São Paulo, Brazil	-24.1157	-47.9937	Tropical and Subtropical Moist Broadleaf Forest	Serra do Mar coastal forests	Photograph	2011	CENAP ICMBio
Non-melanistic 278	Carlos Botelho State Park, Vale do Ribeira, São Paulo, Brazil	-24 1275	-48 0262	Tropical and Subtropical Moist Broadleaf Forest	Serra do Mar coastal forests	Photograph	2011	CENAP ICMBio
Non-melanistic 279	Carlos Botelho State Park, Vale do Ribeira São Paulo, Brazil	-24 0814	-47 9777	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Photograph	2011	CENAP ICMBio
Non-melanistic 280	Carlos Botelho State Park, Vale do Ribeira, São Paulo, Brazil	-24 1234	-17 8276	Tropical and Subtropical Moist Broadleaf Forest	Serra do Mar coastal forests	Photograph	2010	CENAP ICMBio
Non-melanistic 281	Carlos Botelho State Park, Vale do Ribeira, São Paulo, Brazil	-24,1234	-47,0270	Tropical and Subtropical Moist Broadleaf Forest	Serra do Mar coastal forests	Photograph	2010	CENAR ICMBio
Non-melanistic 287	Carlos Botelho State Park, Vale do Ribeiro São Paulo, Brazil	-24,1140	-47 0385	Tropical and Subtropical Moist Broadleaf Forest	Serra do Mar coastal forests	Photograph	2011	CENAP ICMBio
Non-melanistic 202	Carlos Botelho State Park, Vale do Ribeira, São Paulo, Brazil	-24,0301	-47 9353	Tropical and Subtropical Moist Broadleaf Forest	Serra do Mar coastal forests	Photograph	2011	CENAP ICMBio
Non-melanistic 203	Carlos Botelho State Park, Vale do Ribeira, São Paulo, Brazil	-24,0787	-48.0676	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic foreste	Photograph	2011	CENAP ICMBio
Non-melanistic 204	Carlos Dotelho State Lark, Vale do Ribeira, Sao Laulo, Blazli	-24,1309	47 0707	Tropical and Subtropical Moist Broadloaf Forest	Sarra do Mar constal forests	Photograph	2011	CENAR ICMBIO
Non-metanistic 200	Carlos Dotelho Stata Park, vale do Ribeira, São Paulo, DiaZli	-24,0993	47 0702	Tropical and Subtropical Moist Broadlast Forest	Sorra do Mar coastal forests	Photograph	2011	CENAR ICMDIO CENAR ICMDio
Non-melanistic 200	Carlos Dotelho State Park, Vale do Ribeire, São Paulo, Brazil	-24,1033	47 8019	Tropical and Subtropical Moint Droadleaf Forest	Sorra do Mar constal formata	Photo amount	2009	CENAR ICINDIO
Non-melanistic 207	Carlos Botelho State Park, Vale do Ribeira, São Paulio, Brazil	-24,1383	-47,0910	Tropical and Subtropical Moist Droadleaf Forest	Serra do Man coastal forests	Photograph	2009 ma data	UNIESD Deseil
ivon-meianistic 288	Carios Boteino State Park, vale do Ribeira, Sao Paulo, Brazil	-24,1185	-47,9610	ropical and Subtropical Moist Broadleaf Forest	Serra do Mar coastal forests	rnotograph	no data	UNESP Brazil

Jong Long Long Long Long Long Long Mathematical Stress Secondard Seco	<i>c</i> .		Deg-W	/GS84	D.	. .	a	••	
Instruments 29 Instruments 20, March Jack Jack Jack Jack Jack Jack Jack Jack	Samples	Locality / Country	Lat	Long	Biome	Ecoregion	Sample type	Year	Information Source
Network Network Network Network Control Control Control Network Network Network Netw	Non-melanistic 289	Intervales State Park, São Paulo, Brazil	-24,7443	-48,5961	Tropical and Subtropical Moist Broadleaf Forest	Serra do Mar coastal forests	Report	no data	UNESP Brazil
Iden and and the back has back, back, back Charge Alter and the back has back, back Came and the back has back, back Instrume of Negative Linging Non-statistics Non-statistic	Non-melanistic 290	Morro do Diabo State Park, São Paulo, Brazil	-22,6278	-52,1679	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	2004	Instituto de Pesquisas Ecológicas
Idea and an algo in the lase lase lase lase lase lase lase las	Non-melanistic 291	Morro do Diabo State Park, São Paulo, Brazil	-22,5954	-52,2661	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	2004	Instituto de Pesquisas Ecológicas
International Solution Labels of Labels and	Non-melanistic 292	Morro do Diabo State Park, São Paulo, Brazil	-22,6290	-52,1696	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	2002	Instituto de Pesquisas Ecológicas
Internet: Norm. 6 hibby start A.S. Prish, Intell -21/2 -21/2 Topic at Mobile Price Also Part Advances on Partial Price Also Part Advances on Partial Price	Non-melanistic 293	Morro do Diabo State Park, São Paulo, Brazil	-22,5938	-52,2664	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	2000	Instituto de Pesquisas Ecológicas
Numeninger Numenin	Non-melanistic 294	Morro do Diabo State Park, São Paulo, Brazil	-22,6326	-52,2685	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	2003	Instituto de Pesquisas Ecológicas
New mediner: 25 Merres & babe, ban (h. S.b. Pusi, hard) 2.326 They is of shore years Als Prend Matter forces Als Prend Matter forces Als Prend Matter forces Parts P	Non-melanistic 295	Morro do Diabo State Park, São Paulo, Brazil	-22,4470	-52,3072	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Photograph	no data	Instituto de Pesquisas Ecológicas
Network Network Description About State	Non-melanistic 296	Morro do Diabo State Park, São Paulo, Brazil	-22,5662	-52,2335	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Photograph	no data	Instituto de Pesquisas Ecológicas
NetworksNetworksNumberN	Non-melanistic 297	Morro do Diabo State Park, São Paulo, Brazil	-22,5844	-52,2550	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Photograph	2007	Instituto de Pesquisas Ecológicas
Non-Status: 279 Prior Putters: Ab Parta Matter Status Abo Parta Matter Status Non-Status: Status Non-Status: Status Non-Status: Status Non-Status: Status Non-Status Non-Status <td>Non-melanistic 298</td> <td>Pereira Barreto, São Paulo, Brazil</td> <td>-20,6389</td> <td>-51,1099</td> <td>Tropical and Subtropical Moist Broadleaf Forest</td> <td>Alto Paraná Atlantic forests</td> <td>Capture</td> <td>1993</td> <td>Ilha Solteira Zoo</td>	Non-melanistic 298	Pereira Barreto, São Paulo, Brazil	-20,6389	-51,1099	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	1993	Ilha Solteira Zoo
Non-Barrier, 20. Frait Gands Not, Wert, She Pada, Jacat Parage Parage Parage Parage	Non-melanistic 299	Porto Primavera, São Paulo, Brazil	-22,4871	-52,9198	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Faecal DNA	2004	Ilha Solteira Zoo
Mean matrice 101 Cranks <	Non-melanistic 300	Praia Grande/São Vicente, São Paulo, Brazil	-23,9906	-46,4465	Tropical and Subtropical Moist Broadleaf Forest	Serra do Mar coastal forests	Photograph	2012	CENAP ICMBio
Immediates 30 Carabi Series Pro Fraged and Selenged Graduals, Sensers ad Strabubs Cerab. Cerab. Cerab. Desc	Non-melanistic 301	Cantão State Park, Tocantins, Brazil	-9,7434	-50,1181	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Capture	2006	Jaguar Conservation Fund
Image Carels for Ph. Tourish, head -0.400 -0.400 Corels Corels Corels Corels Appe Concredition Fraction F	Non-melanistic 302	Cantão State Park, Tocantins, Brazil	-9,5599	-50,0657	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Capture	2006	Jaguar Conservation Fund
Non-statistic 301 Curits Number No. Transin, Reading A. 2010 Solution of Solution	Non-melanistic 303	Cantão State Park, Tocantins, Brazil	-9,5240	-49,9477	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Capture	2006	Jaguar Conservation Fund
Memodanicis 305 Cardis Name Pat. Exerction. Incil 9,509 9,5007 Torpical and Skoregord Galanda, Sourceast and Strubulant Comob PRocests No. Appart Construction Fract Non andanics 200 Procests Pat. Name, Name 9,5007 Torpical and Skoregord Galanda, Sourceast and Strubulant Comob PRocests 0.00 BRAA Non andanics 200 Proto Anone, Tocature, Brail 9,007 4,3797 Torpical and Skoregord Galanda, Sourceast and Strubulant Comob PRocests 0.00 BRAA Non andanics 201 Proto Anone, Tocature, Brail 9,007 4,3797 Torpical and Skoregord Galanda, Sourceast and Strubulant Comob PRocests 0.00 BRAA Non andanics 201 Proto Anone, Tocature, Brail 4,3797 Torpical and Skoregord Galanda, Sourceast and Strubulant Comob Procests 0.00 Galanda Strubulant Strubulant <td>Non-melanistic 304</td> <td>Cantão State Park, Tocantins, Brazil</td> <td>-9,7434</td> <td>-50,1181</td> <td>Tropical and Subtropical Grasslands, Savannas and Shrublands</td> <td>Cerrado</td> <td>Photograph</td> <td>no data</td> <td>Jaguar Conservation Fund</td>	Non-melanistic 304	Cantão State Park, Tocantins, Brazil	-9,7434	-50,1181	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	no data	Jaguar Conservation Fund
Mosenstein: 300 Carab series Par, Touris, Israil 9.152 9.152 9.152 0.152 <td>Non-melanistic 305</td> <td>Cantão State Park, Tocantins, Brazil</td> <td>-9,5599</td> <td>-50,0657</td> <td>Tropical and Subtropical Grasslands, Savannas and Shrublands</td> <td>Cerrado</td> <td>Photograph</td> <td>no data</td> <td>Jaguar Conservation Fund</td>	Non-melanistic 305	Cantão State Park, Tocantins, Brazil	-9,5599	-50,0657	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	no data	Jaguar Conservation Fund
Non-matrix: 307 Neutration Role Plance National Plance	Non-melanistic 306	Cantão State Park, Tocantins, Brazil	-9,5240	-49,9477	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	no data	Jaguar Conservation Fund
Non-statisPack AlamPack Alam <td>Non-melanistic 307</td> <td>Nascentes do Rio Parnaíba National Park, Tocantins, Brazil</td> <td>-10,3265</td> <td>-45,8512</td> <td>Tropical and Subtropical Grasslands, Savannas and Shrublands</td> <td>Cerrado</td> <td>Photograph</td> <td>no data</td> <td>Jaguar Conservation Fund</td>	Non-melanistic 307	Nascentes do Rio Parnaíba National Park, Tocantins, Brazil	-10,3265	-45,8512	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	no data	Jaguar Conservation Fund
Neumating: 39Peter Answer, Securita, Bazil-0,059-0,018-0,01	Non-melanistic 308	Pedro Afonso, Tocantins, Brazil	-9,0599	-48,1798	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	no data	IBAMA
Non-scalarity: 131Petro Arton, Treattin, Incrit)9,09944,181Trepfiel and Subscription (France Management and Streatting)Currade Management and Streatting Management a	Non-melanistic 309	Pedro Afonso, Tocantins, Brazil	-9,0599	-48,1798	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	no data	IBAMA
Non-maintain: 31 Battan Marinal Park, Agantan 23.599 45,459 Topical and Subtryck Moles Role Park Alkanic Freets South Park Alkanic Freets Photopyah Deck Agantan Non-maintain: 312 P.P. Urigual, Minose, Agentin 259.99 42,1257 Topical and Subtryck Moles Role Park Alkanic Freets Alto Parak Alkanic Freets Feat DNA 2006 Celth Agentin Non-maintain: 313 P.P. Urigual, Minose, Agentin 253.99 42,1257 Topical and Subtryck Moles Roule Press Alto Parak Alkanic Freets Feat DNA 2006 Celth Agentin Non-maintain: 313 P.P. Urigual, Minose, Agentin 253.99 42,128 Topical and Subtryck Moles Roule Press Alto Parak Alkanic Freets Feat DNA 2006 Celth Agentin Non-maintain: 318 Parage Iguan, Minose, Agentin 25,127 34,128 Topical and Subtryck Moles Roule Press Alto Parak Alkanic Freets Feat DNA Celth Agentin Non-maintain: 313 Parage Iguan, Minose, Agentin 25,128 Topical and Subtryck Moles Roule Press Alto Parak Alkanic Freets Feat DNA Celth Agentin Non-maintain: 323 Parage Iguan, Minose, Agentin 25,128 Topical and Subtryc	Non-melanistic 310	Pedro Afonso, Tocantins, Brazil	-9,0599	-48,1798	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	no data	IBAMA
Non-matrix13Colon La Pbr. Maouse, Agenta-2007-3, 41, 26Tropical and Subryce Mois Brandal FormAlls Paral Allutic foresPPara (DN)00Colo AgentinaNon-matrix13P Pr. Urogan, Maisnes, Agenta-23, 21-3, 123Tropical and Subryce Mois Brandal FormAllo Paral Allutic foresParal (N)2005Cells AgentinaNon-matrix13P P. Urogan, Maisnes, Agenta-23, 21-3, 123Tropical and Subryce Mois Brandal FormAllo Paral Allutic foresParal (N)2005Cells AgentinaNon-matrix13Parate Same, Maisnes, Agenta-23, 21-44, 426Tropical and Subryce Mois Brandal FormAllo Paral Allutic foresCapta2005Cells AgentinaNon-matrix13Parate Same, Maisnes, Agenta-23, 22-44, 426Tropical and Subryce Mois Brandal FormAllo Paral Allutic foresCapta2004Cells AgentinaNon-matrix23Parate Same, Maisnes-23, 22-44, 420Tropical and Subryce Mois Brandal FormAllo Paral Allutic foresParateCells AgentinaNon-matrix23Parate Same, Maisnes-23, 22-44, 430Tropical and Subryce Mois Brandal FormAllo Parata Allutic foresParateCells AgentinaNon-matrix23Parate Same, Maisnes-24, 22-44, 430Tropical and Subryce Mois Brandal FormAllo Parata Allutic foresParateCells AgentinaNon-matrix23Parate Same, Maisnes-24, 23-44, 430Tropical and Subryce Mois Brandal FormAllo Parata Allutic fores <td>Non-melanistic 311</td> <td>Baritu National Park, Argentina</td> <td>-23,1569</td> <td>-64,6304</td> <td>Tropical and Subtropical Moist Broadleaf Forest</td> <td>Southern Andean Yungas</td> <td>Photograph</td> <td>no data</td> <td>Ceiba Argentina</td>	Non-melanistic 311	Baritu National Park, Argentina	-23,1569	-64,6304	Tropical and Subtropical Moist Broadleaf Forest	Southern Andean Yungas	Photograph	no data	Ceiba Argentina
Non-endimics: 13Montexelry, Maiones, Agentina-26,054-35,805-52,805Tropical ad Subtropical Moins Roughal FranceAllow Print Allanci, feesesFace IDNA2006Cols AgentinaNon-endimics: 14P. P. Urgud, Missnes, Agentina-25,900-42,518Tropical ad Subtropical Moins Roughal FranceAllo Print Allanci, feesesPace IDNA2006Cols AgentinaNon-endimics: 137Parupe Igazan, Misoteos, Agentina-25,900-42,518Tropical ad Subtropical Moins Roughal FranceAllo Print Allanci, feesesCipture1994Cols AgentinaNon-endimics: 137Parupe Igazan, Misoteos, Agentina-25,790-34,288Tropical ad Subtropical Moins Roughal FranceAllo Print Allanci, feesesCipture1994Cols AgentinaNon-endimics: 139Parupe Igazan, Misoteos, Agentina-25,790-34,288Tropical ad Subtropical Moins Roughal FranceAllo Print Allanci, feesesParture Jagaza1964Cols AgentinaNon-endimics: 139Parupe Igazan, Misoteos, Agentina-25,720-34,283Tropical ad Subtropical Moins Roughal FranceAllo Print Allanci, feesesParture Jagaza1964Cols AgentinaNon-endimics: 23Parupe Igazan, Misoteos, Agentina-25,920-34,580Tropical ad Subtropical Moins Roughal FranceAllo Print Allanci, feesesParture Jagaza1964Cols AgentinaNon-endimics: 23Parture Igaza, Misoteos, Agentina-25,920-34,580Tropical ad Subtropical Moins Roughal FranceAllo Print Allanci, feesesParture JagazaCols AgentinaNon-endimics: 23	Non-melanistic 312	Colonia La Flor, Misiones, Argentina	-26,9951	-54,1263	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Photograph	no data	Ceiba Argentina
Non-netanici:13P. P. Unguil. Moines. Agentin-25:0934.227Tropical ad Storpeich Mois Broadial FranceAloo Parnal Atlantic forestsFace IDNA2006Cole A AgentinNon-netanici:71Prop. Unguil. Moines. Agentin-27:70-54.25Tropical ad Storpeich Moines Roubled FranceAloo Parnal Atlantic forestsFace IDNA2006Cole A AgentinNon-netanicis:71Prance Igams, Moines. Agentin-27:70-54.25Tropical ad Storpeich Moines Boodine FranceAloo Parnal Atlantic forestsPortuge Igams, Moines. AgentinCole A AgentinNon-netanicis:72Prance Igams, Moisson, Agentin-25:740-54.373Tropical ad Storpeich Mois Boodine FranceAloo Parnal Atlantic forestsPortuge Igams, Moisson, AgentinCole AgentinNon-netanicis:72Prance Igams, Missions, Agentin-25:72-54.373Tropical ad Storpeich Mois Broadial FranceAloo Parnal Atlantic forestPortuge Igams, Moisson, AgentinNon-netanicis:72Prance Igams, Missions, Agentin-25:72-54.873Tropical ad Storpeich Mois Broadial FranceAloo Parnal Atlantic forestPortuge Igam, Moines, AgentinNon-netanicis:72Prance Igams, Missions, Agentin-25:72-54.873Tropical ad Storpeich Mois Broadial FranceAloo Parnal Atlantic forestPortuge Igam, MainesNon-netanicis:72Prance Igams, Missions, Agentin-25:72-54.873Tropical ad Storpeich Mois Broadial FranceAloo Parnal Atlantic forestPortuge Igam, MainesNon-netanicis:72Prance Igams, Missions, Age	Non-melanistic 313	Montecarlo, Misiones, Argentina	-26,6554	-54,5805	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Faecal DNA	2005	Ceiba Argentina
Non-mediancis :13P. P. Urguni, Maionex, Agentina -258.19 54.105Trojecia al Subtropical Mois Boalad FronstAlto Frank Altatic forestsFacel DNA2005Celsh AgentinaNon-mediancis :17Progreg Igano, Masinos, Agentina -252.90 4.2138 Trojecia al Subtropical Mois Boalad FronstAlto Frank Altatic forestsFacel DNA2006Celsh AgentinaNon-mediancis :17Progreg Igano, Masinos, Agentina -257.90 5.4737 Trojecia al Subtropical Mois Boalad FronstAlto Frank Altatic forestsProgreg Igano, Masinos, Agentina -257.92 5.4478 Trojecia al Subtropical Mois Boalad FronstAlto Frank Altatic forestsPotogreg Igano, Masinos, Agentina -257.92 5.4478 Trojecia al Subtropical Mois Boalad FronstAlto Frank Altatic forestsPotogreg Igano, Masinos, Agentina -257.92 5.4478 Trojecia al Subtropical Mois Boalad FronstAlto Frank Altatic forestsPotogreg Igano, Masinos, Agentina -257.92 5.4478 Trojecia al Subtropical Mois Boalad FronstAlto Frank Altatic forestsPotogreg Igano, Masinos, Agentina -257.92 5.4478 Trojecia al Subtropical Mois Boalad FronstAlto Frank Altatic forestsPotogreg Igano, Masinos, Agentina -257.92 5.4478 Trojecia al Subtropical Mois Boalad FronstAlto Frank Altatic forestsPotogreg Igano, Masinos, Agentina -257.92 5.4478 Trojecia al Subtropical Mois Boalad FronstAlto Frank Altatic forestPotogreg Igano, Masinos, AgentinaNon-medianicis 23Patogreg Masinos, Agentina -20078 -20078 Trojecia al Subtropical Mois Boalad FronstAlto F	Non-melanistic 314	P. P. Uruguaí, Misiones, Argentina	-25,9059	-54,2257	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Faecal DNA	2006	Ceiba Argentina
Non-melanitic 11P. Fungua, Maisnes, Agentina250034.213.8Torpical and Subtrepical Mois Broadiar ForestAlto Parnal Altanic forestsCpruePace (DAX)206Cella AgentinaNon-melanitic 131Parque (gazar, Missione, Agentina25.72134.238Torpical and Subtrepical Mois Broadiar ForestAlto Parnal Altanic forestsCprue1994CERAN AgentinaNon-melanitic 131Parque (gazar, Missione, Agentina25.71934.238Torpical and Subtrepical Mois Broadiar ForestAlto Parnal Altanic forestsCprue1994CERAN AgentinaNon-melanitic 221Parque (gazar, Missione, Agentina25.71254.713Starpical and Subtrepical Mois Broadiar ForestAlto Parnal Altanic forestsProve parlsand Cella AgentinaNon-melanitic 222Parque (gazar, Missione, Agentina25.64354.9376Torpical and Subtrepical Mois Broadiar ForestAlto Parnal Altanic forestsPhore parlsand Cella AgentinaNon-melanitic 223Parque (gazar, Missione, Agentina25.04854.9376Torpical and Subtrepical Mois Broadiar ForestAlto Parnal Altanic forestsPhore parls19.95Colla AgentinaNon-melanitic 224Raser ade Biofisory Moid, Magenta25.64854.9546Torpical and Subtrepical Mois Broadiar ForestAlto Parnal Altanic forestsPhore parls19.05Cella AgentinaNon-melanitic 224Raser ade Biofisory Moid, Magenta25.64854.9546Torpical and Subtrepical Moit Broadiar ForestAlto Parnal Altanic forestsPhore parls10.04Alganz Cella AgentinaNon-melanitic 2	Non-melanistic 315	P. P. Uruguaí, Misiones, Argentina	-25,8219	-54,1205	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Faecal DNA	2005	Ceiba Argentina
Non-melanicis 17Pergue Japaza, Missione, Agentina25.72734.2728Tripcia all Salterycia Missionell' ForestAlte Paral Allanic forestsCeptors1994Cello AgentinaNon-melanicis 13Pergue Japaza, Missione, Agentina2.577134.278Tripcia all Salterycia Missionell' ForestAlte Paral Allanic forestsPergue Japaza, Missione, AgentinaCello AgentinaNon-melanicis 23Pergue Japaza, Missione, Agentina2.572134.5730Tripcia all Salterycia Missionell' ForestAlte Paral Allanic forestsPergue Japaza, Missione, AgentinaCello AgentinaNon-melanicis 23Pergue Japaza, Missione, Agentina2.572234.5730Tripcia all Salterycia Missionell' ForestAlte Paral Allanic forestsPergue Japaza, Missione, AgentinaCello AgentinaNon-melanicis 23Pergue Japaza, Missione, Agentina2.522654.5430Tripcia all Salterycia Missionell' ForestAlte Paral Allanic forestsPergue Japaza, Missione, AgentinaCello AgentinaNon-melanicis 25Rair Mentry, Missione, Agentina2.50803.5483Tripcia all Salterycia Missionell' ForestAlte Paral Allanic forestsPhotograph205Cello AgentinaNon-melanicis 25Na ventei, Missione, Agentina2.50803.54268Tripcia all Salterycia Missionell' ForestAlte Paral Allanic forestsPhotograph204Cello AgentinaNon-melanicis 23Na ventei, Missione, Agentina2.5080Tripcia all Salterycia Missionell' ForestAlter Paral Allanic forestsPhotograph204Cello AgentinaNon-melanicis 23Malt Missional Park, B	Non-melanistic 316	P. P. Uruguaí, Misiones, Argentina	-25,9090	-54,2518	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Faecal DNA	2006	Ceiba Argentina
Non-mediantis: 119Prance Jaguar, Musions, Agentina-25,1/2-34,2/8Topical and Storpical Moise Broaded leversAlo Pranci Alumic forens:Populor para Populor p	Non-melanistic 317	Parque Iguazu, Missiones, Argentina	-25,7259	-54,4726	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	1994	Ceiba Argentina
Non-maliantic 19Parque IguaD, Massione, Argentina2-27,7992-37,992-37,997-topical and Subtropical Moise Boadled ForestAllo Parrah Allantic forestsPholographto dataColha ArgentinaNon-malantic 221Parque IguaD, Massione, Argentina2-37,1225-44,713Trapical and Subtropical Moise Boadled ForestAllo Parrah Allantic forestsPholographto dataColha ArgentinaNon-malantic 221Parque IguaD, Massione, Argentina2-56,8055-46,805Trapical and Subtropical Moise Boadled ForestAllo Parrah Allantic forestsPholographto dataColha ArgentinaNon-malantic 224Revers de Biolefer Yahodi, Argentina2-50,8955-48,955Trapical and Subtropical Moise Boadled ForestAllo Parrah Allantic forestsPholographto dataColha ArgentinaNon-malantic 226Saturopical Moise Boadled ForestAllo Parrah Allantic forestsColumnaColha ArgentinaNon-malantic 237Colacscom Wildlife Sacurang, Paleira16,74448,87,39Trapical and Subtropical Moise Boadled ForestPedro Parcar, mois forestsPholographno dataAlgenz Conservation PardNon-malantic 238Goldens Strom Condor Preserve, Belize16,960848,989Trapical and Subtropical Moise Boadled ForestPedro Parcar, mois forestsPholographno dataAlgenz Conservation PardNon-malantic 330The Mantia Moisen Pale, Bolixia1,246848,8739Trapical and Subtropical Moise Boadled ForestPedro Varcar, mois forestsPholographno dataAlgenz Conservation PardNon-malantic 331	Non-melanistic 318	Parque Iguazu, Missiones, Argentina	-25,7472	-54,4268	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Capture	1994	CENAP ICMBio
Non-mediantic. 230Prague Jauza, Missions, Agentina-2-3/2.2-4-3/7.18Tropical and Subtropical Moine Bloadkel ForestAlto Prania Altanic forestsPhotograph photo datao dataColta AgentinaNon-mediantici, 22Parete Jauza, Missions, Agentina-25/24.5-54.458Tropical and Subtropical Moine Bloadkel ForestAlto Parina Altanic forestsPhotograph photo dataColta AgentinaNon-mediantici, 230Pareto La Lenda, Missions, Agentina-25/24.5-54.588Tropical and Subtropical Moine Bloadkel ForestAlto Parina Altanic forestsPhotograph photograph205Colta AgentinaNon-mediantici, 236Raz Monong, Missione, Agentina-25/04.6-54.548Tropical and Subtropical Moine Bloadkel ForestAlto Parina Altanic forestsPhotograph photograph206Colta AgentinaNon-mediantici, 237Colxecter, Misline Saccurator, Selfere16.7144-85.2768Fropical and Subtropical MoinePhotograph photograph206Colta AgentinaNon-mediantici, 237Colxecter, Misline Saccurator, Selfere16.7144-85.2768Fropical and Subtropical MoinePhotograph photograph0 dataBiotagent Contact PlantNon-mediantici, 237Maida National Preserv, Belline17.0768-85.9789Tropical and Subtropical Moine Boodkel FreetPhotograph Plant0 dataBiotagent Contact PlantNon-mediantici, 238Maida National Preserv, Belline17.0768-85.9789Tropical and Subtropical Moine Boodkel FreetPhotograph Plant0 dataSubtropical PlantNon-mediantici, 237<	Non-melanistic 319	Parque Iguazu, Missiones, Argentina	-25,7499	-54,3973	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Photograph	no data	Ceiba Argentina
Non-melanistic 3:1Prange Jiguar, Missione, Argentina-25, 1/2-34, 1/18Tropical and Subtropical Monite Broadkalle ForestAllo Parnak Altanic forestsPrilographno duaCale ArgentinaNon-melanistic 3:23Partor Libertad Missiones, Argentina-25, 0/23-34, 9/38Tropical and Subtropical Monite Broadkalle ForestAllo Parnak Altanic forestsPrilograph19/35Cale ArgentinaNon-melanistic 2:3Partor Libertad Missiones, Argentina-25, 0/23-34, 9/36Tropical and Subtropical Monite Broadkalle ForestAllo Parnak Altanic forestsPrilograph19/35Cale ArgentinaNon-melanistic 2:3San Vicente, Missiones, Argentina-26, 9/40-17 pricel and Subtropical Monite Broadkalle ForestAllo Parnak Altanic forestsPrilograph0.004Cale ArgentinaNon-melanistic 2:37Cockesorth Wildlife Sentenam, Beizre16, 2/45Tropical and Subtropical Monite Broadkale ForestPeter Averacce monits forestsPrilographno duaJaguar Conservation FundNon-melanistic 2:38Goldea Stream Cortific Proserse, Beitze16, 2/4588, 4738Tropical and Subtropical Monite Broadkale ForestPeter Averacce monits forestsPrilographno duaJaguar Conservation FundNon-melanistic 3:30The Maurian Fine Ridge Forest Reserve, Beltze16, 2/4588, 4738Tropical and Subtropical Monite Broadkaller forestPeterstPeterstem90/6 XJaguar Conservation FundNon-melanistic 3:31Madid Nistional Park, Bolivia-12, 2/588, 4738Tropical and Subtropical Monite Broadkaller forestPeterstem<	Non-melanistic 320	Parque Iguazu, Missiones, Argentina	-25,7220	-54,4530	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Photograph	no data	Ceiba Argentina
Non-melanistic 322Parque (gauzz, Massones, Agentina-25,0483-34,956Tropical and Subtopical Mois Broadler ForestAlto Parnal Altanic forestsPhotographno dataCelta AgentinaNon-melanistic 323Reserva de Bioderr Vaboti, Agentina-22,0773-54,980Tropical and Subtopical Mois Broadler ForestAlto Parnal Altanic forestsPhotograph2005Celta AgentinaNon-melanistic 324Reserva de Bioderr Vaboti, Agentina-26,041454,9361Tropical and Subtopical Mois Broadler ForestAlto Parnal Altanic forestsPhotograph2004Celta AgentinaNon-melanistic 326San Vicente, Misiones, Agentina-26,6486-44,948Tropical and Subtopical Mois Broadler ForestAlto Parnal Altanic forestsPhotograph00 dataSubtor et alto ParnalNon-melanistic 326Coldan Stream Controlor Preserve, Belizz16,24888,308Tropical and Subtopical Mois Broadler ForestPeticis Vencarz znois forestsPhotographno dataAgaac Conservation FundNon-melanistic 327Nog Kashene Elijo Parti Nationa12,02948,429Tropical and Subtopical Mois Broadler ForestPeticis Vencarz znois forestsPhotographno dataAgaac Conservation FundNon-melanistic 327Nog Kashene Elijo Parti Nationa12,02948,729Tropical and Subtopical Mois Broadler ForestPeticis Vencarz znois forestsPhotograph2017Agastroam Conservation FundNon-melanistic 327Nog Kashene Elijo Parti Nationa12,02948,729Tropical and Subtopical Mois Broadler ForestSuttopical Mois Broadler ForestPet	Non-melanistic 321	Parque Iguazu, Missiones, Argentina	-25,7122	-54,4718	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Photograph	no data	Ceiba Argentina
Non-melanistic2.3Prierio Laenta, Nuisone, Agentina-2.592.6Topical and Subtropical Molt Broadial FrontsAuto Pranta Allantic forestsPriorigrag1.905Ceba AgentinaNon-melanistic25Ruiz Montoya, Misiones, Agentina-2.69843.519863Tropical and Subtropical Molt Broadial FrontsAlto Pranta Allantic forestsPriorigrag2004Ceba AgentinaNon-melanistic52Sin Vicent. Missiones, Aggentina-2.698487.598Tropical and Subtropical Molt Broadial FrontsPriorigrag0.04Ceba AgentinaNon-melanistic27Cockscomb Widelik Sanctuary, Belize16.71448.857.29Tropical and Subtropical Molt Broadial FrontsPriorigragnotaAguarConservation FundNon-melanistic27Kockscomb Widelik Sanctuary, Belize17.01098.857.29Tropical and Subtropical Molt Broadial FrontsPriorigragnotaAguarConservation FundNon-melanistic23Madid National Park, Belize17.01098.857.29Tropical and Subtropical Molt Broadial FrontsPriorigragnotaAguarConservation FundNon-melanistic31Madid National Park, Bolivia-12.68754.857.29Tropical and Subtropical Molt Broadial FrontsSouthwest Anuzon mois forestsPriorigragnotaNegarConservation FundNon-melanistic33Madid National Park, Bolivia-12.687548.5219Tropical and Subtropical Molt Broadial FrontsSouthwest Anuzon mois forestsPriorigragnotaWalce et al 2004Non-melanistic33Madid National Park, Bolivia<	Non-melanistic 322	Parque Iguazu, Missiones, Argentina	-25,6485	-54,4936	Tropical and Subtropical Moist Broadleaf Forest	Alto Parana Atlantic forests	Photograph	no data	Ceiba Argentina
Non-melanistic 324Refer via the inordigent $-20/10^{-3}$ -323083 Implication and subtropical wholes frontised FrontsAuto Farnial Adamic TorestsPhotograph -2003 Cente ArgentinaNon-melanistic 325San Vicente, Misores, Argentina $-26,806$ $-34,509$ Tropical and Subtropical Moist Broadel ForstsAlto Parnai Adamic TorestsPhotograph -0 dataCebta ArgentinaNon-melanistic 327Cockcom Wildlift Sannatury, Belize $16,714$ $-88,8258$ Tropical and Subtropical Moist Broadel ForstsPeteb-Veracuz moist forestsPhotograph -0 dataAlgeaur Conservation FundNon-melanistic 327No Kas Mae Elijo Penti National Park, Bolivia $16,248$ $88,8598$ Tropical and Subtropical Moist Broadel ForestPeteb-Veracuz moist forestsPhotograph -0 dataAlgeaur Conservation FundNon-melanistic 32No Kas Mae Elijo Penti National Park, Bolivia $-12,6875$ $-68,4434$ Tropical and Subtropical Moist Broadel ForestSubtropent Amazon moist forestsPhotograph -0 dataAlgeaur Conservation FundNon-melanistic 33Madid National Park, Bolivia $-12,6875$ $-68,4244$ Tropical and Subtropical ForestSubtropent Amazon moist forestsPhotograph -0 dataWellse ForestNon-melanistic 33Madid National Park, Bolivia $-12,6275$ $-68,6229$ Tropical and Subtropical Moist Broadel ForestSubtropent Amazon moist forestsPhotograph -0 dataWellse et al 2004Non-melanistic 33Madid National Park, Bolivia $-12,629$ $-68,6229$ Tropical and Subtropical Forest </td <td>Non-melanistic 323</td> <td>Puerto Libertad, Misiones, Argentina</td> <td>-25,9226</td> <td>-54,5800</td> <td>Tropical and Subtropical Moist Broadlear Forest</td> <td>Alto Parana Atlantic forests</td> <td>Photograph</td> <td>1995</td> <td>Celba Argentina</td>	Non-melanistic 323	Puerto Libertad, Misiones, Argentina	-25,9226	-54,5800	Tropical and Subtropical Moist Broadlear Forest	Alto Parana Atlantic forests	Photograph	1995	Celba Argentina
Non-melanisticAlto Anumby, Augunita $-20,980$ $-34,590$ Inflytical and Subtropical YousAlto Failus Augunita totissPailor and Augunita CostsCapture and StatisticCostsPailor and AugunitaCostsPailor and Augunita <td>Non-melanistic 324</td> <td>Reserva de Biostera Yaboti, Argentina</td> <td>-27,0773</td> <td>-53,9883</td> <td>Tropical and Subtropical Moist Broadleaf Forest</td> <td>Alto Parana Atlantic forests</td> <td>Photograph</td> <td>2005</td> <td>Ceiba Argentina</td>	Non-melanistic 324	Reserva de Biostera Yaboti, Argentina	-27,0773	-53,9883	Tropical and Subtropical Moist Broadleaf Forest	Alto Parana Atlantic forests	Photograph	2005	Ceiba Argentina
Non-melanisticNon-m	Non-melanistic 325	Ruiz Montoya, Misiones, Argentina	-26,9848	-54,9301	Tropical and Subtropical Moist Broadleaf Forest	Alto Parana Atlantic forests	Capture	no data	Ceiba Argentina
Non-melanistic 328Cockes.Onim Winding SubtryCockes.Onim Winding SubtryCockes.Onim Winding SubtryCockes.Onim Winding SubtryCockes.Onim Winding SubtryNon-melanistic 328Cockes.Onim Vinding SubtryNon-melanistic 328Peteris-Venanczano si forestsPhotographno dataJaguar Conservation FundNon-melanistic 329Noj Kax Meen Elijo Pani National Park, Belize16,0908 $\pm 80,057$ Trojical and Subtrycial Mois Broadleaf ForestPeteris-Venanczano si forestsPhotographno dataJaguar Conservation FundNon-melanistic 331Madidi National Park, Bolivia $-12,002$ $\epsilon 8,434$ Trojical and Subtrycial Mois Broadleaf ForestSouthwest Anzano mois forestsPhotograph0.01aSilver et al 2004Non-melanistic 332Madidi National Park, Bolivia $-12,002$ $\epsilon 8,6123$ Trojical and Subtrycial Mois Broadleaf ForestSouthwest Anzano mois forestsPhotograph2011WCS Bolivia PorgamaNon-melanistic 335Madidi National Park, Bolivia $-12,202$ $\epsilon 8,6232$ Trojical and Subtrycial Mois Broadleaf ForestSouthwest Anzano mois forestsPhotographno dataWallace et al 2004Non-melanistic 335Madidi National Park, Bolivia $-12,202$ $\epsilon 8,632$ Trojical and Subtrycial Mois Broadleaf ForestSouthwest Anzano mois forestsPhotographno dataWallace et al 2004Non-melanistic 337Madidi National Park, Bolivia $-12,202$ $\epsilon 8,632$ Trojical and Subtrycical Mois Broadleaf ForestSouthwest Anzano mois forestsPhotographno dataWallace et al 2004Non-melanistic 337 </td <td>Non-melanistic 320</td> <td>San vicente, Mistolies, Argennia</td> <td>-20,8000</td> <td>-34,3490</td> <td>Tropical and Subtropical Moist Broadleaf Forest</td> <td>Anto Farana Anantic forests</td> <td>Photograph</td> <td>2004</td> <td>Celba Argentina Siliwa et al 2004</td>	Non-melanistic 320	San vicente, Mistolies, Argennia	-20,8000	-34,3490	Tropical and Subtropical Moist Broadleaf Forest	Anto Farana Anantic forests	Photograph	2004	Celba Argentina Siliwa et al 2004
Non-melanisticOnder Jenker, Belize10,04 $-86,208$ Inducta and solutionical Moist Nonlane ProtesPetels Venkuz moistsPhotographno dataJaguat Conservation FundNon-melanistic329Noj Kak Meen Elijo PatisNon-melanisticPetels Vencuz moist forestsPhotograph0.00 ataSilver et al 2004Non-melanistic331Madich National Park, Bolivia-12,68768,424Tropical and Subtropical Moist Broadleaf ForestSouthweet Amazon moist forestsPhotograph0.01 atSilver et al 2004Non-melanistic332Madich National Park, Bolivia-12,268768,2218Tropical and Subtropical Moist Broadleaf ForestSouthweet Amazon moist forestsPhotograph0.01 atWCS Bolivia PorgamNon-melanistic334Madich National Park, Bolivia-12,268768,2219Tropical and Subtropical Moist Broadleaf ForestSouthweet Amazon moist forestsPhotographno dataWallace et al 2003Non-melanistic334Madich National Park, Bolivia-12,269768,622Tropical and Subtropical Moist Broadleaf ForestSouthweet Amazon moist forestsPhotographno dataWallace et al 2003Non-melanistic335Madich National Park, Bolivia-13,069868,6828Tropical and Subtropical Moist Broadleaf ForestSouthweet Amazon moist forestsPhotographno dataWallace et al 2003Non-melanisticMadich National Park, Bolivia-13,069868,6828Tropical and Subtropical Moist Broadleaf ForestSouthweet Amazon moist forestsPhotographno dataExirit	Non-melanistic 327	Cockscomb whulle Salcuary, Belize	16,7144	-00,7239	Tropical and Subtropical Moist Broadleaf Forest	Peter-veracruz moist forests	Photograph	no data	Silver et al 2004
Non-melanistic 330Ted Na Metar high Craut Paulo and ar A, Beitze $10,000$ $38,00074$ Inplicat and subtropical Moist Broadled ForestPeter Vertuz miots forestsPhotograph 10 dutat 2007 $Iaguat Conservation PaulNon-melanistic 331Madid National Park, Bolivia12,08768,434Tropical and Subtropical Moist Broadled ForestSouthwest Anazon moist forestsPhotograph0 dataSilver et al 2004Non-melanistic 332Madid National Park, Bolivia12,20968,7238Tropical and Subtropical Moist Broadled ForestSouthwest Anazon moist forestsPhotograph2011WCS Bolivia PorgamNon-melanistic 333Madid National Park, Bolivia12,26968,6829Tropical and Subtropical Moist Broadled ForestSouthwest Anazon moist forestsPhotograph0 dataWalface et al 2004Non-melanistic 335Madid National Park, Bolivia12,26968,6342Tropical and Subtropical Moist Broadled ForestSouthwest Anazon moist forestsPhotograph0 dataWalface et al 2004Non-melanistic 337Madid National Park, Bolivia13,29968,6342Tropical and Subtropical Moist Broadled ForestSouthwest Anazon moist forestsPhotograph0 dataWalface et al 2004Non-melanistic 336Santa Cruz, Bolivia17,09462,4658Tropical and Subtropical Moist Broadled ForestChiquitato dy forestsPhotograph0 dataWalface et al 2004Non-melanistic 337Madid National Park, Bolivia13,29966,6342Tropical and Subtropical Dy Broadled ForestChiqui$	Non-melanistic 328	Noi Kon Moon Eliiin Danti National Bash Balina	10,2448	-00,0500	Tropical and Subtropical Moist Broadleaf Forest	Peter-veracruz moist forests	Photograph	no data	Jaguar Conservation Fund
Non-melanistic 331Nondick National Park, Bolivia10,700-00,79570Project and Subtropical Moiss Broadled ForestProlographProlographProlographNondick2,007Agglea ConservationNon-melanistic 332Madici National Park, Bolivia-12,902-68,7238Tropical and Subtropical Moiss Broadled ForestSouthwest Amazon moist forestsPhotograph2011WCS Bolivia PorgamNon-melanistic 333Madici National Park, Bolivia-12,202-68,7238Tropical and Subtropical Moiss Broadled ForestSouthwest Amazon moist forestsPhotograph0 dataWallace et al 2003Non-melanistic 334Madici National Park, Bolivia-12,755-68,628Tropical and Subtropical Moiss Broadled ForestSouthwest Amazon moist forestsPhotographno dataWallace et al 2003Non-melanistic 335Madici National Park, Bolivia-12,809-68,6368Tropical and Subtropical Moiss Broadled ForestSouthwest Amazon moist forestsPhotographno dataWallace et al 2004Non-melanistic 335Santa Cruz, Bolivia-13,099-62,4486Tropical and Subtropical Mois Broadled ForestSouthwest Amazon moist forestsPhotographno dataWallace et al 2005Non-melanistic 330Santa Cruz, Bolivia-17,1300-62,4486Tropical and Subtropical Mois Broadled ForestChiquitano dry forestsReportno dataUFMG BrazitNon-melanistic 340Santa Cruz, Bolivia-17,1300-62,4486Tropical and Subtropical Mois Broadled ForestChiquitano dry forestsReportno dataUFMG Brazit <td>Non-melanistic 329</td> <td>The Mountain Dine Pidge Forest Reserve Relize</td> <td>16 0608</td> <td>-89,0374</td> <td>Tropical and Subtropical Moist Broadleaf Forest</td> <td>Petén Vergeruz moist forests</td> <td>Photograph</td> <td>2007</td> <td>Jaguar Conservation Fund</td>	Non-melanistic 329	The Mountain Dine Pidge Forest Reserve Relize	16 0608	-89,0374	Tropical and Subtropical Moist Broadleaf Forest	Petén Vergeruz moist forests	Photograph	2007	Jaguar Conservation Fund
Non-melanistic 332Madidi National Park, Bolivia12,009-60,242.9Hotpical and Subtropical Moist Broadleaf ForestSouthwest Anazon moist forestsPhotograph2011WCS Bolivia PogramNon-melanistic 333Madidi National Park, Bolivia-13,2480-68,2719Tropical and Subtropical Moist Broadleaf ForestSouthwest Anazon moist forestsPhotograph2011WCS Bolivia PogramNon-melanistic 334Madidi National Park, Bolivia-12,802-68,6865Tropical and Subtropical Moist Broadleaf ForestSouthwest Anazon moist forestsPhotographno dataWallace et al 2004Non-melanistic 335Madidi National Park, Bolivia-12,802-68,6865Tropical and Subtropical Grasslands, Savannas and ShrublandsBeni savannaPhotographno dataWallace et al 2004Non-melanistic 335Madidi National Park, Bolivia-13,0698-68,4408Tropical and Subtropical Moist Broadleaf ForestSouthwest Anazon moist forestsPhotographno dataWallace et al 2005Non-melanistic 337Madidi National Park, Bolivia-17,0949-62,4658Tropical and Subtropical Dry Broadleaf ForestSouthwest Anazon moist forestsPhotographno dataUFMG BrazilNon-melanistic 339Santa Cruz, Bolivia-17,0949-62,4658Tropical and Subtropical Dry Broadleaf ForestChiquitan dry forestsPhotographno dataUFMG BrazilNon-melanistic 341San Miguelio Reserve, Santa Cruz, Bolivia-18,4410-61,7425-61,0598Tropical and Subtropical Dry Broadleaf ForestChiquitan dry forestsPhotograph <td>Non-melanistic 331</td> <td>Madidi National Park Bolivia</td> <td>-12 6875</td> <td>-68 4434</td> <td>Tropical and Subtropical Moist Broadleaf Forest</td> <td>Southwest Amazon moist forests</td> <td>Photograph</td> <td>no data</td> <td>Silver et al 2004</td>	Non-melanistic 331	Madidi National Park Bolivia	-12 6875	-68 4434	Tropical and Subtropical Moist Broadleaf Forest	Southwest Amazon moist forests	Photograph	no data	Silver et al 2004
Non-melanistic 333Madidi National Park, Bolivia-12.90-10.92.90-10.92.80-10.92.80-10.92.80-10.92.80-10.92.80-10.92.80-10.92.80-10.92.80-10.92.80-10.92.80-10.92.80-10.92.80-10.92.80-10.92.80-10.92.80-10.92.80-10.86.80-10.92.80-10.92.80-10.86.80-10.92.80-10.92.80-10.86.80-10.92.80-10.92.80-10.86.80-10.92.80-10.86.80-10.86.80-10.86.80-10.86.80-10.86.80-10.86.80-10.86.80-10.86.80-10.86.80-10.86.80-10.86.80-10.86.80-10.86.80-10.86.80-10.86.80-10.86.80-10.86.80-10.86.80-10.86	Non-melanistic 332	Madidi National Park, Bolivia	-12,0075	-68 7238	Tropical and Subtropical Moist Broadleaf Forest	Southwest Amazon moist forests	Photograph	2011	WCS Bolivia Program
Non-melanistic 334Madidi National Park, Bolivia12,7656-86,622Tropical and Subtropical Mois Broadleaf ForestSouthwest Amazon moist forestsPhotographno dataWallace et al 2003Non-melanistic 335Madidi National Park, Bolivia-12,7656-86,622Tropical and Subtropical Mois Broadleaf ForestSouthwest Amazon moist forestsPhotographno dataWallace et al 2004Non-melanistic 337Madidi National Park, Bolivia-13,2096-86,430Tropical and Subtropical Moist Broadleaf ForestSouthwest Amazon moist forestsPhotographno dataWallace et al 2006Non-melanistic 337Madidi National Park, Bolivia-13,2096-86,432Tropical and Subtropical Moist Broadleaf ForestSouthwest Amazon moist forestsPhotographno dataWallace et al 2006Non-melanistic 338Santa Cruz, Bolivia-17,130-62,4458Tropical and Subtropical Dy Broadleaf ForestChiquitano dry forestsReportno dataUFRd BrazilNon-melanistic 340Kaa-lya National Park, Bolivia-18,410-61,3657Tropical and Subtropical Dy Broadleaf ForestChiquitano dry forestsPhotographno dataUFRd BrazilNon-melanistic 341San Mguelito Reserve, Santa Cruz, Bolivia-16,745-61,0598Tropical and Subtropical Dy Broadleaf ForestChiquitano dry forestsPhotographno dataUFRd BrazilNon-melanistic 342Amazonas, Araccura, Colombia-16,745-61,0598Tropical and Subtropical Moist Broadleaf ForestChiquitano dry forestsPhotographno dataUFRd Brazil	Non-melanistic 333	Madidi National Park, Bolivia	-13 2480	-68 2719	Tropical and Subtropical Moist Broadleaf Forest	Southwest Amazon moist forests	Photograph	2011	WCS Bolivia Program
Non-melanistic 335Madid National Park, Bolivia11,8000.000711,90010,9001	Non-melanistic 334	Madidi National Park, Bolivia	-12 7655	-68 6229	Tropical and Subtropical Moist Broadleaf Forest	Southwest Amazon moist forests	Photograph	no data	Wallace et al 2003
Non-melanistic 337Madidi National Park, Bolivia13,06963,430Tropical and Subtropical Mois Broadleaf ForestSouthwest Amazon moist forestsPhotographno dataWallace et al 2005Non-melanistic 337Madidi National Park, Bolivia-13,2999668,6342Tropical and Subtropical Moiss Broadleaf ForestSouthwest Amazon moist forestsPhotographno dataWallace et al 2006Non-melanistic 337Santa Cuz, Bolivia-17,049-62,4658Tropical and Subtropical Dry Broadleaf ForestChiquitano dry forestsPhotographno dataEizrik et al 2003Non-melanistic 339Santa Cuz, Bolivia-17,1049-62,4458Tropical and Subtropical Dry Broadleaf ForestChiquitano dry forestsPhotographno dataUFMG BrazilNon-melanistic 340Kaa-lya National Park, Bolivia-18,440-61,425fropical and Subtropical Dry Broadleaf ForestChiquitano dry forestsPhotographno dataUFMG BrazilNon-melanistic 341Sam Miguelito Reserve, Santa Cruz, Bolivia-16,7425-61,0598Tropical and Subtropical Dry Broadleaf ForestChiquitano dry forestsReport2001PantheraNon-melanistic 342Amazonas, Arrazcuara, Colombia-2,2575-70,8077Tropical and Subtropical Moist Broadleaf ForestCaqueta moist forestsReport2001PantheraNon-melanistic 345Amazonas, Levetrar, Colombia-1,169-69,451Tropical and Subtropical Moist Broadleaf ForestSubmosi forestsReport2001PantheraNon-melanistic 346Amazonas, Levetrar, Colombia	Non-melanistic 335	Madidi National Park, Bolivia	-12 8202	-68 6865	Tropical and Subtropical Grasslands, Savannas and Shrublands	Beni sayanna	Photograph	no data	Wallace et al 2003
Non-melanistic 337Madidi National Park, Bolivia-13,2999-68,6342Tropical and Subtropical Moist Broadleaf ForestSouthwest Amazon moist forestsPhotographno dataWallace et al 2006Non-melanistic 338Santa Cruz, Bolivia-17,1094-62,4658Tropical and Subtropical Dry Broadleaf ForestChiquitano dry forestsReportno dataEizrirk et al 2003Non-melanistic 339Santa Cruz, Bolivia-17,1094-62,4658Tropical and Subtropical Dry Broadleaf ForestChiquitano dry forestsReportno dataEizrirk et al 2003Non-melanistic 340Kaa-Iya National Park, Bolivia-18,4410-61,3557Tropical and Subtropical Dry Broadleaf ForestChiquitano dry forestsPhotographno dataUFMG BrazilNon-melanistic 341Sam Miguelito Reserve, Santa Cruz, Bolivia-16,7425-61,0598Tropical and Subtropical Dry Broadleaf ForestChiquitano dry forestsPhotographno dataArise et al 2006Non-melanistic 342Amazonas, Araracamar, Colombia-12,657-69,651Tropical and Subtropical Moist Broadleaf ForestChiquitano dry forestsReport2001PantheraNon-melanistic 343Amazonas, La Pedrera, Colombia-1,2663-69,6451Tropical and Subtropical Moist Broadleaf ForestCaqueta moist forestsReport2005PantheraNon-melanistic 345Amazonas, La Calombia-1,2663-69,6451Tropical and Subtropical Moist Broadleaf ForestCaqueta moist forestsReport2005PantheraNon-melanistic 347Amazonas, Araracamas, Arara Karan	Non-melanistic 336	Madidi National Park, Bolivia	-13.0698	-68.4808	Tropical and Subtropical Moist Broadleaf Forest	Southwest Amazon moist forests	Photograph	no data	Wallace et al 2005
Non-melanistic 338Santa Cruz, Bolivia-17,094-62,4568Tropical and Subtropical Dry Broadleaf ForestChiquitano dry forestsReportno dataEizirik et al 2003Non-melanistic 339Santa Cruz, Bolivia-17,1300-62,4456Tropical and Subtropical Dry Broadleaf ForestChiquitano dry forestsPhoto graphno dataUFMG BrazilNon-melanistic 340Kaaa-Iya National Park, Bolivia-18,4410-61,3557Tropical and Subtropical Dry Broadleaf ForestChiquitano dry forestsPhotographno dataUFMG BrazilNon-melanistic 341Sam Gueulto Reserve, Santa Cruz, Bolivia-16,7425-61,0557Tropical and Subtropical Dry Broadleaf ForestChiquitano dry forestsPhotographno dataUFMG BrazilNon-melanistic 341Amazonas, Lardraz, Colombia-16,7425-61,0558Tropical and Subtropical Dry Broadleaf ForestChiquitano dry forestsPhotographno dataUFMG BrazilNon-melanistic 342Amazonas, Lardraz, Colombia-12,663-60,6451Tropical and Subtropical Moist Broadleaf ForestCaqueta moist forestsReport2001PantheraNon-melanistic 345Amazonas, Letrica, Colombia-14,149-69,9455Tropical and Subtropical Moist Broadleaf ForestSolimões-Japurá moist forestsReport2006PantheraNon-melanistic 346Amazonas, Puerto Nariño, Colombia4,519-67,5706Tropical and Subtropical Moist Broadleaf ForestSolimões-Japurá moist forestsReport1970PantheraNon-melanistic 346Amazonas, Ruerto Nariño, Colombia <td< td=""><td>Non-melanistic 337</td><td>Madidi National Park, Bolivia</td><td>-13,2999</td><td>-68.6342</td><td>Tropical and Subtropical Moist Broadleaf Forest</td><td>Southwest Amazon moist forests</td><td>Photograph</td><td>no data</td><td>Wallace et al 2006</td></td<>	Non-melanistic 337	Madidi National Park, Bolivia	-13,2999	-68.6342	Tropical and Subtropical Moist Broadleaf Forest	Southwest Amazon moist forests	Photograph	no data	Wallace et al 2006
Non-melanistic 339Santa Cruz, Bolivia-17,130-62,4486Tropical and Subtropical Dry Broadleaf ForestChiquitano dry forestsPhotographno dataUFMG BrazilNon-melanistic 340Kaa-Jya National Park, Bolivia-16,742-61,6357Tropical and Subtropical Grasslands, Savannas and ShrublandsDry ChacoPhotographno dataUFMG BrazilNon-melanistic 341Sam Miguelito Reserve, Santa Cruz, Bolivia-16,742-61,0572-70,802Tropical and Subtropical Dry Broadleaf ForestChiquitano dry forestsPhotographno dataUFMG BrazilNon-melanistic 342Amazonas, Araracuara, Colombia-2,2575-70,802Tropical and Subtropical Mois Broadleaf ForestPurus varzeáReport2001PantheraNon-melanistic 343Amazonas, Lerdera, Colombia-12,663-60,6451Tropical and Subtropical Moist Broadleaf ForestSolimões-Japurá moist forestsReport2005PantheraNon-melanistic 345Amazonas, Lerdera, Colombia4,1499-69,9495Tropical and Subtropical Moist Broadleaf ForestSolimões-Japurá moist forestsReport2001PantheraNon-melanistic 345Amazonas, Neuro Nariño, Colombia4,502-67,8576Tropical and Subtropical Moist Broadleaf ForestSolimões-Japurá moist forestsReport2000PantheraNon-melanistic 346Amazonas, Ruero Nariño, Colombia4,502-67,8576Tropical and Subtropical Moist Broadleaf ForestSolimões-Japurá moist forestsReport1970PantheraNon-melanistic 347Amazonas, Ruero Nariño, Colombi	Non-melanistic 338	Santa Cruz, Bolivia	-17.0949	-62,4658	Tropical and Subtropical Dry Broadleaf Forest	Chiquitano dry forests	Report	no data	Eizirik et al 2003
Non-melanistic 340Kaa-lya National Park, Bolivia-18,4410-61,3557Tropical and Subtropical Grasslands, Savannas and ShrublandsDry ChacoPhotographno dataUFMG BrazilNon-melanistic 341Sam Miguelito Reserve, Santa Cruz, Bolivia-16,7425-61,0598Tropical and Subtropical Dry Broadleaf ForestChiquitano dry forestsPhotographno dataArise et al 2007Non-melanistic 342Anazonas, Araracanar, Colombia-2,2575-70,8027Tropical and Subtropical Moist Broadleaf ForestPurus varzećReport2005PantheraNon-melanistic 343Amazonas, La Pedrera, Colombia-1,2663-69,6451Tropical and Subtropical Moist Broadleaf ForestCaqueta moist forestsReport2001PantheraNon-melanistic 344Amazonas, Leticia, Colombia-4,199-69,9495Tropical and Subtropical Moist Broadleaf ForestSolimões-Japará moist forestsReport2001PantheraNon-melanistic 345Amazonas, Neuro Narino, Colombia-4,557Tropical and Subtropical Moist Broadleaf ForestSolimões-Japará moist forestsReport2006PantheraNon-melanistic 345Amazonas, Caluinari River, Colombia-1,5501-70,3948Tropical and Subtropical Moist Broadleaf ForestSolimões-Japará moist forestsReport1970PantheraNon-melanistic 347Amazonas, Caluinari River, Colombia-1,5501-70,5901Tropical and Subtropical Moist Broadleaf ForestSolimões-Japará moist forestsReport1970PantheraNon-melanistic 347Amazonas, Caluinari River, Colombia <td>Non-melanistic 339</td> <td>Santa Cruz, Bolivia</td> <td>-17.1300</td> <td>-62,4486</td> <td>Tropical and Subtropical Dry Broadleaf Forest</td> <td>Chiquitano dry forests</td> <td>Photograph</td> <td>no data</td> <td>UFMG Brazil</td>	Non-melanistic 339	Santa Cruz, Bolivia	-17.1300	-62,4486	Tropical and Subtropical Dry Broadleaf Forest	Chiquitano dry forests	Photograph	no data	UFMG Brazil
Non-melanistic 341San Miguelito Reserve, Santa Cruz, Bolivia-16,7425-61,0598Tropical and Subtropical Dry Broadleaf ForestChiquitano dry forestsPhotographno dataArispe et al 2007Non-melanistic 342Amazonas, Araracuara, Colombia-2,275-70,8027Tropical and Subtropical Moist Broadleaf ForestPurus varzéaReport2001PantheraNon-melanistic 343Amazonas, Lar defrera, Colombia-1,263-69,6451Tropical and Subtropical Moist Broadleaf ForestSolimões-Japurá moist forestsReport2005PantheraNon-melanistic 344Amazonas, Letica, Colombia-4,149-69,9455Tropical and Subtropical Moist Broadleaf ForestSolimões-Japurá moist forestsReport2006PantheraNon-melanistic 345Amazonas, Puerto Nariño, Colombia4,9522-67,8576Tropical and Subtropical Moist Broadleaf ForestSolimões-Japurá moist forestsReport2006PantheraNon-melanistic 346Amazonas, Ruerto Nariño, Colombia-15,016-70,3948Tropical and Subtropical Moist Broadleaf ForestSilmões-Japurá moist forestsReport1970PantheraNon-melanistic 347Amazonas, Caluniari River, Colombia1,3915-75,5901Tropical and Subtropical Moist Broadleaf ForestSolimões-Japurá moist forestsReport1970PantheraNon-melanistic 348Amazonas, Iagrá-Paraná River, La Chorrera, Colombia-73,0159Tropical and Subtropical Moist Broadleaf ForestSolimões-Japurá moist forestsReport1970Panthera	Non-melanistic 340	Kaa-Iva National Park, Bolivia	-18,4410	-61.3657	Tropical and Subtropical Grasslands, Savannas and Shrublands	Dry Chaco	Photograph	no data	UFMG Brazil
Non-melanistic 342Amazonas, Anracuara, Colombia-2,2575-70,8027Tropical and Subtropical Moist Broadleaf ForestPurus varzeáReport2001PantheraNon-melanistic 343Amazonas, La Pedrera, Colombia-1,2663-69,6451Tropical and Subtropical Moist Broadleaf ForestCaqueta moist forestsReport2005PantheraNon-melanistic 344Amazonas, Leticia, Colombia-4,1499-69,9495Tropical and Subtropical Moist Broadleaf ForestSclimões-Japurá moist forestsReport2006PantheraNon-melanistic 345Amazonas, Puerto Nariño, Colombia4,952-67,8576Tropical and Subtropical Moist Broadleaf ForestSolimões-Japurá moist forestsReport2006PantheraNon-melanistic 346Amazonas, Riernavdo, Colombia-1,5016-70,3948Tropical and Subtropical Moist Broadleaf ForestSolimões-Japurá moist forestsReport1970PantheraNon-melanistic 347Amazonas, Cahuinari River, Colombia-1,55901Tropical and Subtropical Moist Broadleaf ForestSolimões-Japurá moist forestsReport1970PantheraNon-melanistic 348Amazonas, La Chorrera, Colombia-73,0159Tropical and Subtropical Moist Broadleaf ForestSolimões-Japurá moist forestsReport1970Panthera	Non-melanistic 341	San Miguelito Reserve, Santa Cruz, Bolivia	-16,7425	-61,0598	Tropical and Subtropical Dry Broadleaf Forest	Chiquitano dry forests	Photograph	no data	Arispe et al 2007
Non-melanistic 343Amazonas, La Pedrera, Colombia-1,2663-69,6451Tropical and Subtropical Moist Broadleaf ForestCaqueta moist forestsReport2005PantheraNon-melanistic 344Amazonas, Lucicia, Colombia-4,1499-69,9495Tropical and Subtropical Moist Broadleaf ForestSolimões-Japurá moist forestsReport2001PantheraNon-melanistic 345Amazonas, Puerto Nariño, Colombia4,952-67,8576Tropical and Subtropical Moist Broadleaf ForestSolimões-Japurá moist forestsReport2006PantheraNon-melanistic 346Amazonas, Roima rik, re, Colombia-1,5016-70,3948Tropical and Subtropical Moist Broadleaf ForestSolimões-Japurá moist forestsReport1970PantheraNon-melanistic 347Amazonas, Rahunari River, Colombia1,5016-70,3948Tropical and Subtropical Moist Broadleaf ForestNapo moist forestsReport1970PantheraNon-melanistic 347Amazonas, Rahunari River, Colombia-0,708-73,0159Tropical and Subtropical Moist Broadleaf ForestNapo moist forestsReport1970PantheraNon-melanistic 348Amazonas, Igará-Paraná River, La Chorrera, Colombia-0,708-73,0159Tropical and Subtropical Moist Broadleaf ForestSolimões-Japurá moist forestsReport1984Panthera	Non-melanistic 342	Amazonas, Araracuara, Colombia	-2,2575	-70,8027	Tropical and Subtropical Moist Broadleaf Forest	Purus varzeá	Report	2001	Panthera
Non-melanistic 344Amazonas, Leticia, Colombia4,1499-69,9495Tropical and Subtropical Moist Broadleaf ForestSolimões-Japurá moist forestsReport2001PantheraNon-melanistic 345Amazonas, Puerto Nariño, Colombia4,952-67,8576Tropical and Subtropical Moist Broadleaf ForestSolimões-Japurá moist forestsReport2006PantheraNon-melanistic 346Amazonas, Rio Bernardo, Colombia-1,5016-70,3948Tropical and Subtropical Moist Broadleaf ForestSolimões-Japurá moist forestsReport1970PantheraNon-melanistic 347Amazonas, Cabuinari River, Colombia1,3915-75,5901Tropical and Subtropical Moist Broadleaf ForestSolimões-Japurá moist forestsReport1970PantheraNon-melanistic 348Amazonas, Gaurán-Paraná River, La Chorrera, Colombia-0,705Tropical and Subtropical Moist Broadleaf ForestSolimões-Japurá moist forestsReport1970Panthera	Non-melanistic 343	Amazonas, La Pedrera, Colombia	-1,2663	-69,6451	Tropical and Subtropical Moist Broadleaf Forest	Caqueta moist forests	Report	2005	Panthera
Non-melanistic 345 Amazonas, Puerto Nariño, Colombia 4,952 -67,8576 Tropical and Subtropical Grasslands, Savannas and Shrublands Llanos Report 2006 Panthera Non-melanistic 346 Amazonas, Rio Bernardo, Colombia -15016 -70.3948 Tropical and Subtropical Moist Broadleaf Forest Solimões-Japurá moist forests Report 1970 Panthera Non-melanistic 347 Amazonas, Cahuinari River, Colombia 1,3915 -75,5901 Tropical and Subtropical Moist Broadleaf Forest Napo moist forests Report 1970 Panthera Non-melanistic 348 Amazonas, Egará-Paraná River, La Chorrera, Colombia -0708 -73,019 Tropical and Subtropical Moist Broadleaf Forest Solimões-Japurá moist forests Report 1984 Panthera	Non-melanistic 344	Amazonas, Leticia, Colombia	-4,1499	-69,9495	Tropical and Subtropical Moist Broadleaf Forest	Solimões-Japurá moist forests	Report	2001	Panthera
Non-melanistic 346Amazonas, Rio Bernardo, Colombia-1,5016-70,3948Tropical and Subtropical Moist Broadleaf ForestSolimões-Japurá moist forestsReport1970PantheraNon-melanistic 347Amazonas, Cahuinari River, Colombia1,3915-75,5901Tropical and Subtropical Moist Broadleaf ForestNapo moist forestsReport1970PantheraNon-melanistic 348Amazonas, Igará-Paraná River, La Chorrera, Colombia-0,7608-73,0159Tropical and Subtropical Moist Broadleaf ForestSolimões-Japurá moist forestsReport1984Panthera	Non-melanistic 345	Amazonas, Puerto Nariño, Colombia	4,9522	-67,8576	Tropical and Subtropical Grasslands, Savannas and Shrublands	Llanos	Report	2006	Panthera
Non-melanistic 347 Amazonas, Cahuinari River, Colombia 1,3915 -75,5901 Tropical and Subtropical Moist Broadleaf Forest Napo moist forests Report 1970 Panthera Non-melanistic 348 Amazonas, Igará-Paraná River, La Chorrera, Colombia -0,7608 -73,0159 Tropical and Subtropical Moist Broadleaf Forest Solimões-Japurá moist forests Report 1984 Panthera	Non-melanistic 346	Amazonas, Rio Bernardo, Colombia	-1,5016	-70,3948	Tropical and Subtropical Moist Broadleaf Forest	Solimões-Japurá moist forests	Report	1970	Panthera
Non-melanistic 348 Amazonas, Igará-Paraná River, La Chorrera, Colombia 0,7608 -73,0159 Tropical and Subtropical Moist Broadleaf Forest Solimões-Japurá moist forests Report 1984 Panthera	Non-melanistic 347	Amazonas, Cahuinari River, Colombia	1,3915	-75,5901	Tropical and Subtropical Moist Broadleaf Forest	Napo moist forests	Report	1970	Panthera
	Non-melanistic 348	Amazonas, Igará-Paraná River, La Chorrera, Colombia	-0,7608	-73,0159	Tropical and Subtropical Moist Broadleaf Forest	Solimões-Japurá moist forests	Report	1984	Panthera

		Deg-W	GS84					
Samples	Locality / Country	Lat	Long	Biome	Ecoregion	Sample type	Year	Information Source
Non-melanistic 349	Amazonas, Mesai River, Colombia	0,0227	-72,0614	Tropical and Subtropical Moist Broadleaf Forest	Caqueta moist forests	Report	1970	Panthera
Non-melanistic 350	Amazonas, Yarí River, Colombia	-0,4877	-72,3316	Tropical and Subtropical Moist Broadleaf Forest	Caqueta moist forests	Report	1970	Panthera
Non-melanistic 351	Antioquia, Apartadó, Colombia	6,0593	-69,3997	Tropical and Subtropical Grasslands, Savannas and Shrublands	Llanos	Report	1974	Panthera
Non-melanistic 352	Antioquia, El Tigre, Colombia	6,9069	-74,8044	Tropical and Subtropical Moist Broadleaf Forest	Magdalena Valley montane forests	Report	1999	Panthera
Non-melanistic 353	Antioquia, Puerto Berrio, Colombia	6,4728	-74,3309	Tropical and Subtropical Moist Broadleaf Forest	Magdalena-Urabá moist forests	Report	2008	Panthera
Non-melanistic 354	Antioquia, Puerto Berrio, Colombia	6,4417	-74,2889	Tropical and Subtropical Moist Broadleaf Forest	Magdalena-Urabá moist forests	Report	2009	Panthera
Non-melanistic 355	Arauca, Colombia	7,0695	-70,7782	Tropical and Subtropical Grasslands, Savannas and Shrublands	Llanos	Report	1976	Panthera
Non-melanistic 356	Arauca, El Tigre, Colombia	6,7715	-74,7846	Tropical and Subtropical Moist Broadleaf Forest	Magdalena Valley montane forests	Report	1999	Panthera
Non-melanistic 357	Arauca, Lipa River, Colombia	6,7767	-70,1440	Tropical and Subtropical Grasslands, Savannas and Shrublands	Llanos	Report	1977	Panthera
Non-melanistic 358	Bolivar, Colombia	8,5678	-74,1957	Tropical and Subtropical Moist Broadleaf Forest	Magdalena-Urabá moist forests	Report	2009	Panthera
Non-melanistic 359	Bolivar, Colombia	8,5611	-74,1890	Tropical and Subtropical Moist Broadleaf Forest	Magdalena-Urabá moist forests	Report	2009	Panthera
Non-melanistic 360	Bolivar, Colombia	8,5741	-74,1935	Tropical and Subtropical Moist Broadleaf Forest	Magdalena-Urabá moist forests	Report	2006	Panthera
Non-melanistic 361	Bolivar, Isla del Cobado Arjona, Colombia	5,8143	-75,9785	Tropical and Subtropical Moist Broadleaf Forest	Cauca Valley montane forests	Report	2001	Panthera
Non-melanistic 362	Caquetá, Caguán, Colombia	0,3379	-75,0421	Tropical and Subtropical Moist Broadleaf Forest	Napo moist forests	Report	1971	Panthera
Non-melanistic 363	Caquetá, San Antonio, Colombia	1,8126	-78,2515	Tropical and Subtropical Moist Broadleaf Forest	Chocó-Darién moist forests	Report	1971	Panthera
Non-melanistic 364	Casanare, Colombia	6,1796	-70,0806	Tropical and Subtropical Grasslands, Savannas and Shrublands	Llanos	Report	2009	Panthera
Non-melanistic 365	Casanare, Colombia	6,1820	-70,0680	Tropical and Subtropical Grasslands, Savannas and Shrublands	Llanos	Report	2010	Panthera
Non-melanistic 366	Casanare, Colombia	6,8489	-74,7775	Tropical and Subtropical Moist Broadleaf Forest	Magdalena Valley montane forests	Report	1999	Panthera
Non-melanistic 367	Casanare, Colombia	4,4653	-72,3479	Tropical and Subtropical Grasslands, Savannas and Shrublands	Llanos	Report	1999	Panthera
Non-melanistic 368	Casanare, Finca Managua, Colombia	6,2693	-70,1782	Tropical and Subtropical Grasslands, Savannas and Shrublands	Llanos	Report	2005	Panthera
Non-melanistic 369	Casanare, La Tigrera, Colombia	4,4481	-75,3401	Tropical and Subtropical Moist Broadleaf Forest	Magdalena Valley montane forests	Report	1999	Panthera
Non-melanistic 370	Cauca, Colombia	7,9603	-75,1473	Tropical and Subtropical Moist Broadleaf Forest	Magdalena-Urabá moist forests	Report	1999	Panthera
Non-melanistic 371	Cesar, Colombia	8,7152	-73,5306	Tropical and Subtropical Moist Broadleaf Forest	Magdalena Valley montane forests	Report	2010	Panthera
Non-melanistic 372	Cesar, Colombia	9,8374	-73,1936	Tropical and Subtropical Moist Broadleaf Forest	Cordillera Oriental montane forests	Report	2003	Panthera
Non-melanistic 373	Cesar, Colombia	8,9810	-73,4584	Tropical and Subtropical Moist Broadleaf Forest	Magdalena Valley montane forests	Report	2009	Panthera
Non-melanistic 374	Cesar, Colombia	8,0119	-73,7183	Tropical and Subtropical Moist Broadleaf Forest	Magdalena-Urabá moist forests	Report	2008	Panthera
Non-melanistic 375	Cesar, Colombia	7,9881	-73,6057	Tropical and Subtropical Moist Broadleaf Forest	Magdalena-Urabá moist forests	Report	2007	Panthera
Non-melanistic 376	Cesar, Colombia	7,9212	-73,7349	Tropical and Subtropical Moist Broadleaf Forest	Magdalena-Urabá moist forests	Report	2010	Panthera
Non-melanistic 377	Chocó, Ciénaga La Isla, Colombia	10,3576	-74,9527	Tropical and Subtropical Dry Broadleaf Forest	Sinú Valley dry forests	Report	2007	Panthera
Non-melanistic 378	Los Katios National Park, Colombia	7.8415	-77.2481	Tropical and Subtropical Moist Broadleaf Forest	Chocó-Darién moist forests	Report	2005	Panthera
Non-melanistic 379	Cundinamarca, Guaduas, Colombia	5.0676	-74,5969	Tropical and Subtropical Moist Broadleaf Forest	Magdalena Valley montane forests	Report	1999	Panthera
Non-melanistic 380	Cundinamarca, Junin, Colombia	1,3405	-78,1013	Tropical and Subtropical Moist Broadleaf Forest	Northwestern Andean montane forests	Report	2005	Panthera
Non-melanistic 381	Guainía. Colombia	2,5844	-67.5182	Tropical and Subtropical Moist Broadleaf Forest	Japurá-Solimoes-Negro moist forests	Report	1999	Panthera
Non-melanistic 382	Guainía, Isana River, Colombia	2.5025	-67.3634	Tropical and Subtropical Moist Broadleaf Forest	Japurá-Solimoes-Negro moist forests	Report	1975	Panthera
Non-melanistic 383	Guainía, Isana River, Colombia	2.6181	-67,5940	Tropical and Subtropical Moist Broadleaf Forest	Japurá-Solimoes-Negro moist forests	Report	1975	Panthera
Non-melanistic 384	Guaviare, Reserva Natural Nukak, Colombia	1,7206	-71,9339	Tropical and Subtropical Moist Broadleaf Forest	Caqueta moist forests	Report	2001	Panthera
Non-melanistic 385	Guaviare, Guavabero River, Colombia	2.6586	-72.5773	Tropical and Subtropical Moist Broadleaf Forest	Negro-Branco moist forests	Report	1970	Panthera
Non-melanistic 386	Guaviare, Itilla River, Colombia	2.9057	-72.2872	Tropical and Subtropical Grasslands. Savannas and Shrublands	Llanos	Report	1971	Panthera
Non-melanistic 387	Guaviare, Itilla River, Colombia	2.8378	-72.5883	Tropical and Subtropical Grasslands, Savannas and Shrublands	Llanos	Report	1975	Panthera
Non-melanistic 388	Isla de Los Palacios, Colombia	7.0596	-76 8834	Tropical and Subtropical Moist Broadleaf Forest	Chocó-Darién moist forests	Photograph	2008	Reina & Maya 2008
Non-melanistic 389	Magdalena Colombia	6 9301	-74 0228	Tropical and Subtropical Moist Broadleaf Forest	Magdalena-Urabá moist forests	Report	2008	Panthera
Non-melanistic 390	Magdalena Medio Barrancabermeia Colombia	7 1434	-73 9519	Tropical and Subtropical Moist Broadleaf Forest	Magdalena-Urabá moist forests	Report	2007	Panthera
Non-melanistic 391	Meta Mesetas Colombia	5 5236	-70 3238	Tropical and Subtropical Grasslands, Savannas and Shruhlands	Llanos	Report	1997	Panthera
Non-melanistic 392	Meta Sierra de la Macarena National Park Colombia	2 5049	-73 1495	Tropical and Subtropical Moist Broadleaf Forest	Caqueta moist forests	Report	2005	Panthera
Non-melanistic 393	Meta Truillo Colombia	4 1517	-76 3164	Tropical and Subtropical Moist Broadleaf Forest	Cauca Valley montane forests	Report	1999	Panthera
Non-melanistic 394	Nariño Colombia	4 9386	-67 8587	Tropical and Subtropical Grasslands, Savannas and Shruhlands	Llanos	Report	1999	Panthera
Non-melanistic 395	Nariño El Carmen Córdoba Colombia	0.9778	-77 6203	Tropical and Subtropical Moist Broadleaf Forest	Northwestern Andean montane forests	Report	2009	Panthera
Non-melanistic 396	Nariño, La Guarapería Junín Colombia	1 3457	-78 0899	Tropical and Subtropical Moist Broadleaf Forest	Northwestern Andean montane forests	Report	1998	Panthera
Non-melanistic 397	Nariño La Planada Ricaurte Colombia	5 0403	-67 8246	Tropical and Subtropical Grasslands, Savannas and Shruhlands	Llanos	Report	2009	Panthera
Non-melanistic 398	Nariño, Orito Ingi-Andes National Park, Colombia	0 7198	-77 0394	Tropical and Subtropical Moist Broadleaf Forest	Eastern Cordillera real montane forests	Report	2009	Panthera
Non-melanistic 399	North Santander, La Tigra, Colombia	7 3588	-73 4236	Tropical and Subtropical Moist Broadleaf Forest	Mandalena-Urabá moist forests	Report	1000	Panthera
Non-melanistic 400	Peramillo National Park Colombia	7,5500	-76 3974	Tropical and Subtropical Moist Broadleaf Forest	Magdalena-Urabá moist forests	Report	2001	Panthera
Non-melanistic 400	Siorra Novada da Santa Marta National Park, Colombia	10.0257	-70,3974	Tropical and Subtropical Moist Broadlaaf Foract	Santa Marta montana foracta	Report	2001	Panthara
Non-melanistic 401	Santa Ivevaua ue Santa Iviana Ivianonai Faix, Colonibia	-2 6475	-73,4407	Tropical and Subtropical Moist Broadleaf Forest	Solimões-Japurá moist forests	Photograph	2005	Panthera
Non-melanistic 402	Santa Ciara, Colombia Santander, Colombia	=2,0473	-09,0997	Tropical and Subtropical Moist Broadleaf Forest	Cauca Valley montana foraste	Roport	2012	Panthere
Non-melanistic 405	Santander, Colombia	5,0211	-70,4930	Tropical and Subtropical Molet Proadloaf Forest	Cauca vancy monthline forests	Paport	2009	r anutera Dopthore
Non-melanistic 404	Santander, Colombia	1,3291	-13,1133	Tropical and Subtropical Moist Broadloaf Ecret	Magdalana Urabá moist foresta	Report	2010	Panthara
Non-melanistic 405	Santander, Colombia	1,408/	-/3,//13	Tropical and Subtropical Dry Proadlast Forest	Apura Villavicancia dry foreste	Report	2008	Panthara
Non-melanistic 400	Santander, Colombia	5,/4//	-12,0313	Tropical and Subtropical Dry Broadleaf Forest	Apure- v mavicencio dry forests	Report	2008	r anunera Domthone
Non-melanistic 407	Santander, Colombia	5,7726	-/2,0119	Tropical and Subtropical Dry Broadleaf Forest	Apure- villavicencio dry forests	Report	2008	Panthera
mon-melanistic 408	Santander, Colombia	5,/414	-12,0512	riopical and Subtropical Dry Broadlear Forest	Apure- villavicencio dry forests	Keport	2007	Pantnera

		Deg-V	VGS84	Biome				
Samples	Locality / Country	Lat	Long	Biome	Ecoregion	Sample type	Year	Information Source
Non-melanistic 409	Santander, Colombia	5,7407	-72,0319	Tropical and Subtropical Dry Broadleaf Forest	Apure-Villavicencio dry forests	Report	2009	Panthera
Non-melanistic 410	Santander, Colombia	5,7149	-72,0573	Tropical and Subtropical Dry Broadleaf Forest	Apure-Villavicencio dry forests	Report	2010	Panthera
Non-melanistic 411	Santander, Colombia	5,7201	-72,0827	Tropical and Subtropical Dry Broadleaf Forest	Apure-Villavicencio dry forests	Report	2007	Panthera
Non-melanistic 412	Santander, Colombia	5,6400	-72,3211	Tropical and Subtropical Moist Broadleaf Forest	Cordillera Oriental montane forests	Report	2011	Panthera
Non-melanistic 413	Santander, Cimitarra, Colombia	6,2915	-73,9393	Tropical and Subtropical Moist Broadleaf Forest	Magdalena Valley montane forests	Report	2004	Panthera
Non-melanistic 414	Santander, Cimitarra, Colombia	6,2758	-73,9655	Tropical and Subtropical Moist Broadleaf Forest	Magdalena Valley montane forests	Report	2008	Panthera
Non-melanistic 415	Santander, El Tigre, Colombia	6,8894	-74,7835	Tropical and Subtropical Moist Broadleaf Forest	Magdalena Valley montane forests	Report	1999	Panthera
Non-melanistic 416	Santander, La Tigra, Colombia	6,8963	-74,7765	Tropical and Subtropical Moist Broadleaf Forest	Magdalena Valley montane forests	Report	1999	Panthera
Non-melanistic 417	Santander, Magdalena Medio, Puerto Berrío, Colombia	6,5172	-74,4758	Tropical and Subtropical Moist Broadleaf Forest	Magdalena-Urabá moist forests	Report	1971	Panthera
Non-melanistic 418	Sucre, Colombia	8,8185	-74,7479	Tropical and Subtropical Moist Broadleaf Forest	Magdalena-Urabá moist forests	Report	1999	Panthera
Non-melanistic 419	Sucre, Corregimiento de Bocacerrada, San Onofre, Colombia	9,7347	-75,5086	Desert and Xeric Shrublands	Guajira-Barranquilla xeric scrub	Report	2001	Panthera
Non-melanistic 420	Sucre, Corregimiento de Labarcé, San Onofre, Colombia	9,7187	-75,5271	Desert and Xeric Shrublands	Guajira-Barranquilla xeric scrub	Report	1998	Panthera
Non-melanistic 421	Tolima, Colombia	4,5583	-75,1182	Tropical and Subtropical Moist Broadleaf Forest	Magdalena Valley montane forests	Report	1999	Panthera
Non-melanistic 422	Valle del Cauca, Colombia	3,8262	-76,6653	Tropical and Subtropical Moist Broadleaf Forest	Northwestern Andean montane forests	Report	1999	Panthera
Non-melanistic 423	Vaupes, Miraflores, Colombia	1,6096	-72,2928	Tropical and Subtropical Moist Broadleaf Forest	Caqueta moist forests	Report	1957	Panthera
Non-melanistic 424	Vaupes, Miraflores, Colombia	1,5766	-72,2452	Tropical and Subtropical Moist Broadleaf Forest	Caqueta moist forests	Report	2003	Panthera
Non-melanistic 425	Vaupes, Apaporis River, Jijirimo, Colombia	1.4863	-72.3815	Tropical and Subtropical Moist Broadleaf Forest	Caqueta moist forests	Report	1970	Panthera
Non-melanistic 426	Vaupés, Yuruparí, Colombia	1,5961	-72.2973	Tropical and Subtropical Moist Broadleaf Forest	Caqueta moist forests	Report	1975	Panthera
Non-melanistic 427	Vereda La Chana. Colombia	2.9340	-76.5221	Tropical and Subtropical Moist Broadleaf Forest	Cauca Valley montane forests	Report	2008	Panthera
Non-melanistic 428	Vichada. Colombia	3,5505	-69.1797	Tropical and Subtropical Moist Broadleaf Forest	Negro-Branco moist forests	Report	2010	Panthera
Non-melanistic 429	Vichada, Colombia	3,5505	-69,1953	Tropical and Subtropical Moist Broadleaf Forest	Negro-Branco moist forests	Report	2010	Panthera
Non-melanistic 430	Vichada, Colombia	3,4106	-68,9762	Tropical and Subtropical Moist Broadleaf Forest	Negro-Branco moist forests	Report	2007	Panthera
Non-melanistic 431	Vichada, Colombia	4,5596	-68,7225	Tropical and Subtropical Moist Broadleaf Forest	Negro-Branco moist forests	Report	2008	Panthera
Non-melanistic 432	Vichada, Colombia	4,2361	-69.0322	Tropical and Subtropical Moist Broadleaf Forest	Negro-Branco moist forests	Report	2010	Panthera
Non-melanistic 433	Vichada, Colombia	4.3744	-68.4130	Tropical and Subtropical Moist Broadleaf Forest	Negro-Branco moist forests	Report	2010	Panthera
Non-melanistic 434	Vichada, Colombia	4.4747	-68.8774	Tropical and Subtropical Moist Broadleaf Forest	Negro-Branco moist forests	Report	1990	Panthera
Non-melanistic 435	Vichada, Colombia	3,7068	-68.6312	Tropical and Subtropical Moist Broadleaf Forest	Negro-Branco moist forests	Report	2010	Panthera
Non-melanistic 436	Vichada, Colombia	4.0869	-68.3705	Tropical and Subtropical Moist Broadleaf Forest	Negro-Branco moist forests	Report	2011	Panthera
Non-melanistic 437	Vichada Bohonawi El Tunarro National Park Colombia	5 5985	-68 2550	Tropical and Subtropical Grasslands, Savannas and Shrublands	Llanos	Report	2005	Panthera
Non-melanistic 438	Vichada Brazo Amanaven Colombia	5 5763	-68 5796	Tropical and Subtropical Grasslands, Savannas and Shrublands	Llanos	Report	2005	Panthera
Non-melanistic 439	Vichada Caño Grande, Colombia	4 6380	-68 6470	Tropical and Subtropical Moist Broadleaf Forest	Negro-Branco moist forests	Report	2000	Panthera
Non-melanistic 440	Vichada Caño Juriene, Colombia	6 2689	-67 7266	Tropical and Subtropical Grasslands, Savannas and Shrublands	Llanos	Report	2005	Panthera
Non-melanistic 441	Vichada Cumaribo Colombia	4 8361	-71 5322	Tropical and Subtropical Grasslands, Savannas and Shrublands	Llanos	Report	2010	Panthera
Non-melanistic 442	Vichada, El Tapón, El Tuparro National Park, Colombia	6 2823	-67 8075	Tropical and Subtropical Grasslands, Savannas and Shrublands	Lianos	Report	2005	Panthera
Non-melanistic 443	Vichada, El Tuparro National Park, Colombia	4 8272	-68 0456	Tropical and Subtropical Moist Broadleaf Forest	Negro-Branco moist forests	Report	1973	Panthera
Non-melanistic 444	Vichada, El Fugarro Fututoliar Futi, Colombia	6 1732	-67 9094	Tropical and Subtropical Grasslands, Savannas and Shrublands	Llanos	Report	2005	Panthera
Non-melanistic 445	Vichada, Finca Monserrate, Colombia	5 6383	-68.0678	Tropical and Subtropical Grasslands, Savannas and Shrublands	Llanos	Report	2005	Panthera
Non-melanistic 445	Vichada, i med Monserrate, Colombia	4 5905	-70 8805	Tropical and Subtropical Grasslands, Savannas and Shrublands	Lianos	Report	2005	Panthera
Non-melanistic 447	Vichada, Gaviolas, Colombia	5 7328	-69 9579	Tropical and Subtropical Grasslands, Savannas and Shrublands	Lianos	Report	1000	Panthera
Non malanistic 448	Vichada, El Tuperro National Bark, Colombia	5 4068	68 1065	Tropical and Subtropical Grasslands, Savannas and Shrublands	Lianos	Report	2005	Banthara
Non-melanistic 448	Vichada, El Tuparlo National Faix, Colombia	4 6522	-08,1005	Tropical and Subtropical Grasslands, Savannas and Shrublands	Lianos	Report	2005	Panthara
Non malanistic 450	Vichada, Nuco River, Colombia	4,0522	68 3802	Tropical and Subtropical Grasslands, Savannas and Shrublands	Lianos	Report	1070	Banthara
Non-melanistic 450	Vichada, Suare River, Colombia	4,9047	-08,3802	Tropical and Subtropical Moist Provided Forest	Nagro Branco mojet foraste	Report	2005	Panthara
Non-melanistic 451	Vichada, Tuparro River, Colombia	3,5745	-09,2137	Tropical and Subtropical Moist Broadleaf Forest	Negro Branco moist forests	Report	2005	Panthera
Non-melanistic 452	Vichada, Tuparto Kiver, Colombia	2 6802	-08,0010	Tropical and Subtropical Moist Broadleaf Forest	Apure-Villavicencio dry foreste	Report	1000	Panthera
Non-melanistic 455	Vichada, Santa Helena, Colonida Vichada, Samonia Albaniaal, Colombia	2,0802	-72,7980	Tropical and Subtropical Dry Broadlash Forest	Name Brone maint forests	Demont	2005	Douthors
Non-melanistic 454	Chamina Albancai, Colombia	4,6425	-07,9347	Tropical and Subtropical Moist Broadleaf Forest	Telemeneen mentena foreste	Dhataamah	2005	Douthors
Non-melanistic 455	Concernational Park Costa Rica	9,0443	-85,2520	Tropical and Subtropical Moist Broadleaf Forest	Isthmian Pacific moist forests	Photograph	2010	Panthera
Non-melanistic 458	Corcovado National Park, Costa Rica	8,0024	-85,5027	Tropical and Subtropical Moist Broadleaf Forest	Isthmian-Pacific moist forests	Photograph	2010	Panulera
Non-melanistic 457	Corcovado National Park, Costa Rica	8,0024	-85,5027	Tropical and Subtropical Moist Broadleaf Forest	Isthmian-Pacific moist forests	Photograph	2010	Panulera
Non-melanistic 458	Osa Biodiversity Research Center, Costa Rica	8,5399	-83,4262	Tropical and Subtropical Moist Broadlear Forest	Istimian-Pacific moist forests	Photograph	no data	Pantnera
Non-melanistic 459	Puerto Limon, Costa Rica	9,9684	-83,0424	Tropical and Subtropical Moist Broadlear Forest	Istimian-Atlantic moist forests	Report	no data	Eizink et al 2003
Non-meianistic 460	Upaia, Aiajuela, Costa Rica	10,8129	-85,0320	Tropical and Subtropical Moist Broadleaf Forest	Istimian-Atlantic moist forests	Report	no data	EIZITIK et al 2003
Non-melanistic 461	Ecuatorian Amazon, Ecuador	-1,0/16	-/5,5368	Tropical and Subtropical Moist Broadleaf Forest	Napo moist forests	Photograph	2009	Panthera
Non-melanistic 462	Houarani Ecolodge, Ecuador	-1,3223	-/5,9486	Tropical and Subtropical Moist Broadleaf Forest	Napo moist forests	Photograph	no data	Panthera
Non-melanistic 463	Tiputini Biological Station, Ecuador	0,0625	-78,6470	Iropical and Subtropical Moist Broadleat Forest	Northwestern Andean montane forests	Photograph	no data	Panthera
Non-melanistic 464	Tiputini Biological Station, Ecuador	0,0164	-78,6720	Tropical and Subtropical Moist Broadleaf Forest	Northwestern Andean montane forests	Photograph	no data	Panthera
Non-melanistic 465	Yasuní National Park, Ecuador	-0,5593	-76,6567	Tropical and Subtropical Moist Broadleaf Forest	Napo moist forests	Photograph	no data	World Wild Fund
Non-melanistic 466	Yasuní National Park, Ecuador	-0,5593	-76,6567	Tropical and Subtropical Moist Broadleaf Forest	Napo moist forests	Photograph	2010	World Wild Fund
Non-melanistic 467	Arizona, United States	32,1765	-110,8795	Desert and Xeric Shrublands	Sonoran desert	Photograph	1965	Brown & Gonzalez 2000
Non-melanistic 468	Cochise County, Mountains of Southeastern Arizona, United States	31,3736	-110,7216	Tropical and Subtropical Coniferous Forests	Sierra Madre Occidental pine-oak forests	Photograph	2011	Northern Jaguar Project

Complea	Lesslitz / Country	Deg-V	VGS84	Biome	Formation	Comula tema	Veen	Information Courses
Sampies	Locality / Country	Lat	Long	вюте	Ecoregion	Sample type	rear	information Source
Non-melanistic 469	Graterville, Arizona, United States	31,6910	-110,7896	Tropical and Subtropical Coniferous Forests	Sierra Madre Occidental pine-oak forests	Photograph	1919	National Museum of Natural History USA
Non-melanistic 470	Helveta, Arizona, United States	31,7646	-110,7478	Tropical and Subtropical Coniferous Forests	Sierra Madre Occidental pine-oak forests	Photograph	1917	National Museum of Natural History USA
Non-melanistic 471	Mills County, Texas, United States	31,4523	-98,7370	Temperate Grasslands, Savannas and Shrublands	Central forest-grasslands transition	Photograph	1903	National Museum of Natural History USA
Non-melanistic 472	Southern Arizona, United States	31,4754	-111,2030	Desert and Xeric Shrublands	Chihuahuan desert	Photograph	2004	National Museum of Natural History USA
Non-melanistic 473	Arbolverde, Yaloch, Guatemala	17,2942	-89,2449	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 474	Arbolverde, Yaloch, Guatemala	17,3188	-89,2512	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 475	Arbolverde, Yaloch, Guatemala	17,3585	-89,2456	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 476	Arbolverde, Yaloch, Guatemala	17,3514	-89,2235	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2005	Wildlife Conservation Society
Non-melanistic 477	Arbolverde, Yaloch, Guatemala	17,3188	-89,2512	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2005	Wildlife Conservation Society
Non-melanistic 478	Arbolverde, Yaloch, Guatemala	17,2890	-89,2789	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 479	Arbolverde, Yaloch, Guatemala	17,3390	-89,2340	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 480	Arbolverde, Yaloch, Guatemala	17,3675	-89,2160	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 481	Burral, Guatemala	17,3600	-90,3693	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2011	Wildlife Conservation Society
Non-melanistic 482	Burral, Guatemala	17,3600	-90,3693	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2011	Wildlife Conservation Society
Non-melanistic 483	Burral, Guatemala	17,3299	-90,3633	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2008	Wildlife Conservation Society
Non-melanistic 484	Burral, Guatemala	17,3202	-90,3619	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2008	Wildlife Conservation Society
Non-melanistic 485	Burral, Guatemala	17,3659	-90,3802	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2008	Wildlife Conservation Society
Non-melanistic 486	Burral, Guatemala	17,3657	-90,3803	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2008	Wildlife Conservation Society
Non-melanistic 487	Burral, Guatemala	17,3299	-90,3633	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2008	Wildlife Conservation Society
Non-melanistic 488	Burral, Guatemala	17,3497	-90,3502	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2008	Wildlife Conservation Society
Non-melanistic 489	Burral, Guatemala	17,3500	-90,3808	Tropical and Subtropical Moist Broadlear Forest	Peten-veracruz moist forests	Photograph	2008	Wildlife Conservation Society
Non-melanistic 490	Burral, Guatemala	17,3301	-90,3509	Tropical and Subtropical Moist Broadlear Forest	Peten-veracruz moist forests	Photograph	2008	Wildlife Conservation Society
Non-metanistic 491	Burrai, Guatemaia	17,3093	-90,3617	Tropical and Subtropical Moist Broadlear Forest	Peten-veracruz moist forests	Photograph	2008	Wildlife Conservation Society
Non-metanistic 492	Carmelita Arisap, Guatemala	17,4929	-90,2009	Tropical and Subtropical Moist Broadlear Forest	Peten-veracruz moist forests	Photograph	2004	Wildlife Conservation Society
Non-melanistic 493	Carmelita Arisap, Guatemala	17,4805	-90,1603	Tropical and Subtropical Moist Broadleaf Forest	Peten-Veracruz moist forests	Photograph	2004	Wildlife Conservation Society
Non-melanistic 494	Carmelita Arisap, Guatemala	17,5104	-90,1426	Tropical and Subtropical Moist Broadleaf Forest	Peten-Veracruz moist forests	Photograph	2004	Wildlife Conservation Society
Non-melanistic 495	Camalita Afisan, Guatemala	17,4963	-90,0923	Tropical and Subtropical Moist Broadleaf Forest	Peter-Veracruz moist forests	Photograph	2004	Wildlife Concernation Society
Non-melanistic 498	Carmelita Afisap, Guatemala	17,4612	-90,1743	Tropical and Subtropical Moist Broadleaf Forest	Peter Veracruz moist forests	Photograph	2004	Wildlife Conservation Society
Non malanistic 497	Carmelita Afisan Guatemala	17,4954	-90,1551	Tropical and Subtropical Moist Broadleaf Forest	Potén Varacruz moist forests	Photograph	2004	Wildlife Conservation Society
Non-melanistic 498	Carmelita Afisan Guatemala	17,4905	-90,0954	Tropical and Subtropical Moist Broadleaf Forest	Petén-Verseniz moist forests	Photograph	2004	Wildlife Conservation Society
Non-melanistic 500	Carmelita Afisan Guatemala	17,4739	-90 1185	Tropical and Subtropical Moist Broadleaf Forest	Petén-Verseniz moist forests	Photograph	2004	Wildlife Conservation Society
Non-melanistic 501	Carmelita Afisan Guatemala	17 5273	-90 1673	Tropical and Subtropical Moist Broadleaf Forest	Petén-Verseniz moist forests	Photograph	2004	Wildlife Conservation Society
Non-melanistic 502	Dos Lagunas Guatemala	17,6967	-89 5148	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2004	Wildlife Conservation Society
Non-melanistic 503	Dos Lagunas, Guatemala	17,6967	-89.5148	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2004	Wildlife Conservation Society
Non-melanistic 504	Dos Lagunas, Guatemala	17,7160	-89,5361	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2004	Wildlife Conservation Society
Non-melanistic 505	Dos Lagunas, Guatemala	17,7356	-89,5294	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2004	Wildlife Conservation Society
Non-melanistic 506	Dos Lagunas, Guatemala	17.6812	-89.5242	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2004	Wildlife Conservation Society
Non-melanistic 507	Dos Lagunas, Guatemala	17,6967	-89,5148	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2004	Wildlife Conservation Society
Non-melanistic 508	East Mirador Rio Azul National Park, Guatemala	17,7570	-89,3385	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 509	East Mirador Rio Azul National Park, Guatemala	17,7725	-89,2766	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 510	East Mirador Rio Azul National Park, Guatemala	17,7503	-89,3223	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 511	East Mirador Rio Azul National Park, Guatemala	17,7109	-89,4116	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 512	East Mirador Rio Azul National Park, Guatemala	17,7725	-89,2766	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 513	East Mirador Rio Azul National Park, Guatemala	17,7512	-89,3042	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 514	East Mirador Rio Azul National Park, Guatemala	17,7021	-89,2718	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 515	East Mirador Rio Azul National Park, Guatemala	17,6993	-89,2347	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 516	East Mirador Rio Azul National Park, Guatemala	17,7603	-89,2877	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 517	East Mirador Rio Azul National Park, Guatemala	17,7603	-89,2877	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 518	East Mirador Rio Azul National Park, Guatemala	17,7725	-89,2766	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 519	East Mirador Rio Azul National Park, Guatemala	17,7603	-89,2877	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 520	East Mirador Rio Azul National Park, Guatemala	17,7243	-89,2606	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 521	East Mirador Rio Azul National Park, Guatemala	17,6993	-89,2347	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 522	East Mirador Rio Azul National Park, Guatemala	17,7849	-89,2651	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 523	East Mirador Rio Azul National Park, Guatemala	17,7362	-89,3696	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 524	East Mirador Rio Azul National Park, Guatemala	17,6993	-89,2347	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 525	La Gloria, Lechugal, Guatemala	17,5680	-89,8796	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2007	Wildlife Conservation Society
Non-melanistic 526	La Gloria, Lechugal, Guatemala	17,5744	-89,8612	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2007	Wildlife Conservation Society
Non-melanistic 527	La Gloria, Lechugal, Guatemala	17,5886	-89,7382	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2007	Wildlife Conservation Society
Non-melanistic 528	La Gloria, Lechugal, Guatemala	17,6462	-89,7424	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2007	Wildlife Conservation Society

Samples	Locality / Country	Deg-V	VGS84	Biomo	Featurian	Sample town	Voor	Information Source
Sampies	Locality / Country	Lat	Long	Biome	Ecoregion	Sample type	rear	information Source
Non-melanistic 529	La Gloria, Lechugal, Guatemala	17,6295	-89,7453	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2007	Wildlife Conservation Society
Non-melanistic 530	La Gloria, Lechugal, Guatemala	17,6086	-89,7772	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2007	Wildlife Conservation Society
Non-melanistic 531	Lachuá National Park, Guatemala	15,8746	-90,6516	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2008	Panthera
Non-melanistic 532	Laguna Del Tigre National Park, Guatemala	17,3570	-90,3698	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 533	Laguna Del Tigre National Park, Guatemala	17,2667	-90,3593	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 534	Laguna Del Tigre National Park, Guatemala	17,3032	-90,3634	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 535	Laguna Del Tigre National Park, Guatemala	17,3565	-90,3740	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 536	Laguna Del Tigre National Park, Guatemala	17,3652	-90,3900	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 537	Laguna Del Tigre National Park, Guatemala	17,2914	-90,3439	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 538	Laguna Del Tigre National Park, Guatemala	17,3029	-90,3652	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 539	Laguna Del Tigre National Park, Guatemala	17,2389	-90,3257	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 540	Laguna Del Tigre National Park, Guatemala	17,2835	-90,3652	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 541	Libertad, Guatemala	15,2782	-89,5984	Tropical and Subtropical Moist Broadleaf Forest	Central American Atlantic moist forests	Photograph	2004	National Museum of Natural History USA
Non-melanistic 542	Tikal National Park, Guatemala	17,2266	-89,6803	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2005	Wildlife Conservation Society
Non-melanistic 543	Tikal National Park, Guatemala	17,2266	-89,6803	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2005	Wildlife Conservation Society
Non-melanistic 544	Tikal National Park, Guatemala	17,2027	-89,6086	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2005	Wildlife Conservation Society
Non-melanistic 545	Tikal National Park, Guatemala	17,2163	-89,5364	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2005	Wildlife Conservation Society
Non-melanistic 546	Tikal National Park, Guatemala	17,2266	-89,6803	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2005	Wildlife Conservation Society
Non-melanistic 547	Tikal National Park, Guatemala	17,2248	-89,6618	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2005	Wildlife Conservation Society
Non-melanistic 548	Tikal National Park, Guatemala	17,2163	-89,5364	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2005	Wildlife Conservation Society
Non-melanistic 549	Tikal National Park, Guatemala	17,2247	-89,6622	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2005	Wildlife Conservation Society
Non-melanistic 550	Tikal National Park, Guatemala	17.2267	-89.6808	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2005	Wildlife Conservation Society
Non-melanistic 551	Tikal National Park, Guatemala	17.2267	-89.6808	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2005	Wildlife Conservation Society
Non-melanistic 552	West Mirador Rio Azul National Park, Guatemala	17.2247	-89.6622	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 553	West Mirador Rio Azul National Park, Guatemala	17.6531	-89.9410	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 554	West Mirador Rio Azul National Park. Guatemala	17,7356	-89.8754	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 555	West Mirador Rio Azul National Park. Guatemala	17,7356	-89.8754	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 556	West Mirador Rio Azul National Park Guatemala	17,7195	-89 9081	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 557	West Mirador Rio Azul National Park Guatemala	17 7195	-89 9081	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 558	West Mirador Rio Azul National Park, Guatemala	17,6844	-89 9297	Tropical and Subtropical Moist Broadleaf Forest	Petén-Veracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non malanistic 550	West Mirador Rio Azul National Park, Guatemala	17,0044	80,0000	Tropical and Subtropical Moist Broadloof Forest	Botán Voracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non malanistic 559	West Mirador Rio Azul National Park, Guatemala	17,6040	80 8477	Tropical and Subtropical Moist Broadloof Forest	Botán Voracruz moist forests	Photograph	2009	Wildlife Conservation Society
Non-melanistic 561	Control Guiano, Franch Guiano	2 1971	-89,8477	Tropical and Subtropical Moist Broadleaf Forest	Guianan moist forests	Papart	2009	Figirik at al 2002
Non-melanistic 562	Irocoubo Eronoh Guunna	5 2106	53,4807	Tropical and Subtropical Moist Broadleaf Forest	Guianan moist forests	Photograph	2003	Eizink et al 2005
Non-melanistic 563	Irocoubo, French Guyana	5 3196	-53 2210	Tropical and Subtropical Moist Broadleaf Forest	Guianan moist forests	Photograph	2007	Kwata Association
Non malanistic 564	Incourbo, French Guyana	5 3106	53 2210	Tropical and Subtropical Moist Broadloof Forest	Guianan moist forests	Photograph	2008	Kwata Association
Non-melanistic 565	Irocoubo, French Guyana	5 2106	-53,2210	Tropical and Subtropical Moist Broadleaf Forest	Guianan moist forests	Photograph	2008	Kwata Association
Non-melanistic 505	Incountry French Guyana	5,3190	-53,2210	Tropical and Subtropical Moist Broadleaf Forest	Cuianan moist forests	Dhotograph	2007	Kwata Association
Non-melanistic 567	Incountry French Guyana	5,3190	-53,2210	Tropical and Subtropical Moist Broadleaf Forest	Cuianan moist forests	Dhotograph	2008	Kwata Association
Non-meranistic 567	Hocoubo, Flench Guyana	5,5190	-53,2210	Topical and Subiropical Moist Broadlear Forest	Gulanan moist forests	Photograph	2008	Kwata Association
Non-meranistic 568	Kaw Mountain, French Guyana	4,5545	-32,2370	Topical and Subiropical Moist Broadlear Forest	Gulanan moist forests	Photograph	2010	Kwata Association
Non-melanistic 569	Kaw Mountain, French Guyana	4,5343	-52,2576	Tropical and Subtropical Moist Broadleaf Forest	Gulanan moist forests	Photograph	2009	Kwata Association
Non-melanistic 570	Kaw Mountain, French Guyana	4,5343	-52,2576	Tropical and Subtropical Moist Broadleaf Forest	Gulanan moist forests	Photograph	2009	Kwata Association
Non-melanistic 571	Kaw Mountain, French Guyana	4,5343	-52,2576	Tropical and Subtropical Moist Broadleaf Forest	Gulanan moist forests	Photograph	2009	Kwata Association
Non-melanistic 572	Kaw Mountain, French Guyana	4,5343	-52,2576	Tropical and Subtropical Moist Broadleaf Forest	Guianan moist forests	Photograph	2009	Kwata Association
Non-melanistic 573	Kaw Mountain, French Guyana	4,5343	-52,2576	Tropical and Subtropical Moist Broadleaf Forest	Guianan moist forests	Photograph	2009	Kwata Association
Non-melanistic 5/4	Saint Sabbat, French Guyana	5,3846	-53,5966	Tropical and Subtropical Moist Broadleaf Forest	Guianan moist forests	Photograph	2010	Kwata Association
Non-melanistic 575	Saint Sabbat, French Guyana	5,3846	-53,5966	Tropical and Subtropical Moist Broadleaf Forest	Guianan moist forests	Photograph	2009	Kwata Association
Non-melanistic 576	Karanambu Ranch, Guyana	3,8905	-58,7528	Tropical and Subtropical Moist Broadleaf Forest	Guianan moist forests	Photograph	2011	Panthera
Non-melanistic 577	Karanambu Ranch, Guyana	3,6101	-59,3201	Tropical and Subtropical Moist Broadleaf Forest	Guianan moist forests	Photograph	2011	Panthera
Non-melanistic 578	Rapununi River, Guyana	3,9060	-58,7365	Tropical and Subtropical Moist Broadleaf Forest	Guianan moist forests	Photograph	2011	Panthera
Non-melanistic 579	Rupununi, Upper Takutu Essequibo, Guyana	4,0435	-58,6453	Tropical and Subtropical Moist Broadleaf Forest	Guianan moist forests	Photograph	1965	National Museum of Natural History USA
Non-melanistic 580	Shea, Essequibo River, Guyana	2,8451	-58,9838	Tropical and Subtropical Moist Broadleaf Forest	Guianan moist forests	Photograph	2009	Panthera
Non-melanistic 581	Calakmul Biosphere Reserve, Mexico	18,1260	-89,7928	Tropical and Subtropical Moist Broadleaf Forest	Yucatán moist forests	Photograph	no data	Northern Jaguar Project
Non-melanistic 582	Calakmul Biosphere Reserve, Mexico	19,1811	-89,5456	Tropical and Subtropical Moist Broadleaf Forest	Yucatán moist forests	Photograph	no data	Northern Jaguar Project
Non-melanistic 583	Chiapas, Mexico	16,2124	-91,9870	Tropical and Subtropical Coniferous Forests	Central American pine-oak forests	Photograph	no data	National Museum of Natural History USA
Non-melanistic 584	El Aribabi Conservation Ranch, Mexico	30,8142	-110,5113	Tropical and Subtropical Coniferous Forests	Sierra Madre Occidental pine-oak forests	Photograph	no data	Northern Jaguar Project
Non-melanistic 585	El Aribabi Conservation Ranch, Mexico	30,8393	-110,4664	Tropical and Subtropical Coniferous Forests	Sierra Madre Occidental pine-oak forests	Photograph	2010	Northern Jaguar Project
Non-melanistic 586	Jalisco, Mexico	21,5591	-104,1197	Tropical and Subtropical Coniferous Forests	Sierra Madre Occidental pine-oak forests	Report	2003	Eizirik et al 2003
Non-melanistic 587	La Tuxpena, Champoton, Mexico	28,8180	-106,1671	Desert and Xeric Shrublands	Chihuahuan desert	Photograph	1909	National Museum of Natural History USA
Non-melanistic 588	Los Pavos, Mexico	29.6299	-109 2546	Tropical and Subtropical Dry Broadleaf Forest	Sonoran-Sinaloan transition subtropical dry forest	Photograph	2010	Northern Jaguar Project

Comulas Locality / Comtra		Deg-W	/GS84	Biome				
Samples	Locality / Country	Lat	Long	Biome	Ecoregion	Sample type	Year	Information Source
Non-melanistic 589	Los Pavos, Mexico	29,6299	-109,2546	Tropical and Subtropical Dry Broadleaf Forest	Sonoran-Sinaloan transition subtropical dry forest	Photograph	2010	Northern Jaguar Project
Non-melanistic 590	Los Pavos, Mexico	29,6637	-109,4435	Desert and Xeric Shrublands	Chihuahuan desert	Photograph	2008	Northern Jaguar Project
Non-melanistic 591	Nuevo Leon, Monterrey, Mexico	25,8677	-98,7508	Desert and Xeric Shrublands	Tamaulipan mezquital	Photograph	no data	Northern Jaguar Project
Non-melanistic 592	Oaxaca, Mexico	17,0980	-97,0408	Tropical and Subtropical Coniferous Forests	Sierra Madre del Sur pine-oak forests	Photograph	2009	Figel et al 2009
Non-melanistic 593	Oaxaca, Mexico	16,8519	-97,1496	Tropical and Subtropical Coniferous Forests	Sierra Madre del Sur pine-oak forests	Photograph	2009	Figel et al 2009
Non-melanistic 594	Rancho Caracol Reserve, Mexico	23,9727	-98,2339	Tropical and Subtropical Moist Broadleaf Forest	Veracruz moist forests	Photograph	no data	Ocelot Project
Non-melanistic 595	Rancho Caracol Reserve, Mexico	23,9488	-98,1908	Tropical and Subtropical Moist Broadleaf Forest	Veracruz moist forests	Photograph	no data	Ocelot Project
Non-melanistic 596	Rancho Caracol Reserve, Mexico	23,9488	-98,1908	Tropical and Subtropical Moist Broadleaf Forest	Veracruz moist forests	Photograph	no data	Ocelot Project
Non-melanistic 597	Rancho Caracol Reserve, Mexico	23,9488	-98,1908	Tropical and Subtropical Moist Broadleaf Forest	Veracruz moist forests	Photograph	no data	Ocelot Project
Non-melanistic 598	San Juan De Los Reyes, Mexico	24,4180	-103,0727	Desert and Xeric Shrublands	Meseta Central matorral	Photograph	1939	National Museum of Natural History USA
Non-melanistic 599	San Luis Potosi, Mexico	30,5858	-107,0847	Desert and Xeric Shrublands	Chihuahuan desert	Report	2003	Eizirik et al 2003
Non-melanistic 600	Sian Kaan Biosphere Reserve, Mexico	19,3837	-87,7368	Tropical and Subtropical Moist Broadleaf Forest	Yucatán moist forests	Photograph	2011	Northern Jaguar Project
Non-melanistic 601	Sian Kaan Biosphere Reserve, Mexico	20,1036	-87,5422	Tropical and Subtropical Moist Broadleaf Forest	Yucatán moist forests	Photograph	no data	Panthera
Non-melanistic 602	Sierra Bacatete, Sonora, Mexico	21,7187	-103,9055	Tropical and Subtropical Coniferous Forests	Sierra Madre Occidental pine-oak forests	Photograph	no data	Naturalia Institute
Non-melanistic 603	Sierra Nanchititla, Mexico	24,6875	-107,0237	Tropical and Subtropical Dry Broadleaf Forest	Sinaloan dry forests	Photograph	2006	Vilchis et al 2008
Non-melanistic 604	Sinaloa, Mexico	23,9721	-106,3665	Tropical and Subtropical Dry Broadleaf Forest	Sinaloan dry forests	Photograph	no data	Northern Jaguar Project
Non-melanistic 605	Zubaral, Zacatecas, Mexico	22,8795	-102,3693	Desert and Xeric Shrublands	Central Mexican matorral	Photograph	2008	Northern Jaguar Project
Non-melanistic 606	Departamento Atlantico Sul, Nicaragua	12,9266	-83,9814	Tropical and Subtropical Moist Broadleaf Forest	Central American Atlantic moist forests	Report	2003	Eizirik et al 2003
Non-melanistic 607	Departamento Rio San Juan, Nicaragua	11,4886	-84,5633	Tropical and Subtropical Moist Broadleaf Forest	Isthmian-Atlantic moist forests	Report	2003	Eizirik et al 2003
Non-melanistic 608	Barro Colorado, Chagres National Park, Panama	9,3118	-79,4309	Tropical and Subtropical Moist Broadleaf Forest	Isthmian-Atlantic moist forests	Photograph	2009	Panthera
Non-melanistic 609	Bocas Del Toro, Panama	9,3828	-82,4209	Tropical and Subtropical Moist Broadleaf Forest	Isthmian-Atlantic moist forests	Photograph	2004	National Museum of Natural History USA
Non-melanistic 610	Chepo, Panama	9,1406	-78,9984	Tropical and Subtropical Moist Broadleaf Forest	Isthmian-Atlantic moist forests	Report	2003	Eizirik et al 2003
Non-melanistic 611	Cocobolo Nature Reserve, Panama	7,9302	-78,1327	Tropical and Subtropical Moist Broadleaf Forest	Isthmian-Atlantic moist forests	Photograph	2010	Panthera
Non-melanistic 612	Chaco Biosphere Reserve, Paraguay	-19,5535	-60,4862	Tropical and Subtropical Grasslands, Savannas and Shrublands	Dry Chaco	Photograph	2007	Muñoz et al 2007
Non-melanistic 613	Misiones, Paraguay	-25,8326	-54,8279	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Photograph	2004	Ceiba Argentina
Non-melanistic 614	Morumbi Reserve, Paraguay	-25,9319	-55,3281	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Photograph	2010	McBride 2010
Non-melanistic 615	Peruvian Amazon, Peru	-5,8907	-73,5395	Tropical and Subtropical Moist Broadleaf Forest	Southwest Amazon moist forests	Photograph	2008	Furtado et al 2008
Non-melanistic 616	Peruvian Amazon, Peru	-5,8907	-73,5395	Tropical and Subtropical Moist Broadleaf Forest	Southwest Amazon moist forests	Photograph	no data	World Wild Fund
Non-melanistic 617	Peruvian Amazon, Peru	-1,5894	-75,5625	Tropical and Subtropical Moist Broadleaf Forest	Napo moist forests	Photograph	no data	National Museum of Natural History USA
Non-melanistic 618	Peruvian Amazon, Peru	-1,5894	-75,5625	Tropical and Subtropical Moist Broadleaf Forest	Napo moist forests	Photograph	no data	National Museum of Natural History USA
Non-melanistic 619	Peruvian Amazon, Peru	-1,5894	-75,5625	Tropical and Subtropical Moist Broadleaf Forest	Napo moist forests	Photograph	no data	National Museum of Natural History USA
Non-melanistic 620	Peruvian Amazon, Peru	-1,5894	-75,5625	Tropical and Subtropical Moist Broadleaf Forest	Napo moist forests	Photograph	no data	National Museum of Natural History USA
Non-melanistic 621	Peruvian Amazon, Peru	-1,5760	-75,4727	Tropical and Subtropical Moist Broadleaf Forest	Napo moist forests	Photograph	no data	National Museum of Natural History USA
Non-melanistic 622	Peruvian Amazon, Peru	-1,8311	-75,5367	Tropical and Subtropical Moist Broadleaf Forest	Napo moist forests	Photograph	no data	National Museum of Natural History USA
Non-melanistic 623	Peruvian Amazon, Peru	-1,8311	-/5,536/	Tropical and Subtropical Moist Broadleaf Forest	Napo moist forests	Photograph	no data	National Museum of Natural History USA
Non-melanistic 624	Los Amigos Biological Station, Peru	-12,2900	-70,2892	Tropical and Subtropical Moist Broadlear Forest	Southwest Amazon moist forests	Photograph	no data	World Wild Fund
Non-melanistic 625	Napo Tigre Reserve, Peru	-1,0014	-75,5221	Tropical and Subtropical Moist Broadlear Forest	Napo moist forests	Photograph	2008	National Museum of Natural History USA
Non-melanistic 626	Amananan Duna Divar Vanamula	5,0465	-30,4443	Tropical and Subtropical Moist Broadlast Forest	Guianan moist forests	Photograph	1070	World Wild Fuld
Non-melanistic 627	Amazonas, Fute River, Venezuela	7,5850	-70,3832	Tropical and Subtropical Div Broadland Forest	Apure- vinavicencio di y forests	Conturn	2002	Faintera Einizik et el 2002
Non-melanistic 628	Boliver Verezuela	3,1771	-02,5317	Tropical and Subtropical Moist Broadlash Forest	Cuianan Highlands moist forests	Capture	2005	Eizirik et al 2003
Non-melanistic 629	Cours Valloy Venezuela	4,7072	-03,7432	Tropical and Subtropical Moist Broadlaaf Forest	Guianan Highlands moist forests	Photograph	1005	National Musaum of Natural History USA
Non-melanistic 631	Falcon Venezuela	4,0502	-63 3623	Tropical and Subtropical Moist Broadleaf Forest	Guianan Highlands moist forests	Capture	2003	Fizirik et al 2003
Non-melanistic 632	Falcon Venezuela	4,1938	-64.0416	Tropical and Subtropical Moist Broadleaf Forest	Guianan Highlande moist forests	Capture	2003	Eizirik et al 2003
Non-melanistic 633	Rubio Venezuela	7 7081	-72 3909	Tropical and Subtropical Moist Broadleaf Forest	Cordillera Oriental montane forests	Report	1008	Panthera
Non-melanistic 634	Liatumã Biological Reserve Amazonas Brazil	-4 9311	-66 5212	Tropical and Subtropical Moist Broadleaf Forest	Juruá-Purus moist forests	Photograph	2013	Mastozoological Network Brazil
Non-melanistic 635	Madidi National Park Bolivia	-13 1374	-68 5371	Tropical and Subtropical Moist Broadleaf Forest	Southwest Amazon moist forests	Photograph	2013	Wildlife Conservation Society
Non-melanistic 636	Madidi National Park, Bolivia	-13.2182	-68.6993	Tropical and Subtropical Moist Broadleaf Forest	Southwest Amazon moist forests	Photograph	2011	Wildlife Conservation Society
Non-melanistic 637	Madidi National Park, Bolivia	-13.2379	-68,4309	Tropical and Subtropical Moist Broadleaf Forest	Southwest Amazon moist forests	Photograph	2011	Wildlife Conservation Society
Non-melanistic 638	Madidi National Park, Bolivia	-13.2765	-68,5373	Tropical and Subtropical Moist Broadleaf Forest	Southwest Amazon moist forests	Photograph	2011	Wildlife Conservation Society
Non-melanistic 639	Madidi National Park, Bolivia	-13,2802	-68.6125	Tropical and Subtropical Moist Broadleaf Forest	Southwest Amazon moist forests	Photograph	2011	Wildlife Conservation Society
Non-melanistic 640	Madidi National Park, Bolivia	-13.3812	-68,5980	Tropical and Subtropical Moist Broadleaf Forest	Southwest Amazon moist forests	Photograph	2011	Wildlife Conservation Society
Non-melanistic 641	Madidi National Park, Bolivia	-13,4580	-68,7463	Tropical and Subtropical Moist Broadleaf Forest	Southwest Amazon moist forests	Photograph	2011	Wildlife Conservation Society
Non-melanistic 642	Cerro Blanco Forest, Ecuador	-2,0237	-80,0365	Tropical and Subtropical Moist Broadleaf Forest	Western Ecuador moist forests	Photograph	2008	Pro Forest Foundation
Non-melanistic 643	Cerro Blanco Forest, Ecuador	-2,0334	-80,0183	Tropical and Subtropical Moist Broadleaf Forest	Western Ecuador moist forests	Photograph	2011	Pro Forest Foundation
Non-melanistic 644	Cerro Blanco Forest, Ecuador	-2,0617	-80,0294	Tropical and Subtropical Moist Broadleaf Forest	Western Ecuador moist forests	Photograph	2011	Pro Forest Foundation
Non-melanistic 645	Cerro Blanco Forest, Ecuador	-2,0882	-80,0723	Tropical and Subtropical Moist Broadleaf Forest	Western Ecuador moist forests	Photograph	2011	Pro Forest Foundation
Non-melanistic 646	Santa Rita Mountains, United States	31,8225	-110,7738	Tropical and Subtropical Coniferous Forests	Sierra Madre Occidental pine-oak forests	Photograph	2012	USFWS
Non-melanistic 647	Corumba, Mato Grosso do Sul, Brazil	-19,0609	-57,5832	Tropical and Subtropical Dry Broadleaf Forest	Chiquitano dry forests	Photograph	1913	American Museum of Natural History USA
Non-melanistic 648	Corumba, Mato Grosso do Sul, Brazil	-19,0502	-57,2822	Flooded Grasslands and Savannas	Pantanal	Photograph	1913	American Museum of Natural History USA

Samples Locality / Country	Deg-V	VGS84	Biome	Formation	Comple trace	Veen	Information Course	
Samples	Locanty / Country	Lat	Long	вюте	Ecoregion	Sample type	rear	Information Source
Non-melanistic 649	Branco River, Flexal, Roraima, Brazil	0,3166	-61,7396	Tropical and Subtropical Moist Broadleaf Forest	Uatuma-Trombetas moist forests	Photograph	1927	American Museum of Natural History USA
Non-melanistic 650	Manaus, Amazonas, Brazil	-2,9511	-60,1803	Tropical and Subtropical Moist Broadleaf Forest	Uatuma-Trombetas moist forests	Photograph	s/ data	American Museum of Natural History USA
Non-melanistic 651	Fazenda Alegre, Paraguay River, Mato Grosso do Sul, Brazil	-18,2515	-57,3981	Flooded Grasslands and Savannas	Pantanal	Photograph	1935	American Museum of Natural History USA
Non-melanistic 652	Fazenda Alegre, Paraguay River, Mato Grosso do Sul, Brazil	-18,3084	-57,3562	Flooded Grasslands and Savannas	Pantanal	Photograph	1935	American Museum of Natural History USA
Non-melanistic 653	Paraná, Brazil	-24,9125	-54,3611	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Photograph	1914	American Museum of Natural History USA
Non-melanistic 654	Paraná, Brazil	-25,2931	-53,8902	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Photograph	1914	American Museum of Natural History USA
Non-melanistic 655	Paraná, Brazil	-24,8356	-54,1806	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Photograph	1914	American Museum of Natural History USA
Non-melanistic 656	Corumba, Mato Grosso do Sul, Brazil	-19,2927	-57,3920	Flooded Grasslands and Savannas	Pantanal	Photograph	s/ data	American Museum of Natural History USA
Non-melanistic 657	Corumba, Mato Grosso do Sul, Brazil	-18,9024	-57,5263	Flooded Grasslands and Savannas	Pantanal	Photograph	s/ data	American Museum of Natural History USA
Non-melanistic 658	Ayapel, Cordoba, Colombia	8,3236	-75,1537	Tropical and Subtropical Moist Broadleaf Forest	Magdalena-Urabá moist forests	Photograph	1950	American Museum of Natural History USA
Non-melanistic 659	Kartabo Point, Cuyuni, Guyana	4,0916	-58,4244	Tropical and Subtropical Moist Broadleaf Forest	Guianan moist forests	Photograph	1919	American Museum of Natural History USA
Non-melanistic 660	Guaymas, Box Canyon, Sonora, Mexico	28,0774	-110,8297	Desert and Xeric Shrublands	Sonoran desert	Photograph	1940	American Museum of Natural History USA
Non-melanistic 661	Yucatan, Mexico	18,8235	-88,8488	Tropical and Subtropical Moist Broadleaf Forest	Yucatán moist forests	Photograph	s/ data	American Museum of Natural History USA
Non-melanistic 662	Yucatan, Mexico	20,4564	-88,9262	Tropical and Subtropical Dry Broadleaf Forest	Yucatán dry forests	Photograph	s/ data	American Museum of Natural History USA
Non-melanistic 663	Yucatan, Mexico	20,6674	-88,4620	Tropical and Subtropical Dry Broadleaf Forest	Yucatán dry forests	Photograph	s/ data	American Museum of Natural History USA
Non-melanistic 664	Yucatan, Mexico	20,6714	-88,9158	Tropical and Subtropical Dry Broadleaf Forest	Yucatán dry forests	Photograph	s/ data	American Museum of Natural History USA
Non-melanistic 665	Nayarit, Mexico	21,8281	-104,8572	Tropical and Subtropical Dry Broadleaf Forest	Sinaloan dry forests	Photograph	1959	American Museum of Natural History USA
Non-melanistic 666	Escuinapa, Sinaloa, Mexico	22,8478	-105,7851	Tropical and Subtropical Dry Broadleaf Forest	Sinaloan dry forests	Photograph	s/ data	American Museum of Natural History USA
Non-melanistic 667	Escuinapa, Sinaloa, Mexico	22,9238	-105,8051	Tropical and Subtropical Dry Broadleaf Forest	Sinaloan dry forests	Photograph	1904	American Museum of Natural History USA
Non-melanistic 668	Escuinapa, Sinaloa, Mexico	22,8924	-105,8241	Tropical and Subtropical Dry Broadleaf Forest	Sinaloan dry forests	Photograph	1904	American Museum of Natural History USA
Non-melanistic 669	Escuinapa, Sinaloa, Mexico	22,9101	-105,7092	Tropical and Subtropical Dry Broadleaf Forest	Sinaloan dry forests	Photograph	1904	American Museum of Natural History USA
Non-melanistic 670	Escuinapa, Sinaloa, Mexico	22,8311	-105,6800	Tropical and Subtropical Dry Broadleaf Forest	Sinaloan dry forests	Photograph	1904	American Museum of Natural History USA
Non-melanistic 671	San Rafael del Norte, Jinotega, Nicaragua	13,2297	-86,0973	Tropical and Subtropical Coniferous Forests	Central American pine-oak forests	Photograph	1909	American Museum of Natural History USA
Non-melanistic 672	San Ramon, Matagalpa, Nicaragua	12,9272	-85,8284	Tropical and Subtropical Coniferous Forests	Central American pine-oak forests	Photograph	1909	American Museum of Natural History USA
Non-melanistic 673	Tapalisa, Panama	8,3466	-81,4756	Tropical and Subtropical Moist Broadleaf Forest	Isthmian-Pacific moist forests	Photograph	1915	American Museum of Natural History USA
Non-melanistic 674	Ucayali River, Loreto, Peru	-9,4804	-73,0929	Tropical and Subtropical Moist Broadleaf Forest	Southwest Amazon moist forests	Photograph	1927	American Museum of Natural History USA
Non-melanistic 675	Aguaytia River, Ucayali, Peru	-9,5719	-72,8371	Tropical and Subtropical Moist Broadleaf Forest	Southwest Amazon moist forests	Photograph	1923	American Museum of Natural History USA
Non-melanistic 676	Iquitos, Maynas, Peru	-3,8385	-72,9119	Tropical and Subtropical Moist Broadleaf Forest	Southwest Amazon moist forests	Photograph	1924	American Museum of Natural History USA
Non-melanistic 677	Iquitos, Maynas, Peru	-3,9971	-73,2851	Tropical and Subtropical Moist Broadleaf Forest	Iquitos varzeá	Photograph	1925	American Museum of Natural History USA
Non-melanistic 678	Iquitos, Maynas, Peru	-3,4269	-73,2271	Tropical and Subtropical Moist Broadleaf Forest	Napo moist forests	Photograph	1926	American Museum of Natural History USA
Non-melanistic 679	Cenepa River, Amazonas, Peru	-4,5240	-78,0630	Tropical and Subtropical Moist Broadleaf Forest	Ucayali moist forests	Photograph	1929	American Museum of Natural History USA
Non-melanistic 680	Iquitos, Maynas, Peru	-3,4394	-72,5120	Tropical and Subtropical Moist Broadleaf Forest	Iquitos varzeá	Photograph	1925	American Museum of Natural History USA
Non-melanistic 681	Iquitos, Maynas, Peru	-3,6262	-73,1969	Tropical and Subtropical Moist Broadleaf Forest	Iquitos varzeá	Photograph	1925	American Museum of Natural History USA
Non-melanistic 682	Napo River, Loreto, Peru	-2,5371	-73,5589	Tropical and Subtropical Moist Broadleaf Forest	Solimões-Japurá moist forests	Photograph	1927	American Museum of Natural History USA
Non-melanistic 683	Iquitos, Maynas, Peru	-3,5645	-73,1331	Tropical and Subtropical Moist Broadleaf Forest	Iquitos varzeá	Photograph	1928	American Museum of Natural History USA
Non-melanistic 684	Iquitos, Maynas, Peru	-3,9550	-72,5671	Tropical and Subtropical Moist Broadleaf Forest	Southwest Amazon moist forests	Photograph	1930	American Museum of Natural History USA
Non-melanistic 685	Lower Ucayali River, Peru	-8,4110	-74,4243	Tropical and Subtropical Moist Broadleaf Forest	Iquitos varzeá	Photograph	s/ data	American Museum of Natural History USA
Non-melanistic 686	Lower Ucayali River, Peru	-8,1001	-74,5307	Tropical and Subtropical Moist Broadleaf Forest	Iquitos varzeá	Photograph	s/ data	American Museum of Natural History USA
Non-melanistic 687	Maranon River, Peru	-4,8513	-76,7074	Tropical and Subtropical Moist Broadleaf Forest	Napo moist forests	Photograph	1927	American Museum of Natural History USA
Non-melanistic 688	Maripa, Sucre, Bolivar, Venezuela	7,4667	-65,1186	Tropical and Subtropical Grasslands, Savannas and Shrublands	Llanos	Photograph	s/ data	American Museum of Natural History USA
Non-melanistic 689	Yariguies National Park, Santander, Colombia	7,7794	-74,0222	Tropical and Subtropical Moist Broadleaf Forest	Magdalena-Urabá moist forests	Photograph	2013	American Museum of Natural History USA
Non-melanistic 690	Iguaçu National Park, Paraná, Brazil	-25,5372	-53,9274	Tropical and Subtropical Moist Broadleaf Forest	Alto Paraná Atlantic forests	Photograph	2013	CENAP ICMBio
Non-melanistic 691	Bananeiras, Amazonas, Brazil	-8,1561	-66,7061	Tropical and Subtropical Moist Broadleaf Forest	Purus-Madeira moist forests	Photograph	2013	British Museum
Non-melanistic 692	Autlan, Mexico	19,9175	-104,5312	Tropical and Subtropical Coniferous Forests	Trans-Mexican Volcanic Belt pine-oak forests	Photograph	2013	American Museum of Natural History USA
Non-melanistic 693	Cusiana River, Colombia	4,8244	-72,6316	Tropical and Subtropical Grasslands, Savannas and Shrublands	Llanos	Photograph	2013	American Museum of Natural History USA
Non-melanistic 694	Cusiana River, Colombia	4,8244	-72,6316	Tropical and Subtropical Grasslands, Savannas and Shrublands	Llanos	Photograph	2013	American Museum of Natural History USA
Non-melanistic 695	Cusiana River, Colombia	4,8244	-72,6316	Tropical and Subtropical Grasslands, Savannas and Shrublands	Llanos	Photograph	2013	American Museum of Natural History USA
Non-melanistic 696	Jeanette Kawas National Park, Honduras	15,8555	-87,6313	Tropical and Subtropical Moist Broadleaf Forest	Central American Atlantic moist forests	Photograph	2013	Castañeda et al 2013
No color 01	Sorriso, Mato Grosso, Brazil	-12,7788	-55,9314	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - MACN
No color 02	Descalvado, Mato Grosso, Brazil	-16,7500	-57,7000	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - FMNH
No color 03	Pocone, Mato Grosso, Brazil	-16,0666	-56,6304	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - MSU
No color 04	Dardanelos, Bolivia	-10,7670	-66,7330	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - CI
No color 05	Chimore, Bolivia	-17,0000	-65,0000	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - FMNH
No color 06	Tambopata River, Peru	-12,8380	-69,2949	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - CI
No color 07	Puerto Pardo, Peru	-12,5170	-68,6990	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - CI
No color 08	Platanal, Venezuela	1,9166	-64,0785	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - MVZ
No color 09	Balbina, Amazonas, Brazil	-3,0000	-68,0000	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - NRM
No color 10	Puerto Resistencia, Peru	-3,3330	-74,5830	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - FMNH
No color 11	Jutica, Amazonas, Brazil	-3,7666	-64,3769	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - FMNH
No color 12	Santiago River, Ecuador	-3,4830	-78,2330	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - CI

Samplas	Locality / Country	Deg-V	VGS84	Biomo	Feoregian	Sample type	Voor	Information Source
Samples	Locality / Country	Lat	Long	вюше	Ecoregion	Sample type	Tear	Information Source
No color 13	Rosa Zarate, Ecuador	0,2755	-79,6126	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - MSU
No color 14	Xingu River, Pará, Brazil	-5,4965	-52,7073	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - MSU
No color 15	Manaus, Amazonas, Brazil	-2,5000	-60,0000	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - PBDB
No color 16	Belém, Pará, Brazil	-1,4500	-48,4833	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - FMNH
No color 17	Santo Antonio, Amazonas, Brazil	-2,2500	-60,7500	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - FMNH
No color 18	Orinoco Valley, Venezuela	3,6500	-65,7699	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - NMNH
No color 19	Essequibo River, Guyana	3,2500	-59,2500	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - CI
No color 20	Essequibo River, Guyana	3,2679	-58,7789	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - CI
No color 21	Tapanahoni River, Suriname	4,2699	-54,7379	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - CI
No color 22	Georgetown, Guyana	6,8000	-58,1666	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - FMNH
No color 23	Ranchos Viejos, Venezuela	7,0000	-62,2500	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - NMNH
No color 24	Villa Montes, Bolivia	-20,9666	-62,8499	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - LACM
No color 25	Macaya, Colombia	0,5333	-75,0999	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - FMNH
No color 26	Emiliano Zapata, Mexico	17,5090	-91,9810	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - NMNH
No color 27	San Clemente, Mexico	16,2750	-93,7259	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - MZTG
No color 28	Arroyo Seco, Mexico	21,4830	-99,7036	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - CNMA
No color 29	Upala, Costa Rica	10,9600	-85.0500	No data - Maxent Control Model	No data - Maxent Control Model	Database	2013	Global Biodiversity Information Facility - KUBI

APÊNDICE 2: TABELA SUPLEMENTAR CAPÍTULO 3

Registros Puma yagouaroundi

Supplementary table 1 - Location records for Puma yagouaroundi.

Samples	Location	Coordinates		Biome	Ecoregion	Sample type	Vear	r Source
Samples	Location	Latitude	Longitude	Biolile	Ecoregion	Sample type	Tear	Source
Dark 01	Tarauacá, Acre, Brazil	-8,1909	-70,4363	Tropical and Subtropical Moist Broadleaf Forests	Southwestern Amazonian Moist Forests	Photograph	no data	Accioly Gomes
Dark 02	Manaus, Amazonas, Brazil	-2,3333	-60,0000	Tropical and Subtropical Moist Broadleaf Forests	Uatuma-Trombetas moist forests	Report	no data	Tadeu de Oliveira
Dark 03	Sucundurí River, Amazonas, Brazil	-5,5194	-59,6442	Tropical and Subtropical Moist Broadleaf Forests	Southwestern Amazonian Moist Forests	Photograph	no data	Johnny Jensen
Dark 04	Calcoene, Amapá, Brazil	2.6576	-51.3178	Tropical and Subtropical Moist Broadleaf Forests	Guianan Moist Forests	Report	no data	Micheline Vergara
Dark 05	Vila Velha, Amaná, Brazil	3,2428	-51,2468	Tropical and Subtropical Moist Broadleaf Forests	Guianan Moist Forests	Photograph	2010	Benoit de Thoisy
Dark 06	Andaraí Babia Brazil	-12 8000	-41 3333	Tropical and Subtropical Dry Broadleaf Forests	Atlantic Dry Forests	Report	no data	Tadeu de Oliveira
Dark 07	Barreiras Bahia Brazil	-12,0000	-45 0000	Tropical and Subtropical Grasslands Savannas and Shrublands	Cerrado	Report	no data	Tadeu de Oliveira
Dark 08	Boqueirão da Onca National Park Babia Brazil	-10 2000	-41 4167	Deserts and Xeric Shrublands	Caatinga	Report	no data	Tadeu de Oliveira
Dark 00	Elisio Medrado, Babia, Brazil	12 0333	-30 5167	Tropical and Subtropical Moist Broadleaf Forests	Atlantic Forests	Report	no data	Tadeu de Oliveira
Dark 0)	Ensio Mediado, Bana, Brazil	12,0522	-37,5107	Tropical and Subtropical Moist Droadleaf Forests	Atlantic Forests	Deport	no data	Kavin Elashan
Dark 10	Fazenda Faineiras Gandu, Bania, Brazil	-13,9332	-39,4000	Tropical and Subtropical Moist Broadleaf Forests	Atlantic Forests	Report	no data	Kevin Flesher
Dark 11	Nichemi Igrapiuna Reserve, Bana, Brazi	-15,8410	-39,1991	Deserts and Xaris Cherklands	Atlantic Forests	Report	no data	Tedan de Oliveire
Dark 12	Potengi, Ceará, Brazil	-7,1369	-39,9345	Deserts and Xeric Shrublands	Caatinga	Report	no data	Tadeu de Oliveira
Dark 13	Potengi, Ceara, Brazil	-7,1369	-39,9345	Deserts and Xeric Shrublands	Caatinga	Report	no data	Tadeu de Oliveira
Dark 14	Quebrada do Pingador, Ceara, Brazil	-4,3000	-38,9833	Tropical and Subtropical Moist Broadleaf Forests	Atlantic Forests	Report	no data	Tadeu de Oliveira
Dark 15	Quebrada do Pingador, Ceara, Brazil	-4,3000	-38,9833	I ropical and Subtropical Moist Broadleaf Forests	Atlantic Forests	Report	no data	Tadeu de Oliveira
Dark 16	Brasília National Park, Brazil	-15,6442	-47,9458	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2008	Keila Juarez
Dark 17	Cumari, Goiás, Brazil	-18,2402	-48,1779	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	no data	Emiliano Ramalho
Dark 18	Bacabeira, Maranhão, Brazil	-2,9667	-44,3000	Tropical and Subtropical Moist Broadleaf Forests	Maranhão Babaçu forests	Report	no data	Tadeu de Oliveira
Dark 19	Barra do Corda, Maranhão, Brazil	-5,3688	-44,9373	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2013	Will Mesquita
Dark 20	Mirador State Park, Maranhão, Brazil	-6,6667	-45,3333	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Report	no data	Tadeu de Oliveira
Dark 21	Gurupi Reserve, Maranhão, Brazil	-3,5000	-46,3167	Tropical and Subtropical Moist Broadleaf Forests	Tocantins/Pindare moist forests	Report	no data	Tadeu de Oliveira
Dark 22	Diamantina, Minas Gerais, Brazil	-18,4127	-43,5234	Tropical and Subtropical Moist Broadleaf Forests	Atlantic Forests	Report	2010	Guilherme Ferreira
Dark 23	Martinho Campos, Minas Gerais, Brazil	-19,3293	-45,2428	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2009	Fabricio Santos
Dark 24	Rio Doce State Park, Minas Gerais, Brazil	-19,7464	-42,5261	Tropical and Subtropical Moist Broadleaf Forests	Atlantic Forests	Photograph	2007	Leonardo Viana
Dark 25	Rio Preto State Park, Minas Gerais, Brazil	-18,1666	-43,3794	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2007	Instituto Biotropicos
Dark 26	Rio Preto State Park, Minas Gerais, Brazil	-18,1666	-43,3794	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2007	Instituto Biotropicos
Dark 27	Rio Preto State Park, Minas Gerais, Brazil	-18,1490	-43,3663	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2007	Instituto Biotropicos
Dark 28	Rio Preto State Park, Minas Gerais, Brazil	-18,1490	-43,3663	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2007	Instituto Biotropicos
Dark 29	Veredas do Peruacu National Park, Minas Gerais, Brazil	-15.0923	-44.2414	Tropical and Subtropical Dry Broadleaf Forests	Atlantic Dry Forests	Photograph	2007	Instituto Biotropicos
Dark 30	Veredas do Peruacu National Park Minas Gerais Brazil	-15 0842	-44 2663	Tropical and Subtropical Dry Broadleaf Forests	Atlantic Dry Forests	Photograph	2007	Instituto Biotropicos
Dark 31	Veredas do Peruaçu National Park, Minas Gerais, Brazil	-15 0842	-44 2663	Tropical and Subtropical Dry Broadleaf Forests	Atlantic Dry Forests	Photograph	2007	Instituto Biotropicos
Dark 32	Veredas do Peruaçu National Park, Minas Gerais, Brazil	-15 1145	-44 2422	Tropical and Subtropical Dry Broadleaf Forests	Atlantic Dry Forests	Photograph	2007	Instituto Biotropicos
Dark 33	Veredas do Peruaçu National Park, Minas Gerais, Brazil	-15 1145	-44 2422	Tropical and Subtropical Dry Broadleaf Forests	Atlantic Dry Forests	Photograph	2007	Instituto Biotropicos
Dark 34	Veredas do Peruaçu National Park, Minas Gerais, Brazil	-15 1077	-44.2377	Tropical and Subtropical Dry Broadleaf Forests	Atlantic Dry Forests	Photograph	2007	Instituto Biotropicos
Dark 25	Veredas de Peruagu National Park, Minas Gerais, Brazil	15,1077	44,2377	Tropical and Subtropical Dry Broadleaf Forests	Atlantia Dry Forests	Photograph	2007	Instituto Biotropicos
Dark 35	Veredas do Peruaçu National Park, Minas Gerais, Brazil	-15,1077	-44,2377	Tropical and Subtropical Dry Broadleaf Forests	Atlantic Dry Forests	Photograph	2007	Instituto Biotropicos
Dark 30	Veredas do Peruaçu National Park, Minas Gerais, Brazil	-15,0923	-44,2414	Tropical and Subtropical Dry Broadleaf Forests	Atlantic Dry Forests	Photograph	2007	Instituto Biotropicos
Dark 37	Veredas do Peruaçu National Park, Minas Gerais, Brazil	-13,0923	-44,2414	Tropical and Subtropical Dry Broadleaf Forests	Atlantic Dry Forests	Photograph	2007	Instituto Biotropicos
Dark 38	Creada Contão Marida National Park, Minas Gerais, Brazil	-13,0923	-44,2414	Topical and Subtracial Caracharda, Summer and Shashlanda	Atlantic Dry Forests	Photograph	2007	Instituto Biotropicos
Dark 39	Grande Sertão Veredas National Park, Minas Gerais, Brazil	-15,3004	-45,8202	Tropical and Subtropical Grassiands, Savannas and Shrubhands	Cerrado	Photograph	2000	Instituto Biotropicos
Dark 40	Grande Sertao Veredas National Park, Minas Gerais, Brazil	-15,3004	-45,8202	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2006	Instituto Biotropicos
Dark 41	Grande Sertao Veredas National Park, Minas Gerais, Brazil	-15,3004	-45,8202	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2006	Instituto Biotropicos
Dark 42	Grande Sertao Veredas National Park, Minas Gerais, Brazil	-15,3004	-45,8202	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2006	Instituto Biotropicos
Dark 43	Grande Sertão Veredas National Park, Minas Gerais, Brazil	-15,3004	-45,8202	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2006	Instituto Biotropicos
Dark 44	Grande Sertão Veredas National Park, Minas Gerais, Brazil	-15,3004	-45,8202	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2006	Instituto Biotropicos
Dark 45	Grande Sertão Veredas National Park, Minas Gerais, Brazil	-15,3004	-45,8202	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2006	Instituto Biotropicos
Dark 46	Grande Sertão Veredas National Park, Minas Gerais, Brazil	-15,3004	-45,8202	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2006	Instituto Biotropicos
Dark 47	Grande Sertão Veredas National Park, Minas Gerais, Brazil	-15,3004	-45,8202	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2006	Instituto Biotropicos
Dark 48	Grande Sertão Veredas National Park, Minas Gerais, Brazil	-15,2821	-45,8178	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2006	Instituto Biotropicos
Dark 49	Grande Sertão Veredas National Park, Minas Gerais, Brazil	-15,2913	-45,8195	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2006	Instituto Biotropicos
Dark 50	Grande Sertão Veredas National Park, Minas Gerais, Brazil	-15,3628	-45,8288	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2006	Instituto Biotropicos
Dark 51	Grande Sertão Veredas National Park, Minas Gerais, Brazil	-15,3628	-45,8288	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2006	Instituto Biotropicos
Dark 52	Serro, Minas Gerais, Brazil	-18,5599	-43,4180	Tropical and Subtropical Moist Broadleaf Forests	Atlantic Forests	Report	2010	Guilherme Ferreira
Dark 53	Embiara, Mato Grosso Do Sul, Brazil	-19,8020	-56,3775	Flooded Grasslands and Savannas	Pantanal	Photograph	2013	Embiara Lodge
Dark 54	Fazenda Baía das Pedras, Pantanal da Nhecolândia, Mato Grosso Do Sul, Brazil	-19,3083	-55,7628	Flooded Grasslands and Savannas	Pantanal	Photograph	2011	Patricia Medici
Dark 55	Fazenda Baía das Pedras, Pantanal da Nhecolândia, Mato Grosso Do Sul. Brazil	-19,3083	-55,7628	Flooded Grasslands and Savannas	Pantanal	Photograph	2011	Patricia Medici
Dark 56	Fazenda Nossa Senhora do Carmo, Abobral, Mato Grosso Do Sul. Brazil	-19,4768	-56,9382	Flooded Grasslands and Savannas	Pantanal	Photograph	2009	Patricia Medici
Dark 57	Fazenda São Bento, Pantanal, Mato Grosso Do Sul, Brazil	-17.3229	-56,7354	Flooded Grasslands and Savannas	Pantanal	Photograph	no data	Fernando Tortatto
Dark 58	Fazenda São Bento, Pantanal, Mato Grosso Do Sul, Brazil	-17.3188	-56,7286	Flooded Grasslands and Savannas	Pantanal	Photograph	no data	Fernando Tortatto
Dark 59	Fazenda São Bento, Pantanal, Mato Grosso Do Sul, Brazil	-17,3295	-56,7261	Flooded Grasslands and Savannas	Pantanal	Photograph	no data	Fernando Tortatto

Samples	Location	Coordinates		Pieme	Faoration	Sample type	Voor	Sauraa
Samples	Eocation	Latitude	Longitude	Biome	Ecoregion	Sample type	i cai	Source
Dark 60	Itaporã, Mato Grosso Do Sul, Brazil	-22,0705	-54,9103	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	2010	Carnivoros do Iguaçu
Dark 61	Joselândia, Mato Grosso, Brazil	-16,6573	-56,2276	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2010	Carlos Benhur Kasper
Dark 62	Joselândia, Mato Grosso, Brazil	-16,6730	-56,2837	Flooded Grasslands and Savannas	Pantanal	Photograph	2010	Carlos Benhur Kasper
Dark 63	Joselândia, Mato Grosso, Brazil	-16,5748	-56,2851	Flooded Grasslands and Savannas	Pantanal	Photograph	2010	Carlos Benhur Kasper
Dark 64	Joselândia, Mato Grosso, Brazil	-16,7036	-56,1300	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2010	Carlos Benhur Kasper
Dark 65	Joselândia, Mato Grosso, Brazil	-16,6891	-56,1519	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2010	Carlos Benhur Kasper
Dark 66	Joselândia, Mato Grosso, Brazil	-16.6768	-56,1369	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2010	Carlos Benhur Kasper
Dark 67	Porto Feliz, Mato Grosso, Brazil	-12.6454	-58,3957	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	no data	Carlos Benhur Kasper
Dark 68	Tesouro, Mato Grosso, Brazil	-16.0771	-53,5914	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Report	2008	Feline Gomes
Dark 69	Marabá, Pará, Brazil	-5.3500	-49.0003	Tropical and Subtropical Moist Broadleaf Forests	Xingu-Tocantins-Araguaia moist forests	Photograph	no data	Tadeu de Oliveira
Dark 70	Fazenda Tamanduá Paraíba Brazil	-7.0167	-37 3833	Deserts and Xeric Shrublands	Caatinga	Report	no data	Tadeu de Oliveira
Dark 71	Mataraca Paraíba Brazil	-6 6566	-35 0808	Tropical and Subtropical Moist Broadleaf Forests	Atlantic Forests	Report	2012	Sertão Bio
Dark 72	Mataraca, Paraíba, Brazil	-6.6754	-35.0452	Tropical and Subtropical Moist Broadleaf Forests	Atlantic Forests	Report	2012	Sertão Bio
Dark 73	Patos Paraíba Brazil	-6,0754	-37 2181	Deserts and Varie Shruhlands	Caatinga	Report	2012	Tadau de Oliveira
Dark 74	Patos, Paraíba, Diazil	-0,9300	27 2222	Deserts and Xeric Shrublands	Caatinga	Report	2013	Tadeu de Oliveira
Dark 75	Patos, Paraíba, Diazil	-0,9423	27 0976	Deserts and Xeric Shrublands	Caatinga	Photograph	2015	Tadeu de Oliveira
Dark 75	ratos, ratatoa, Diazti Santão Doiou, Domonibuco, Dronil	-7,0044	-37,0870	Deserts and Xeric Shrublands	Caatinga	Photograph	2010	I adeu de Oliveira
Dark 70	Seriao Pajeu, Pernambuco, Brazi	-7,8015	-37,9378	Desents and Aeric Shilublands	Caatinga	Report	2010	Itali de Souza
Dark //	Guaratuba Protected Area, Parana, Brazil	-25,7860	-48,6977	Tropical and Subtropical Moist Broadlear Forests	Serra do Mar coastal forests	Report	2010	Marcelo Mazzoli
Dark 78	Iguaçu National Park, Paraná, Brazil	-25,6354	-54,4532	Tropical and Subtropical Moist Broadleaf Forests	Alto Parana Atlantic forests	Photograph	1994	Peter Crawshaw Jr.
Dark 79	Iguaçu National Park, Paraná, Brazil	-25,6303	-54,4019	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	1993	Peter Crawshaw Jr.
Dark 80	Iguaçu National Park, Paraná, Brazil	-25,2566	-53,7342	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	no data	Carnivoros do Iguaçu
Dark 81	Iguaçu National Park, Paraná, Brazil	-25,2566	-53,7342	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	2010	Carnivoros do Iguaçu
Dark 82	Iguaçu National Park, Paraná, Brazil	-25,3129	-53,7717	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	2010	Carnivoros do Iguaçu
Dark 83	Iguaçu National Park, Paraná, Brazil	-25,5695	-54,2684	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	2010	Carnivoros do Iguaçu
Dark 84	Iguaçu National Park, Paraná, Brazil	-25,5786	-54,4311	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	2009	Carnivoros do Iguaçu
Dark 85	Iguaçu National Park, Paraná, Brazil	-25,5786	-54,4311	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	2009	Carnivoros do Iguaçu
Dark 86	Iguaçu National Park, Paraná, Brazil	-25,5197	-54,2311	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	2009	Carnivoros do Iguaçu
Dark 87	Iguaçu National Park, Paraná, Brazil	-25,5485	-54,3007	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	2010	Carnivoros do Iguaçu
Dark 88	Iguaçu National Park, Paraná, Brazil	-25,5485	-54,3007	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	2009	Carnivoros do Iguaçu
Dark 89	Iguacu National Park, Paraná, Brazil	-25,4756	-54,0921	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	no data	Carnivoros do Iguacu
Dark 90	Iguacu National Park, Paraná, Brazil	-25,5972	-54,5152	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	2013	Carnivoros do Iguacu
Dark 91	Iguacu National Park, Paraná, Brazil	-25,5972	-54,5152	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	no data	Carnivoros do Iguacu
Dark 92	Saint Hilaire, Paraná, Brazil	-25,6685	-48,5888	Tropical and Subtropical Moist Broadleaf Forests	Serra do Mar coastal forests	Photograph	2013	Projeto Lontra
Dark 93	Arroio do Meio, Rio Grande do Sul, Brazil	-29,3604	-51,9308	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Report	2010	Carlos Benhur Kasper
Dark 94	Bagé, Rio Grande do Sul, Brazil	-31,2045	-53.8519	Tropical and Subtropical Grasslands, Savannas and Shrublands	Uruguayan sayanna	Photograph	2011	Renata Bornholdt
Dark 95	Índios River, Rio Grande do Sul, Brazil	-27 2219	-52 8562	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Photograph	2008	Iorge Cherem
Dark 96	Bom Jesus Rio Grande do Sul Brazil	-28 6205	-50 3356	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Photograph	2010	Carlos Benhur Kasper
Dark 97	Cacapava do Sul. Rio Grande do Sul. Brazil	-30,4370	-53 4976	Tropical and Subtropical Grasslands, Savannas and Shrublands	Uruguayan sayanna	Report	no data	Feline Peters
Dark 98	Caçapava do Sul, Rio Grande do Sul, Brazil	-30 5419	-53 4225	Tropical and Subtropical Grasslands, Savannas and Shrublands	Uruguayan sayanna	Report	no data	Feline Peters
Dark 90	Camaguã Rio Grande do Sul, Brazil	-30,8797	-51 8180	Tropical and Subtropical Grasslands, Savannas and Shrublands	Uruguayan sayanna	Photograph	2013	Giuliano Muller
Dark 100	Cotinorã. Pio Grando do Sul, Brazil	20,0227	51 9112	Tropical and Subtropical Orassiands, Savannas and Siliubiands	Alto Boronó Atlantia foracta	Papart	2015	Ealina Datara
Dark 101	Cruzairo do Sul Pio Grando do Sul Prazil	20,0001	51 0856	Tropical and Subtropical Moist Broadloaf Forests	Alto Paraná Atlantic forests	Report	2010	Carlos Banbur Kasnor
Dark 101	Cruzeiro do Sul, Nio Grande do Sul, Brazil	-29,4931	-51,9850	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Deport	2010	Carlos Benhur Kasper
Dark 102	Cruzello do Sul, Rio Grande do Sul, Brazil	-29,3139	-31,9899	Tropical and Subtropical Moist Broadleaf Forests	Alto Paralla Atlantic forests	Report	2010	Carlos Bennur Kasper
Dark 103	Cruzeiro do Sul, Rio Grande do Sul, Brazil	-29,4857	-52,0297	Tropical and Subtropical Moist Broadlear Forests	Alto Parana Atlantic forests	Report	2010	Carlos Bennur Kasper
Dark 104	Cruzeiro, Rio Grande do Sul, Brazil	-29,8333	-51,5555	Tropical and Subtropical Grasslands, Savannas and Shrublands	Uruguayan savanna	Report	no data	Tadeu de Oliveira
Dark 105	Cruzeiro, Rio Grande do Sul, Brazil	-29,8555	-51,5555	Tropical and Subtropical Grassiands, Savannas and Shrublands	Uruguayan savanna	Report	no data	Tadeu de Oliveira
Dark 106	Cruzeiro, Rio Grande do Sul, Brazil	-29,8333	-51,3333	Tropical and Subtropical Grasslands, Savannas and Shrublands	Uruguayan savanna	Report	no data	Tadeu de Oliveira
Dark 107	Cruzeiro, Rio Grande do Sul, Brazil	-29,8333	-51,3333	Tropical and Subtropical Grasslands, Savannas and Shrublands	Uruguayan savanna	Report	no data	Tadeu de Oliveira
Dark 108	Cruzeiro, Rio Grande do Sul, Brazil	-29,8333	-51,3333	Tropical and Subtropical Grasslands, Savannas and Shrublands	Uruguayan savanna	Report	no data	Tadeu de Oliveira
Dark 109	São Francisco de Paula National Forest, Rio Grande do Sul, Brazil	-29,3833	-50,3833	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Report	no data	Tadeu de Oliveira
Dark 110	São Francisco de Paula National Forest, Rio Grande do Sul, Brazil	-29,3833	-50,3833	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Report	no data	Tadeu de Oliveira
Dark 111	São Francisco de Paula National Forest, Rio Grande do Sul, Brazil	-29,3833	-50,3833	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Report	no data	Tadeu de Oliveira
Dark 112	Marques de Souza, Rio Grande do Sul, Brazil	-29,3086	-52,1139	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	2013	Lucas Gonçalves da Silva
Dark 113	Morro Reuter, Rio Grande do Sul, Brazil	-29,6036	-51,1222	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Capture	2008	Flávia Tirelli
Dark 114	Palmeira da Missoes, Rio Grande do Sul, Brazil	-27,8710	-53,3106	Tropical and Subtropical Grasslands, Savannas and Shrublands	Uruguayan savanna	Report	2013	Flávia Tirelli
Dark 115	Turvo State Park, Rio Grande do Sul, Brazil	-27,2416	-53,9884	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	2013	Caroline Sartor
Dark 116	Turvo State Park, Rio Grande do Sul, Brazil	-27,1685	-53,8760	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	2010	Carlos Benhur Kasper
Dark 117	Turvo State Park, Rio Grande do Sul, Brazil	-27,1876	-53,9072	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	2010	Carlos Benhur Kasper
Dark 118	Turvo State Park, Rio Grande do Sul, Brazil	-27,1960	-53,8788	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	2010	Carlos Benhur Kasper
Dark 119	Turvo State Park, Rio Grande do Sul, Brazil	-27,1985	-53,8892	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	2010	Carlos Benhur Kasper
Dark 120	Passo de Taquara, Feliz, Rio Grande do Sul, Brazil	-29,3573	-51,3625	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Capture	2004	FZB-RS

Samples	Location	Location Coordinates		Biome	Ecoregion	Sample type	Vear	Source
Samples	Location	Latitude	Longitude	Bioine	Ecoregion	Sample type	Ital	Source
Dark 121	Pinto Bandeira, Rio Grande do Sul, Brazil	-29,0696	-51,4140	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Capture	2006	IBAMA
Dark 122	Piratini, Rio Grande do Sul, Brazil	-31,4630	-53,1065	Tropical and Subtropical Grasslands, Savannas and Shrublands	Uruguayan savanna	Report	2010	Carlos Benhur Kasper
Dark 123	Taquara, Rio Grande do Sul, Brazil	-28,5363	-53,7497	Tropical and Subtropical Grasslands, Savannas and Shrublands	Uruguayan savanna	Capture	2004	FZB-RS
Dark 124	Ijuí, Rio Grande do Sul, Brazil	-28,3364	-53,9601	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Capture	2005	FZB-RS
Dark 125	Restinga Seca, Rio Grande do Sul, Brazil	-29,8100	-53,3886	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Capture	1999	Everton Behr
Dark 126	Sarandi Rio Grande do Sul Brazil	-27 9554	-52 9154	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Photograph	no data	Feline Peters
Dark 127	Seberi Rio Grande do Sul Brazil	-27 4960	-53 4340	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Report	2010	Carlos Benhur Kasper
Dark 127	Soledade Rio Grande do Sul, Brazil	-28 7685	-52 5313	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Report	2010	Carlos Benhur Kasper
Dark 120	Topos Pio Grando do Sul Prazil	-20,7005	51 5526	Tropical and Subtropical Grasslands, Savannes and Shruhlands	Uruguovon covonno	Papart	2010	Tadou da Olivaira
Dark 129 Dorla 120	Tapes, Rio Grande do Sul, Brazil	-30,0350	-51,5530	Tropical and Subtropical Grasslands, Savannas and Shrublands	Unguayan savanna	Deport	no data	Tadeu de Oliveira
Dark 150	Tapes, Rio Grande do Sul, Brazil	-30,0330	-51,5556	Tropical and Subtropical Grassiands, Savannas and Shrublands	Uruguayan savanna	Report	no data	Tadeu de Onveira
Dark 131	Taquari, Rio Grande do Sul, Brazil	-29,7942	-51,8/21	Tropical and Subtropical Grasslands, Savannas and Shrublands	Uruguayan savanna	Report	2010	Carlos Benhur Kasper
Dark 132	Taquari, Rio Grande do Sul, Brazil	-29,3833	-51,9333	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Report	no data	Tadeu de Oliveira
Dark 133	Cerrito, Rio Grande do Sul, Brazil	-31,7279	-52,8556	Tropical and Subtropical Grasslands, Savannas and Shrublands	Uruguayan savanna	Capture	2002	FZB-RS
Dark 134	Alfredo Wagner, Santa Catarina, Brazil	-27,6934	-49,3434	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Photograph	2007	Rafael Garziera
Dark 135	Bom Jesus, Santa Catarina, Brazil	-26,7253	-52,4070	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Photograph	2004	Jorge Cherem
Dark 136	Brunópolis, Santa Catarina, Brazil	-27,3336	-50,8865	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Photograph	2005	Jorge Cherem
Dark 137	Campos Novos, Santa Catarina, Brazil	-27,3914	-51,1594	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Photograph	2007	Jorge Cherem
Dark 138	Catanduvas, Santa Catarina, Brazil	-27,0349	-51,7214	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Photograph	2006	Jorge Cherem
Dark 139	Chapecó, Santa Catarina, Brazil	-27.2148	-52,6651	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	2008	Jorge Cherem
Dark 140	Erval Velho, Santa Catarina, Brazil	-27.2866	-51.4271	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Photograph	2008	Jorge Cherem
Dark 141	Inorã do Oeste Santa Catarina Brazil	-26 7437	-53 5874	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	no data	Policia Ambiental SC Brazil
Dark 142	Inuacu Santa Catarina Brazil	-26 6495	-52 4794	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Photograph	no data	Iorge Cherem
Dark 142 Dark 142	Itaiánolia Santa Catarina Prazil	-20,0475	40.8647	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Photograph	2012	Gormono Woohl
Dark 145	Carrier de Talvalaire State Dada Catalina, Diazi	-20,3438	-49,6047	Tropical and Subtropical Moist Broadleaf Forests	Araucana moist lorests	Pilotograph	2013	Manage Tradetta
Dark 144	Serra do Tabuleiro State Park, Santa Catarina, Brazil	-27,7838	-48,6464	Tropical and Subtropical Moist Broadleaf Forests	Serra do Mar coastal forests	Report	no data	Marcos Tortatto
Dark 145	Serra do Tabuleiro State Park, Santa Catarina, Brazil	-27,9039	-48,/8/4	Tropical and Subtropical Moist Broadleaf Forests	Serra do Mar coastal forests	Photograph	no data	Vanessa Kuhnen
Dark 146	Serra do Itajai State Park, Santa Catarina, Brazil	-27,0659	-49,1767	Tropical and Subtropical Moist Broadleaf Forests	Serra do Mar coastal forests	Photograph	2010	CENAP ICMB10
Dark 147	Serra do Itajaí State Park, Santa Catarina, Brazil	-27,0386	-49,2208	Tropical and Subtropical Moist Broadleaf Forests	Serra do Mar coastal forests	Photograph	2010	CENAP ICMBio
Dark 148	Serra do Itajaí State Park, Santa Catarina, Brazil	-27,0386	-49,2208	Tropical and Subtropical Moist Broadleaf Forests	Serra do Mar coastal forests	Photograph	2010	CENAP ICMBio
Dark 149	Serra do Itajaí State Park, Santa Catarina, Brazil	-27,0648	-49,2093	Tropical and Subtropical Moist Broadleaf Forests	Serra do Mar coastal forests	Photograph	2010	CENAP ICMBio
Dark 150	Ponta Serrada, Santa Catarina, Brazil	-26,9219	-51,8804	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Photograph	2006	Jorge Cherem
Dark 151	Reserva Biológica de Aguaí	-28,4933	-49,6269	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Photograph	2008	CENAP ICMBio
Dark 152	Sassafras Biological Reserve, Santa Catarina, Brazil	-26,7014	-49,6655	Tropical and Subtropical Moist Broadleaf Forests	Serra do Mar coastal forests	Photograph	no data	Fernando Tortatto
Dark 153	Sassafras Biological Reserve, Santa Catarina, Brazil	-26,6966	-49,6799	Tropical and Subtropical Moist Broadleaf Forests	Serra do Mar coastal forests	Photograph	no data	Fernando Tortatto
Dark 154	Sassafras Biological Reserve, Santa Catarina, Brazil	-26.6966	-49,6799	Tropical and Subtropical Moist Broadleaf Forests	Serra do Mar coastal forests	Photograph	no data	Fernando Tortatto
Dark 155	Sassafras Biological Reserve, Santa Catarina, Brazil	-26.7166	-49.6749	Tropical and Subtropical Moist Broadleaf Forests	Serra do Mar coastal forests	Photograph	no data	Fernando Tortatto
Dark 156	Sassafras Biological Reserve, Santa Catarina, Brazil	-26 6862	-49 6370	Tropical and Subtropical Moist Broadleaf Forests	Serra do Mar coastal forests	Photograph	no data	Fernando Tortatto
Dark 157	São Cristóvão do Sul Santa Catarina Brazil	-27 3436	-50 4298	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Report	2004	Jorge Cherem
Dark 157	Pio Monto Alagra Chanacá Santa Catarina, Brazil	27,3430	52 5841	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantia foreste	Photograph	2004	Jorga Charam
Dark 150	DDDN Chicara Edith Santa Catarina, Brazil	27,2330	49 9012	Tropical and Subtropical Moist Broadleaf Forests	Sarra do Mar apastal forasta	Photograph	2005	Corrivoros do Iguagu
Dark 159	DDDN Ch (com Edich, Santa Catarina, Drazil	-27,1007	-46,6915	Tropical and Subtropical Moist Broadleaf Forests	Serra do Mar coastal forests	Photograph	2010	Camiro do Iguaçu
Dark 100	RPPN Chacara Editi, Santa Catarina, Brazi	-27,1007	-46,6915	Tropical and Subtropical Moist Broadlear Polests	Serra do Mar coastar lorests	Photograph	2010	Carnivoros do Iguaçu
Dark 161	RPPN Chacara Edith, Santa Catarina, Brazil	-27,1007	-48,8913	Tropical and Subtropical Moist Broadleaf Forests	Serra do Mar coastal forests	Photograph	2010	Carnivoros do Iguaçu
Dark 162	RPPN Chacara Edith, Santa Catarina, Brazil	-27,1052	-48,8811	Tropical and Subtropical Moist Broadleaf Forests	Serra do Mar coastal forests	Photograph	2010	Carnivoros do Iguaçu
Dark 163	RPPN Chácara Edith, Santa Catarina, Brazil	-27,1052	-48,8811	Tropical and Subtropical Moist Broadleaf Forests	Serra do Mar coastal forests	Photograph	2010	Carnivoros do Iguaçu
Dark 164	RPPN Chácara Edith, Santa Catarina, Brazil	-27,1052	-48,8811	Tropical and Subtropical Moist Broadleaf Forests	Serra do Mar coastal forests	Photograph	2010	Carnivoros do Iguaçu
Dark 165	UHE Quebra Queixo, Ipuaçu, Santa Catarina, Brazil	-26,6637	-52,5492	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Photograph	2006	Jorge Cherem
Dark 166	UHE Quebra Queixo, Ipuaçu, Santa Catarina, Brazil	-26,6618	-52,5565	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Photograph	2007	Jorge Cherem
Dark 167	Vargem, Santa Catarina, Brazil	-27,5066	-50,9246	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Photograph	no data	Jorge Cherem
Dark 168	Vargem Bonita, Santa Catarina, Brazil	-27,0211	-51,7325	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Photograph	2009	Jorge Cherem
Dark 169	Xanxerê, Santa Catarina, Brazil	-26,8803	-52,3579	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Photograph	no data	Jorge Cherem
Dark 170	Jataí Ecological Park, Mogi Guassu, São Paulo, Brazil	-22,3061	-47,0120	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2007	USP
Dark 171	Ipanema National Forest, São Paulo, Brazil	-23.4167	-47.5833	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Report	no data	Tadeu de Oliveira
Dark 172	Morungaba São Paulo Brazil	-22 8974	-46 8144	Tropical and Subtropical Moist Broadleaf Forests	Serra do Mar coastal forests	Photograph	2011	CENAP ICMBio
Dark 173	Serra da Bocaina National Park São Paulo Brazil	-23 3333	-44 8333	Tropical and Subtropical Moist Broadleaf Forests	Serra do Mar coastal forests	Report	no data	Tadeu de Oliveira
Dark 174	Peter São Paulo Brazil	-24,4167	-48 5000	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Report	no data	Tadeu de Oliveira
Dark 175	Polmos Tocontine Prozil	10 2052	49,2300	Tropical and Subtropical Moist Broadloof Forests	Mate Grosse seasonal ferrests	Baport	2011	Guilhormo Trovati
Dark 1/5 Doub 176	Pannas, Locandins, Diazn	-10,2052	-40,2000	Tropical and Subtropical Mobile Disculture of Posters	Mate Crease success for the	Report	2011	Tadau da Oliania
Dark 1/0	Cantao State Park, Tocantins, Brazil	-10,4333	-49,1833	Tropical and Subtropical Moist Broadleaf Forests	Mato Grosso seasonal forests	Report	no data	Tadeu de Oliveira
Dark 177	Aguaray, Argentina	-22,2666	-63,7332	Tropical and Subtropical Moist Broadleaf Forests	Central Andean Yungas	Photograph	2010	Mario DiBitetti
Dark 178	Aguaray, Argentina	-22,2666	-63,7332	Tropical and Subtropical Moist Broadleaf Forests	Central Andean Yungas	Photograph	2010	Mario DiBitetti
Dark 179	Anhelando Al Toro, Argentina	-25,8209	-54,3272	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Report	2008	Agustin Paviolo
Dark 180	Arroyo Salvador Mazza, Argentina	-22,0768	-63,9464	Tropical and Subtropical Moist Broadleaf Forests	Central Andean Yungas	Photograph	2010	Mario DiBitetti
Dark 181	Balcanera, Argentina	-25,6821	-61,7900	Tropical and Subtropical Grasslands, Savannas and Shrublands	Dry Chaco	Photograph	no data	Veronica Quiroga

Samples	mples Location Coordinates		Piomo	Faoragian	Sample type	Voor	Source	
Samples	Location	Latitude	Longitude	Biome	Ecoregion	Sample type	Tear	Source
Dark 182	Baritu National Park, Argentina	-23,1569	-64,6304	Tropical and Subtropical Moist Broadleaf Forests	Central Andean Yungas	Photograph	no data	Juan Carlos Chebez
Dark 183	Buque, Argentina	-25,7820	-54,3475	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Report	2008	Agustin Paviolo
Dark 184	Camino, Misiones, Argentina	-25,9818	-54,1139	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Report	2003	Agustin Paviolo
Dark 185	Cartelato, Argentina	-25,8023	-54,3690	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Report	2006	Agustin Paviolo
Dark 186	Caulario, Argentina	-23,9182	-65,1363	Tropical and Subtropical Moist Broadleaf Forests	Central Andean Yungas	Photograph	2010	Erika Cuyckens
Dark 187	Chancaní Reserve, Argentina	-31,4518	-65.3221	Tropical and Subtropical Grasslands, Savannas and Shrublands	Dry Chaco	Photograph	no data	Juan Carlos Chebez
Dark 188	Chanchito Argentina	-25 7216	-54 5646	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Report	no data	Agustin Paviolo
Dark 189	Cono Aibal Argentina	-25,6963	-61 7907	Tropical and Subtropical Grasslands, Savannas and Shrublands	Dry Chaco	Photograph	no data	Veropica Quiroga
Dark 109	Copo Tesina Argentina	-25,7013	-62 0429	Tropical and Subtropical Grasslands, Savannas and Shrublands	Dry Chaco	Photograph	no data	Veronica Quiroga
Dark 190	Cortaderas Argentina	-22 5436	-64 7525	Tropical and Subtropical Mojet Broadleaf Forests	Central Andean Vungas	Photograph	2000	Frika Cuwckens
Dark 102	Cortadoras, Argontina	-22,5430	64 7525	Tropical and Subtropical Moist Broadloof Forests	Control Andeen Yunges	Photograph	2000	Erika Cuyekens
Dark 192	El Esla Assessina	-22,3430	-04,7525	Tropical and Subtropical Moist Broadleaf Forests	Alte Denné Atlantic formate	Photograph	2009	A sustin Desire la
Dark 195	El Falo, Argentina	-25,7546	-54,3785	Tropical and Subtropical Moist Broadlear Forests	Alto Parana Atlantic forests	Report	2008	Agustin Paviolo
Dark 194	El Puro, Argentina	-26,8509	-53,9893	Tropical and Subtropical Moist Broadleaf Forests	Alto Parana Atlantic forests	Report	2005	Agustin Paviolo
Dark 195	Fanta, Argentina	-25,7191	-54,3026	Tropical and Subtropical Moist Broadleaf Forests	Alto Parana Atlantic forests	Report	2004	Agustin Paviolo
Dark 196	Fumo Bravo, Argentina	-26,8535	-53,9346	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Report	2005	Agustin Paviolo
Dark 197	Iasa, Argentina	-25,7705	-54,4373	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Report	2010	Agustin Paviolo
Dark 198	Katramina, Argentina	-26,9207	-53,9903	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Report	2005	Agustin Paviolo
Dark 199	Katramina, Argentina	-26,9207	-53,9903	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Report	2005	Agustin Paviolo
Dark 200	Lauraines, Argentina	-25,9650	-54,2001	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Report	2008	Agustin Paviolo
Dark 201	Ledesma, Argentina	-23,7482	-64,6675	Tropical and Subtropical Moist Broadleaf Forests	Central Andean Yungas	Photograph	no data	Erika Cuyckens
Dark 202	Leptodon, Argentina	-25,7686	-54,2275	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Report	2008	Agustin Paviolo
Dark 203	Lihue, Argentina	-37,6712	-65,6450	Temperate Grasslands, Savannas and Shrublands	Low Monte	Report	no data	Javier Pereira
Dark 204	Lihue, Argentina	-37,9503	-65,5500	Temperate Grasslands, Savannas and Shrublands	Low Monte	Photograph	2006	Javier Pereira
Dark 205	Libue. Argentina	-38.0196	-65.4828	Temperate Grasslands, Savannas and Shrublands	Low Monte	Photograph	2001	Javier Pereira
Dark 206	Luna Argentina	-25 6861	-54 4159	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Report	2006	Agustin Paviolo
Dark 207	Matula Argentina	-25,6814	-54 3493	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Report	2007	Agustin Paviolo
Dark 208	Misiones Argentina	-26 4314	-53 8961	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Photograph	2013	Proveto Vaguarete
Dark 200	Misiones Argentina	-25,7554	-54 4089	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	2013	Proyeto Vaguarete
Dark 210	More Argentine	-25,7554	54 2022	Tropical and Subtropical Moist Broadloof Forests	Alto Paraná Atlantic forests	Papart	2015	A quetin Pavialo
Dark 210	Nooning Argenting	-25,0007	54,2533	Tropical and Subtropical Moist Broadlast Forests	Alto Doronó Atlantic forests	Demont	2006	Agustin Paviala
Dark 211 Dorly 212	Nachila, Argentina	-25,6071	-34,2322	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Demont	2000	Agustin Paviolo
Dark 212	Depina, Argentina	-25,0519	-54,5105	Tropical and Subtropical Moist Broadleaf Forests	Alto Paralla Atlantic forests	Report	2008	Agustin Paviolo
Dark 215	Pasion de Gavillanes, Argentina	-20,8525	-53,9478	Tropical and Subtropical Moist Broadlear Forests	Alto Parana Atlantic forests	Report	2005	Agustin Paviolo
Dark 214	Pecari, Argentina	-25,6992	-54,3256	Tropical and Subtropical Moist Broadlear Forests	Alto Parana Atlantic forests	Report	2004	Agustin Paviolo
Dark 215	Pecari, Argentina	-25,6992	-54,3256	Tropical and Subtropical Moist Broadleaf Forests	Alto Parana Atlantic forests	Report	2004	Agustin Paviolo
Dark 216	Pinche de Viuda, Argentina	-26,8539	-54,0155	Tropical and Subtropical Moist Broadleaf Forests	Alto Parana Atlantic forests	Report	2005	Agustin Paviolo
Dark 217	Pupo, Argentina	-26,9960	-54,0131	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Report	2005	Agustin Paviolo
Dark 218	Putin, Argentina	-25,6913	-54,3788	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Report	2004	Agustin Paviolo
Dark 219	Quebrada Honda, Argentina	-22,5800	-64,7529	Tropical and Subtropical Moist Broadleaf Forests	Central Andean Yungas	Photograph	2009	Erika Cuyckens
Dark 220	San Agustin, Argentina	-22,3780	-64,0008	Tropical and Subtropical Moist Broadleaf Forests	Central Andean Yungas	Report	2008	Agustin Paviolo
Dark 221	San Agustin, Argentina	-25,6485	-54,3962	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Report	2004	Agustin Paviolo
Dark 222	Tartagal, Argentina	-22,3780	-64,0008	Tropical and Subtropical Moist Broadleaf Forests	Central Andean Yungas	Photograph	2010	Mario DiBitetti
Dark 223	Tatu Los Pirpintos, Argentina	-25,9227	-61,7140	Temperate Grasslands, Savannas and Shrublands	Dry Chaco	Photograph	no data	Veronica Quiroga
Dark 224	Tranquera, Argentina	-25,7180	-54,4420	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Report	2008	Agustin Paviolo
Dark 225	Tranquera, Argentina	-25,7229	-54,4428	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Report	2004	Agustin Paviolo
Dark 226	Unidos, Argentina	-25,6439	-54,3937	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Report	2006	Agustin Paviolo
Dark 227	Yagua, Argentina	-25,7049	-54,2875	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Report	2004	Agustin Paviolo
Dark 228	Mountain Cow, Belize	16,8006	-88,7551	Tropical and Subtropical Moist Broadleaf Forests	Petén-Veracruz moist forests	Report	no data	Tadeu de Oliveira
Dark 229	Madidi National Park, Bolivia	-13,2085	-68,7481	Tropical and Subtropical Moist Broadleaf Forests	Southwest Amazon moist forests	Photograph	no data	Leonardo Maffei
Dark 230	San Miguelito Reserve, Paraguay	-24.0650	-55,7839	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Report	no data	Arispe et al 2007
Dark 231	Tucavaca Bolivia	-18 5125	-60 8089	Temperate Grasslands, Savannas and Shrublands	Dry Chaco	Photograph	no data	Leonardo Maffei
Dark 232	Cauca Valley Suarez, Colombia	3 1121	-76 8349	Tropical and Subtropical Moist Broadleaf Forests	Chocó-Darién Moist Forests	Photograph	2013	Panthera
Dark 232	Colosé Sucre Colombia	9,1121	-75 3004	Deserts and Varie Shruhlands	Guaiira-Barranquilla verie scrub	Photograph	no data	Ectaban Payan Panthera
Dark 234	Peche River, Tolima, Colombia	/ 10/2	-75 1824	Tropical and Subtropical Dry Broadlast Forasts	Magdalena Valley dry foresto	Photograph	1986	Esteban Payan, Panthara
Dark 234	Pañas Brancas, Coli, Colombia	4,1043	76 6652	Tropical and Subtropical Moist Provident Forests	Northern Andeen Montone Ecrests	Photograph	2009	Estaban Davan, Faliticia
Dark 233	r chas Diancas, Call, Colombia	5,5500	-70,0035	Tropical and Subtranical Maist Drauleal Folests	Northern Andeen Montone Forests	r notograph	2008	Esteban Payan, Palitiera
Dark 230	Reserva Las Unamas, Colombia	6,0740	-/5,9419	Tropical and Subtropical Moist Broadleaf Forests	Northern Andean Montane Forests	Photograph	2010	Esteban Payan, Panthera
Dark 23/	Rio Bayonero, Colombia	6,8139	-/1,4617	ropical and Subtropical Dry Broadleat Forests	Apure-Villavicencio dry forests	Photograph	1972	Esteban Payan, Panthera
Dark 238	Riosucio, Colombia	7,4321	-//,0677	Tropical and Subtropical Moist Broadleaf Forests	Choco-Darién Moist Forests	Photograph	1976	Esteban Payan, Panthera
Dark 239	Tayrona National Park, Colombia	11,2837	-74,1169	Deserts and Xeric Shrublands	Guajira-Barranquilla xeric scrub	Report	1979	Esteban Payan, Panthera
Dark 240	Valle de Aburrá, Colombia	6,3795	-75,4449	Tropical and Subtropical Moist Broadleaf Forests	Northern Andean Montane Forests	Photograph	2012	Juan Ortega
Dark 241	Villavicencio, Colombia	4,1323	-73,5771	Tropical and Subtropical Dry Broadleaf Forests	Apure-Villavicencio dry forests	Photograph	1971	Esteban Payan, Panthera
Dark 242	Zambrano, Colombia	9,7044	-74,8471	Tropical and Subtropical Moist Broadleaf Forests	Chocó-Darién Moist Forests	Photograph	1987	Esteban Payan, Panthera

Samples Location		Coord	linates	Piomo	Faoragian	Somple type	Voor	Source
Samples	Location	Latitude	Longitude	Biome	Ecoregion	Sample type	rear	Source
Dark 243	Puerto Quepos, Costa Rica	9,4070	-84,1496	Tropical and Subtropical Moist Broadleaf Forests	Isthmian-Pacific moist forests	Photograph	no data	Leonardo Maffei
Dark 244	Osa Sanctuary Reserve, Costa Rica	8,6487	-83,5670	Tropical and Subtropical Moist Broadleaf Forests	Isthmian-Pacific moist forests	Photograph	no data	Leonardo Maffei
Dark 245	Houarani Ecolodge, Ecuador	-1,2035	-76,0294	Tropical and Subtropical Moist Broadleaf Forests	Napo Moist Forests	Photograph	no data	Leonardo Maffei
Dark 246	Tiputini Biological Station, Ecuador	0,0439	-78,6811	Tropical and Subtropical Moist Broadleaf Forests	Northern Andean Montane Forests	Photograph	no data	Leonardo Maffei
Dark 247	Carmelita, Guatemala	17.5164	-90.1426	Tropical and Subtropical Moist Broadleaf Forests	Petén-Veracruz moist forests	Photograph	2008	Jose Moreira, WCS
Dark 248	Laguna Del Tigre National Park, Guatemala	17 2389	-90 3257	Tropical and Subtropical Moist Broadleaf Forests	Petén-Veracruz moist forests	Photograph	2009	Jose Moreira WCS
Dark 240	Mirador Rio Azul National Park, Guatamala	17,253	-80 2873	Tropical and Subtropical Moist Broadleaf Forests	Petén-Veracruz moist forests	Photograph	2009	Jose Moreira WCS
Dark 250	Nouragues Nature Reserve Ekeni French Guyana	4 0/192	-52 6867	Tropical and Subtropical Moist Broadleaf Forests	Guianan Moist Forests	Photograph	2009	Benoit de Thoisy
Dark 251	Nouragues Nature Reserve, Ekeni, French Guyana	4,0402	52,6867	Tropical and Subtropical Moist Broadloof Forests	Guianan Moist Forests	Photograph	2000	Benoit de Thoisy
Dark 251	Nouragues Nature Reserve, Ekeni, French Guyana	4,0492	-32,0807	Tropical and Subtropical Moist Broadleaf Forests	Guianan Moist Forests	Photograph	2009	Denoit de Thoisy
Dark 252	Nouragues Nature Reserve, Ekeni, French Guyana	4,0492	-52,6867	Tropical and Subtropical Moist Broadlear Forests	Guianan Moist Forests	Photograph	2009	Benoit de Thoisy
Dark 253	Nouragues Nature Reserve, Ekeni, French Guyana	4,0492	-52,6867	Tropical and Subtropical Moist Broadleaf Forests	Guianan Moist Forests	Photograph	2009	Benoit de Thoisy
Dark 254	Nouragues Nature Reserve, Ekeni, French Guyana	4,0492	-52,6867	Tropical and Subtropical Moist Broadleaf Forests	Guianan Moist Forests	Photograph	2010	Benoit de Thoisy
Dark 255	Nouragues Nature Reserve, Ekeni, French Guyana	4,0492	-52,6867	Tropical and Subtropical Moist Broadleaf Forests	Guianan Moist Forests	Photograph	2010	Benoit de Thoisy
Dark 256	Shea, Essequibo River, Guyana	2,8605	-58,9478	Tropical and Subtropical Moist Broadleaf Forests	Guianan Moist Forests	Photograph	2009	Rob Pickles
Dark 257	Rancho Caracol Reserve, Mexico	23,9488	-98,1908	Tropical and Subtropical Moist Broadleaf Forests	Veracruz moist forests	Photograph	no data	Ocelot Project
Dark 258	Rancho Caracol Reserve, Mexico	23,9488	-98,1908	Tropical and Subtropical Moist Broadleaf Forests	Veracruz moist forests	Photograph	no data	Ocelot Project
Dark 259	Rancho Caracol Reserve, Mexico	23,9488	-98,1908	Tropical and Subtropical Moist Broadleaf Forests	Veracruz moist forests	Photograph	no data	Ocelot Project
Dark 260	Rancho Caracol Reserve, Mexico	23,9488	-98,1908	Tropical and Subtropical Moist Broadleaf Forests	Veracruz moist forests	Photograph	no data	Ocelot Project
Dark 261	Rancho Caracol Reserve Mexico	23 9488	-98 1908	Tropical and Subtropical Moist Broadleaf Forests	Veracruz moist forests	Photograph	no data	Ocelot Project
Dark 262	Rancho Caracol Reserve Mexico	23,9488	-98 1908	Tropical and Subtropical Moist Broadleaf Forests	Veracruz moist forests	Photograph	no data	Ocelot Project
Dark 262	Pancho Caracol Posoruo Movico	23,0488	-98,1908	Tropical and Subtropical Moist Broadloof Forests	Veracruz moist forests	Photograph	no data	Occlot Project
Dark 205	Rancho Caracol Reserve, Mexico	23,9400	-98,1908	Tropical and Subtropical Moist Broadlash Forests	Venacruz moist forests	Photograph	no data	Ocelot Project
Dark 204	Raincho Caracol Reserve, Mexico	25,9727	-96,2339	Tropical and Subtropical Moist Broadleaf Forests	Veraciuz moist forests	Photograph	no data	Occioi Pioject
Dark 265	Rancho Caracol Reserve, Mexico	23,9727	-98,2339	Tropical and Subtropical Moist Broadleaf Forests	veracruz moist forests	Photograph	no data	Ocelot Project
Dark 266	Rancho Caracol Reserve, Mexico	23,9727	-98,2339	Tropical and Subtropical Moist Broadleaf Forests	Veracruz moist forests	Photograph	no data	Ocelot Project
Dark 267	San Fernando, Mexico	25,0003	-97,9771	Tropical and Subtropical Grasslands, Savannas and Shrublands	Western Gulf coastal grasslands	Photograph	no data	Michael Tewes
Dark 268	Ciudad del Panama, Panama	9,0784	-80,0856	Tropical and Subtropical Moist Broadleaf Forests	Isthmian-Atlantic moist forests	Photograph	no data	Smithsonian Institution
Dark 269	Estacion Ledesma, Paraguay	-23,7569	-60,3254	Tropical and Subtropical Grasslands, Savannas and Shrublands	Dry Chaco	Photograph	no data	Mario DiBitetti
Dark 270	Estacion Ledesma, Paraguay	-23,6339	-60,4513	Tropical and Subtropical Grasslands, Savannas and Shrublands	Dry Chaco	Photograph	2010	Mario DiBitetti
Dark 271	Amazonia Peruana, Peru	-1,5460	-75,4201	Tropical and Subtropical Moist Broadleaf Forests	Napo Moist Forests	Photograph	2008	Smithsonian Institution
Dark 272	Amazonia Peruana, Peru	-1,5460	-75,4201	Tropical and Subtropical Moist Broadleaf Forests	Napo Moist Forests	Photograph	2008	Smithsonian Institution
Dark 273	Amazonia Peruana, Peru	-1.5460	-75.4201	Tropical and Subtropical Moist Broadleaf Forests	Napo Moist Forests	Photograph	2008	Smithsonian Institution
Dark 274	Los Amigos Biological Reserve Peru	-12 5453	-70 0904	Tropical and Subtropical Moist Broadleaf Forests	Southwest Amazon moist forests	Photograph	2005	Renata Pitman
Dark 275	Napo Reserve, Peru	-1 6213	-75 4195	Tropical and Subtropical Moist Broadleaf Forests	Nano Moist Forests	Photograph	2008	Smithsonian Institution
Dark 275	Vanchaga Chemillen National Park Peru	-10 2275	-75 0852	Tropical and Subtropical Moist Broadleaf Forests	Napo Moist Forests	Photograph	2000	Rodolfo Vasquez
Dark 277	Vanchaga Chemillen National Park, Peru	10,2275	75,0052	Tropical and Subtropical Moist Broadloaf Forests	Napo Moist Forests	Photograph	2012	Rodolfo Vasquez
Dark 277	Yanchaga-Chemillen National Park, Felu	-10,2275	-75,0852	Tropical and Subtropical Moist Broadleaf Forests	Napo Moist Forests	Photograph	2012	Rodollo Vasquez
Dark 2/8	Yanchaga-Chemilien National Park, Peru	-10,2275	-75,0852	Tropical and Subtropical Moist Broadlear Forests	Napo Moist Forests	Photograph	2012	Rodollo Vasquez
Dark 2/9	San Pablo, Peru	-11,3500	-/3,1800	I ropical and Subtropical Moist Broadleaf Forests	Southwest Amazon moist forests	Photograph	2009	Esteban Payan, Panthera
Dark 280	Santa Fé, Rio Salado, Argentina	-29,1606	-58,6854	Tropical and Subtropical Grasslands, Savannas and Shrublands	Humid Chaco	Photograph	1974	Smithsonian Institution
Dark 281	Carandayti, Luis Calvo, Chuquisaca, Bolivia	-19,6612	-63,0433	Tropical and Subtropical Grasslands, Savannas and Shrublands	Dry Chaco	Photograph	s/ data	American Museum of Natural History
Dark 282	Mamore, Beni, Bolivia	-15,0867	-64,8684	Tropical and Subtropical Grasslands, Savannas and Shrublands	Beni savanna	Photograph	1966	American Museum of Natural History
Dark 283	Mamore, Beni, Bolivia	-15,1715	-64,9267	Tropical and Subtropical Grasslands, Savannas and Shrublands	Beni savanna	Photograph	1966	American Museum of Natural History
Dark 284	Anapolis, Goias, Brazil	-16,2662	-48,9818	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	1937	American Museum of Natural History
Dark 285	Anapolis, Goias, Brazil	-16,2869	-48,9912	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	1937	American Museum of Natural History
Dark 286	Bagé, Rio Grande do Sul, Brazil	-31,2994	-54,0447	Tropical and Subtropical Grasslands, Savannas and Shrublands	Uruguayan savanna	Photograph	no data	Lucas Gonçalves da Silva
Dark 287	Cachoeira Porteira, Trombetas River, Oriximiná, Brazil	-1,1598	-56,9912	Tropical and Subtropical Moist Broadleaf Forests	Uatuma-Trombetas moist forests	Photograph	1977	Tiago Freitas, MPEG
Dark 288	Campos Novos, Santa Catarina, Brazil	-27.3939	-51.1846	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Photograph	2010	Jorge Cherem
Dark 289	Colônia Inglês de Souza, Monte Alegre, Brazil	-1.9095	-54.0950	Tropical and Subtropical Moist Broadleaf Forests	Uatuma-Trombetas moist forests	Photograph	1912	Tiago Freitas, MPEG
Dark 290	Corumba Mato Grosso do Sul Brazil	-19.0586	-57 7065	Tropical and Subtropical Dry Broadleaf Forests	Chiquitano Dry Forests	Photograph	s/ data	American Museum of Natural History
Dark 201	Fontoura Yavier, Rio Grande do Sul, Brazil	-20 1704	-52 6356	Tropical and Subtropical Mojet Broadlaaf Forests	Alto Paraná Atlantic forests	Photograph	1088	Tiago Freitas MPEG
Dark 201	Fondlândie Deré Brezil	-27,1774	-52,0550	Tropical and Subtropical Moist Droadleaf Forests	Madaina Tanaida maiat fanasta	Demont	no doto	Taday da Oliveira
Dark 292	Foruianuia, Fara, Drazil	-5,6000	-33,4635	Tropical and Subtropical Moist Broadleaf Forests	Madella-Tapajos moist forests	Distant	2005	Tiane English MDEC
Dark 293	Ipixuna, Para, Brazil	-4,9192	-49,1607	Tropical and Subtropical Moist Broadlear Forests	Tocantins/Pindare moist forests	Photograph	2005	Thago Freitas, MPEG
Dark 294	Moji dos Campos, Pará, Brazil	-2,5000	-54,5000	Tropical and Subtropical Moist Broadleaf Forests	Tapajós-Xingu moist forests	Report	no data	Tadeu de Oliveira
Dark 295	Mojui dos Campos, Santarém, Pará, Brazil	-2,4508	-54,7589	Tropical and Subtropical Moist Broadleaf Forests	Tapajós-Xingu moist forests	Photograph	1975	Smithsonian Institution
Dark 296	Palmas, Tocantins, Brazil	-9,9500	-48,3333	Tropical and Subtropical Moist Broadleaf Forests	Mato Grosso seasonal forests	Photograph	no data	Tadeu de Oliveira
Dark 297	Palmas, Tocantins, Brazil	-9,9500	-48,3333	Tropical and Subtropical Moist Broadleaf Forests	Mato Grosso seasonal forests	Photograph	no data	Tadeu de Oliveira
Dark 298	Palmas, Tocantins, Brazil	-9,9500	-48,3333	Tropical and Subtropical Moist Broadleaf Forests	Mato Grosso seasonal forests	Photograph	no data	Tadeu de Oliveira
Dark 299	Palmas, Tocantins, Brazil	-9,9500	-48,3333	Tropical and Subtropical Moist Broadleaf Forests	Mato Grosso seasonal forests	Photograph	no data	Tadeu de Oliveira
Dark 300	Porto Artur, Brazil	-12,8279	-54,4015	Tropical and Subtropical Moist Broadleaf Forests	Mato Grosso seasonal forests	Photograph	no data	Tadeu de Oliveira
Dark 301	Rio das Garcas. Brazil	-16.0667	-53,5500	Tropical and Subtropical Grasslands. Savannas and Shrublands	Cerrado	Photograph	no data	Tadeu de Oliveira
Dark 302	Touros River, Bom Jesus, Rio Grande do Sul. Brazil	-28.6404	-50,2865	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Photograph	1987	Jorge Cherem
Dark 303	Gurupizinho, Paragominas, Pará, Brazil	-3,0540	-47,2817	Tropical and Subtropical Moist Broadleaf Forests	Tocantins/Pindare moist forests	Photograph	1983	Tiago Freitas, MPEG

Samples	Location	Location	Coord	inates	Biome	Ecoregion	Sample type	Year	Source
Sumples	Location	Latitude	Longitude	Divinc	Leorogion	Sumple type	rear	bource	
Dark 304	Tapajos River, Santarem, Pará, Brazil	-2,5529	-54,8954	Tropical and Subtropical Moist Broadleaf Forests	Tapajós-Xingu moist forests	Photograph	1901	American Museum of Natural History	
Dark 305	Tuparana Lake, Espirito Santo, Brazil	-20,3799	-41,6964	Tropical and Subtropical Moist Broadleaf Forests	Atlantic Forests	Photograph	1929	American Museum of Natural History	
Dark 306	Bogota, Cundinamarca, Colombia	4,5500	-74,0393	Tropical and Subtropical Moist Broadleaf Forests	Northern Andean Montane Forests	Photograph	s/ data	American Museum of Natural History	
Dark 307	Bonda, Colombia	11,2339	-74,0712	Deserts and Xeric Shrublands	Guajira-Barranquilla xeric scrub	Photograph	1899	American Museum of Natural History	
Dark 308	Popayan, Cauca, Colombia	2,4542	-76,5924	Tropical and Subtropical Moist Broadleaf Forests	Northern Andean Montane Forests	Photograph	1911	American Museum of Natural History	
Dark 309	Sabana Larga, Cienaga de Guajaro, Atlantico, Colombia	9,4908	-74,8624	Tropical and Subtropical Moist Broadleaf Forests	Magdalena-Urabá moist forests	Photograph	1941	Smithsonian Institution	
Dark 310	Sabana Larga, Cienaga de Guajaro, Atlantico, Colombia	9,9283	-74.9150	Tropical and Subtropical Moist Broadleaf Forests	Magdalena-Urabá moist forests	Photograph	1941	Smithsonian Institution	
Dark 311	Santa Marta, Magdalena, Colombia	11,1724	-74,1188	Deserts and Xeric Shrublands	Guaiira-Barranquilla xeric scrub	Photograph	1901	American Museum of Natural History	
Dark 312	Timbio Cauca Colombia	2 3511	-76 6574	Tropical and Subtropical Moist Broadleaf Forests	Northern Andean Montane Forests	Photograph	s/ data	American Museum of Natural History	
Dark 313	Timbio, Cauca, Colombia	2,3011	-76 6420	Tropical and Subtropical Moist Broadleaf Forests	Northern Andean Montane Forests	Photograph	s/ data	American Museum of Natural History	
Dark 214	Villevicenzio Mete Colombia	4 1417	72 6080	Tropical and Subtropical Dry Proadleaf Forests	Apure Villevicencio dry forests	Photograph	1040	American Museum of Natural History	
Dark 314	Villavicencio, Meta, Colonibia	4,1417	-73,0085	Tropical and Subtropical Dry Broadleaf Forests	Apure- vinavicencio di y forests	Photograph	1041	American Museum of Natural History	
Dark 515 Dark 216	Puriscai, San Jose, Costa Kica	9,9149	-64,1030	Tropical and Subtropical Moist Broadlast Forests	Costa Ricali seasonai moist lorests	Photograph	1941	American Museum of Natural History	
Dark 510	Pajan, Ecuador	-1,3730	-80,4101	Tropical and Subtropical Dry Broadlear Forests	Ecuadorian dry forests	Photograph	1939	American Museum of Natural History	
Dark 31/	Portovelo, El Oro, Ecuador	-3,/06/	-79,6225	Tropical and Subtropical Moist Broadleaf Forests	Northern Andean Montane Forests	Photograph	1920	American Museum of Natural History	
Dark 318	Brownsville, Cameron County, Texas, United States	26,1410	-97,4945	Tropical and Subtropical Grasslands, Savannas and Shrublands	Western Gulf coastal grasslands	Photograph	1892	Smithsonian Institution	
Dark 319	Brownsville, Texas, United States	25,9167	-97,4833	Tropical and Subtropical Grasslands, Savannas and Shrublands	Western Gulf coastal grasslands	Photograph	no data	Tadeu de Oliveira	
Dark 320	Brownsville, Texas, United States	25,9167	-97,4833	Tropical and Subtropical Grasslands, Savannas and Shrublands	Western Gulf coastal grasslands	Photograph	no data	Tadeu de Oliveira	
Dark 321	Brownsville, Texas, United States	25,9167	-97,4833	Tropical and Subtropical Grasslands, Savannas and Shrublands	Western Gulf coastal grasslands	Photograph	no data	Tadeu de Oliveira	
Dark 322	Brownsville, Texas, United States	25,9167	-97,4833	Tropical and Subtropical Grasslands, Savannas and Shrublands	Western Gulf coastal grasslands	Photograph	no data	Tadeu de Oliveira	
Dark 323	La Libertad, Peten, Guatemala	16,8320	-90,1104	Tropical and Subtropical Moist Broadleaf Forests	Petén-Veracruz moist forests	Photograph	1925	Smithsonian Institution	
Dark 324	Tiquisate, Escuintla, Guatemala	14,2869	-91.3659	Tropical and Subtropical Dry Broadleaf Forests	Central American dry forests	Photograph	1925	American Museum of Natural History	
Dark 325	Kartabo, Guyana	6.7500	-61.0000	Tropical and Subtropical Moist Broadleaf Forests	Guianan Moist Forests	Photograph	no data	Tadeu de Oliveira	
Dark 326	Rupupuni Guyana	2 8333	-59 6667	Tropical and Subtropical Grasslands, Savannas and Shrublands	Guianan sayanna	Photograph	no data	Tadeu de Oliveira	
Dark 320	Cortabo Cuyani Mazaruni Bagion Cuyana	4.0262	58 6720	Tropical and Subtropical Moist Provide Forests	Guianan Moist Eorosta	Photograph	1024	American Museum of Natural History	
Dark 327	Kartaba Daint, Curuni, Curuna	4,0303	-58,0759	Tropical and Subtropical Moist Broadleaf Forests	Cuianan Moist Forests	Photograph	1924	American Museum of Natural History	
Dark 326	A recuelto Honduros	3,0044	-38,3002	Tropical and Subtropical Moist Broadleaf Forests	Control American Atlantic maint forests	Photograph	1920 a/ data	American Museum of Natural History	
Dark 529	Azacuaipa, Hondulas	15,5219	-00,3303	Tropical and Subtropical Moist Broadleaf Forests	Central American Atlantic moist forests	Photograph	s/ uata	American Museum of Natural History	
Dark 330	Chamelecon, Cortes, Honduras	15,3702	-88,0454	Tropical and Subtropical Dry Broadlear Forests	Central American dry forests	Photograph	1901	Smithsonian Institution	
Dark 331	Chamelecon, Cortes, Honduras	15,3379	-87,9487	Tropical and Subtropical Dry Broadleaf Forests	Central American dry forests	Photograph	1901	Smithsonian Institution	
Dark 332	Chemelicon, Honduras	15,0000	-86,5000	Tropical and Subtropical Dry Broadleaf Forests	Mesoamerican Pine-Oak Forests	Photograph	no data	Tadeu de Oliveira	
Dark 333	San Jose, La Paz, Honduras	14,2666	-87,8827	Tropical and Subtropical Dry Broadleaf Forests	Mesoamerican Pine-Oak Forests	Photograph	1937	American Museum of Natural History	
Dark 334	Tegucigalpa, La Flor Archaga, Distrito Central, Honduras	14,2076	-87,1911	Tropical and Subtropical Dry Broadleaf Forests	Mesoamerican Pine-Oak Forests	Photograph	s/ data	American Museum of Natural History	
Dark 335	Chiapas, Mexico	15,9167	-92,7167	Tropical and Subtropical Dry Broadleaf Forests	Mesoamerican Pine-Oak Forests	Photograph	no data	Tadeu de Oliveira	
Dark 336	Colima, Mexico	19,1148	-103,5851	Tropical and Subtropical Dry Broadleaf Forests	Southern Mexican Dry Forests	Photograph	1896	American Museum of Natural History	
Dark 337	Colima, Mexico	19,0955	-103,5930	Tropical and Subtropical Dry Broadleaf Forests	Southern Mexican Dry Forests	Photograph	1896	American Museum of Natural History	
Dark 338	Escuinapa, Sinaloa, Mexico	22,8595	-105,7678	Tropical and Subtropical Dry Broadleaf Forests	Southern Mexican Dry Forests	Photograph	1904	American Museum of Natural History	
Dark 339	Juchitan, Oaxaca, Mexico	16,4163	-94,9837	Tropical and Subtropical Dry Broadleaf Forests	Southern Mexican Dry Forests	Photograph	1962	American Museum of Natural History	
Dark 340	Juchitan, Oaxaca, Mexico	16,4610	-95,0215	Tropical and Subtropical Dry Broadleaf Forests	Southern Mexican Dry Forests	Photograph	1962	American Museum of Natural History	
Dark 341	Juchitan, Oaxaca, Mexico	16,3855	-95,0068	Tropical and Subtropical Dry Broadleaf Forests	Southern Mexican Dry Forests	Photograph	1962	American Museum of Natural History	
Dark 342	La Tuxpena, Champoton, Mexico	26,4612	-102,6866	Deserts and Xeric Shrublands	Chihuahuan-Tehuacán Deserts	Photograph	1912	Smithsonian Institution	
Dark 343	La Tuxpena, Champoton, Mexico	19,2349	-90,6027	Tropical and Subtropical Moist Broadleaf Forests	Yucatán moist forests	Report	no data	Tadeu de Oliveira	
Dark 344	Salina Garrapatera, Tehuantepec, Mexico	16,1497	-95.3135	Tropical and Subtropical Dry Broadleaf Forests	Southern Mexican Dry Forests	Photograph	1948	American Museum of Natural History	
Dark 345	San Antonio, Tehuantenec, Mexico	16.4224	-95.3719	Tropical and Subtropical Dry Broadleaf Forests	Southern Mexican Dry Forests	Photograph	1951	American Museum of Natural History	
Dark 346	Santo Domingo Tehuantenec, Oaxaca, Mexico	24 3162	-98 6737	Tropical and Subtropical Moist Broadleaf Forests	Veracruz moist forests	Photograph	1944	American Museum of Natural History	
Dark 347	Santo Domingo Tehuantepec, Oaxaca Mexico	24 3547	-98 6318	Tropical and Subtropical Moist Broadleaf Forests	Veracruz moist forests	Photograph	1944	American Museum of Natural History	
Dark 348	Tehuantenec Oavaca Mexico	16 3611	-95 1975	Tropical and Subtropical Dry Broadleaf Forests	Southern Mexican Dry Forests	Photograph	e/ data	American Museum of Natural History	
Dark 340	Tehuanteree, Oaxaea, Mexico	16,3011	-55,1575	Tropical and Subtropical Dry Broadloof Forests	Southern Mexican Dry Forests	Dhotograph	1059	American Museum of Natural History	
Dark 549	Tenuantepec, Oaxaca, Mexico	10,5705	-93,2131	Tropical and Subtropical Dry Broadlear Forests	Southern Mexican Dry Forests	Photograph	1938	American Museum of Natural History	
Dark 350	Tuxtepec, Oaxaca, Mexico	18,0828	-96,1084	Tropical and Subtropical Moist Broadleaf Forests	Peten-Veracruz moist forests	Photograph	1962	American Museum of Natural History	
Dark 351	Cana, Panama	8,7261	-78,5381	Tropical and Subtropical Moist Broadleaf Forests	Isthmian-Atlantic moist forests	Photograph	no data	Tadeu de Oliveira	
Dark 352	San Blas, Panama	9,3832	-78,9167	Tropical and Subtropical Moist Broadleaf Forests	Chocó-Darién Moist Forests	Photograph	no data	Tadeu de Oliveira	
Dark 353	Villeta, Central, Paraguay	-25,5246	-57,5313	Tropical and Subtropical Grasslands, Savannas and Shrublands	Humid Chaco	Photograph	1944	American Museum of Natural History	
Dark 354	Ygatimi, Canindeyu, Paraguay	-24,0736	-55,5555	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	1947	American Museum of Natural History	
Dark 355	Coronel Portillo, Ucayali, Peru	-9,0382	-73,6469	Tropical and Subtropical Moist Broadleaf Forests	Southwestern Amazonian Moist Forests	Photograph	s/ data	American Museum of Natural History	
Dark 356	Iquitos, Maynas, Peru	-3,7718	-73,2057	Tropical and Subtropical Moist Broadleaf Forests	Amazon River and Flooded Forests	Photograph	1924	American Museum of Natural History	
Dark 357	Iquitos, Maynas, Peru	-3,8148	-73,3258	Tropical and Subtropical Moist Broadleaf Forests	Amazon River and Flooded Forests	Photograph	1924	American Museum of Natural History	
Dark 358	Iquitos, Maynas, Peru	-3,5326	-73,1531	Tropical and Subtropical Moist Broadleaf Forests	Amazon River and Flooded Forests	Photograph	1926	American Museum of Natural History	
Dark 359	Iquitos, Maynas, Peru	-3.6532	-73,2200	Tropical and Subtropical Moist Broadleaf Forests	Amazon River and Flooded Forests	Photograph	1927	American Museum of Natural History	
Dark 360	Pucallna Wildlife Refuge Peru	-8 3702	-74 4692	Tropical and Subtropical Moist Broadleaf Foreste	Amazon River and Flooded Forests	Photograph	1942	Smithsonian Institution	
Dark 361	Pucalna Daru	.8 3832	-74 5167	Tropical and Subtropical Moist Broadlast Forests	Amazon River and Flooded Forests	Photograph	no data	Tadeu de Oliveiro	
Dark 262	i ucapa, r ciu	-0,0000	72 2880	Tropical and Subtropical Moist Broadloof Forests	Amazon River and Flooded Forests	Dhotograph	1042	Smithsonian Institution	
Dark 302 Dark 262	Itaya Kiver, retu	-3,3930	-13,3000	Tropical and Subtropical Moist Broadlast Forests	Southwastern Amazonian Maist E-	Photo aron ¹	1942	American Museum of Natural History	
Dark 303	Ucayan Kiver, Peru Provincuillo, Toxon, United States	-9,13/0	-13,1237	Tropical and Subtropical Grasslanda, Sourcease and Cherklands	Wastern Gulf assets] assessed	Photo graph	1927	American Museum of Natural History	
Dark 304	Drownsvine, rexas, United States	25,8088	-97,4370	Topical and Subtropical Grasslands, Savannas and Snrublands	Western Gulf coastal grasslands	Photograph	1004	American Museum of Natural History	
Dark 365	Brownsville, Texas, United States	26,0079	-97,4913	ropical and Subtropical Grasslands, Savannas and Shrublands	western Gulf coastal grasslands	Photograph	1904	American Museum of Natural History	

Comples	amples Location		dinates	Biomo	Econorica	Comple tupe	Veen	Former
Samples	Location	Latitude	Longitude	Biome	Ecoregion	Sample type	rear	Source
Dark 366	Towaco, Los Indios, United States	26.0442	-97.7343	Deserts and Xeric Shrublands	Tamaulinan mezquital	Photograph	1965	American Museum of Natural History
Dark 367	Cedeno Bolivar Venezuela	7 1631	-66 3327	Tropical and Subtropical Grasslands, Savannas and Shruhlands	Llanos	Photograph	1925	American Museum of Natural History
Dark 268	Montos, Suara, Venezuela	10 2620	64 0468	Deserts and Varia Shrublands	La Costa voria shrublanda	Photograph	1025	American Museum of Natural History
Dark 308	Monnes, Sucie, Venezuela	11,2030	-04,0408	Deserts and Xeric Shrublands	Democratic sin ubiands	Photograph	1925	American Museum of Natural History
Dark 369	Moruy, Faicon, venezueia	11,8282	-70,0236	Deserts and Xeric Shrublands	Paraguana xeric scrub	Photograph	1938	American Museum of Natural History
Red 01	Boqueirão da Onça National Park, Bahia, Brazil	-10,2000	-41,4167	Deserts and Xeric Shrublands	Caatinga	Report	no data	Tadeu de Oliveira
Red 02	Boqueirão da Onça National Park, Bahia, Brazil	-10,2000	-41,4167	Deserts and Xeric Shrublands	Caatinga	Report	no data	Tadeu de Oliveira
Red 03	Boqueirão da Onça National Park, Bahia, Brazil	-9,5243	-40,8171	Deserts and Xeric Shrublands	Caatinga	Report	2008	Sertão Bio
Red 04	Boqueirão da Onca National Park, Bahia, Brazil	-10,2000	-41,4167	Deserts and Xeric Shrublands	Caatinga	Report	no data	Tadeu de Oliveira
Red 05	Praia do Forte, Bahia, Brazil	-12.5500	-38,0000	Tropical and Subtropical Moist Broadleaf Forests	Atlantic Forests	Report	no data	Tadeu de Oliveira
Red 06	Antonina do Norte, Ceará Brazil	-6.8180	-40 1672	Deserts and Veric Shruhlands	Castings	Capture	2006	Tadeu de Oliveira
Red 00	Antonina do Norte, Ceará, Brazil	-0,0100	40,1672	Deserts and Xeric Shrublands	Caatinga	Capture	2000	Tadeu de Oliveira
Red 07	Antonina do None, Ceara, Brazii	-0,8180	-40,1072	Desents and Xeric Shrublands	Caatinga	Capture	2000	Tadeu de Oliveira
Red 08	Antonina do Norte, Ceara, Brazil	-6,8180	-40,1672	Deserts and Xeric Shrublands	Caatinga	Capture	2006	Tadeu de Oliveira
Red 09	Antonina do Norte, Ceará, Brazil	-6,8180	-40,1672	Deserts and Xeric Shrublands	Caatinga	Capture	2006	Tadeu de Oliveira
Red 10	Antonina do Norte, Ceará, Brazil	-6,8180	-40,1672	Deserts and Xeric Shrublands	Caatinga	Capture	2006	Tadeu de Oliveira
Red 11	Antonina do Norte, Ceará, Brazil	-6,8180	-40,1672	Deserts and Xeric Shrublands	Caatinga	Capture	2006	Tadeu de Oliveira
Red 12	Antonina do Norte, Ceará, Brazil	-6,8180	-40,1672	Deserts and Xeric Shrublands	Caatinga	Capture	2006	Tadeu de Oliveira
Red 13	Antonina do Norte, Ceará, Brazil	-6.8180	-40.1672	Deserts and Xeric Shrublands	Caatinga	Capture	2006	Tadeu de Oliveira
Red 1/	Antonina do Norte, Ceará Brazil	-6.8180	-40 1672	Deserts and Veric Shruhlands	Caatinga	Capture	2006	Tadeu de Oliveira
Ded 15	Antonina do Norte, Ceará, Brazil	-0,0100	40,1672	Deserts and Xeric Shrublands	Caatinga	Capture	2000	Tadeu de Oliveira
Red 13	Antonina do None, Ceara, Brazil	-0,8180	-40,1672	Desents and Xeric Shrublands	Caatinga	Capture	2006	Tadeu de Oliveira
Red 16	Antonina do Norte, Ceará, Brazil	-6,8180	-40,1672	Deserts and Xeric Shrublands	Caatinga	Capture	2006	Tadeu de Oliveira
Red 17	Caridade, Ceará, Brazil	-4,2299	-39,1895	Deserts and Xeric Shrublands	Caatinga	Report	no data	Tadeu de Oliveira
Red 18	Novo Oriente, Ceará, Brazil	-5,5358	-40,7896	Deserts and Xeric Shrublands	Caatinga	Report	no data	Tadeu de Oliveira
Red 19	Novo Oriente, Ceará, Brazil	-5,5358	-40,7896	Deserts and Xeric Shrublands	Caatinga	Report	no data	Tadeu de Oliveira
Red 20	Serra das Araras, Ceará, Brazil	-3.7333	-38.6500	Deserts and Xeric Shrublands	Caatinga	Report	no data	Tadeu de Oliveira
Red 21	Bacabal Maranhão Brazil	-3 7847	-46 8535	Tropical and Subtropical Moist Broadleaf Forests	Tocantins/Pindare moist forests	Photograph	no data	Tadeu de Oliveira
Red 22	Barreirinhas Maranhão Brazil	-2 7225	-42 8509	Tropical and Subtropical Moist Broadleaf Forests	Northeastern Brazil restinges	Report	no data	Tadeu de Oliveira
Red 22 Ded 22	Minodon State Donly Mononhão, Dravil	-2,1223	45 2222	Tropical and Subtropical Moist Dioducal Potests	Comodo	Dhotooronh	2000	Tadeu de Oliveira
Red 25	Millador State Park, Marannao, Brazh	-0,0007	-43,5555	Tropical and Subtropical Grassiands, Savannas and Shrublands	Cerrado	Photograph	2009	Tadeu de Oliveira
Red 24	Medina, Minas Gerais, Brazil	-16,216/	-41,4667	Tropical and Subtropical Moist Broadleaf Forests	Atlantic Forests	Report	no data	Tadeu de Oliveira
Red 25	Paracatu, Minas Gerais, Brazil	-17,2429	-46,4696	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Photograph	2013	Henrique Alves
Red 26	Veredas do Pereaçu State Park, Minas Gerais, Brazil	-15,1182	-44,6066	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Report	2010	Guilherme Ferreira
Red 27	Cavernas do Peruaçu National Park, Minas Gerais, Brazil	-15,0842	-44,2663	Tropical and Subtropical Dry Broadleaf Forests	Atlantic Dry Forests	Photograph	2007	Instituto Biotropicos
Red 28	Fazenda Tamanduá, Paraíba, Brazil	-7,0167	-37,3833	Deserts and Xeric Shrublands	Caatinga	Report	no data	Tadeu de Oliveira
Red 29	Fazenda Tamanduá, Paraíba, Brazil	-7.0167	-37.3833	Deserts and Xeric Shrublands	Caatinga	Report	no data	Tadeu de Oliveira
Red 30	Fazenda Tamanduá, Paraíba, Brazil	-7.0167	-37 3833	Deserts and Xeric Shrublands	Caatinga	Report	no data	Tadeu de Oliveira
Red 30 Pod 21	Fazanda Tamanduá, Paraíba, Brazil	7,0107	27 2922	Deserts and Verie Shrublands	Castinga	Paport	no data	Tadeu de Oliveira
Red 31	Pazenda Tamandua, Falaiba, Diazii	-7,0107	-37,3833	Deserts and Xeric Shirublands	Caatinga	Report	2012	Tadeu de Oliveira
Red 32	Patos, Paralda, Brazil	-6,9119	-37,2299	Deserts and Xeric Shrublands	Caatinga	Report	2013	Tadeu de Onveira
Red 33	Patos, Paraiba, Brazil	-6,8968	-37,2521	Deserts and Xeric Shrublands	Caatinga	Report	2013	Tadeu de Oliveira
Red 34	Patos, Paraíba, Brazil	-6,9204	-37,2765	Deserts and Xeric Shrublands	Caatinga	Report	2013	Tadeu de Oliveira
Red 35	São José de Piranhas, Paraíba, Brazil	-7,1167	-38,5000	Deserts and Xeric Shrublands	Caatinga	Report	no data	Tadeu de Oliveira
Red 36	Sertão Araripe, Pernambuco, Brazil	-7,4567	-40,1941	Deserts and Xeric Shrublands	Caatinga	Report	2010	Iran de Souza
Red 37	Serra da Capivara National Park, Piauí, Brazil	-8,6745	-42,6517	Deserts and Xeric Shrublands	Caatinga	Report	2000	Sertão Bio
Red 38	Serra da Capiyara National Park, Piauí, Brazil	-8.7484	-42.4967	Deserts and Xeric Shrublands	Caatinga	Report	2000	Sertão Bio
Red 39	Parnaíba River Piauí Brazil	-8 2858	-45 6562	Tropical and Subtropical Grasslands, Savannas and Shrublands	Cerrado	Report	no data	Tadeu de Oliveira
Red 40	Arapongae Parané Prezil	-0,2050	51 4242	Tropical and Subtropical Orassiands, Savanias and Situbiands	Alto Parané Atlantia forasta	Photograph	no data	Corrivoros do Igueou
Red 40	Arapoligas, Paralla, Brazil	-25,4417	-31,4342	Tropical and Subtropical Moist Broadleaf Forests	Ano Parana Atlantic lorests	Photograph	no data	Carnivolos do Iguaçu
Red 41	Serra da Baitaca State Park, Parana, Brazil	-25,4118	-49,0799	Tropical and Subtropical Moist Broadlear Forests	Araucaria moist forests	Report	no data	Renata Pitman
Red 42	Iguaçu National Park, Paranà, Brazil	-25,5695	-54,2684	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	2009	Carnivoros do Iguaçu
Red 43	Perobas Biological, Reserve, Paraná, Brazil	-23,8326	-52,7439	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	2010	Jonatan Soares
Red 44	Perobas Biological, Reserve, Paraná, Brazil	-23,8564	-52,7692	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	2010	Jonatan Soares
Red 45	Perobas Biological, Reserve, Paraná, Brazil	-23,8390	-52,7801	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	2010	Jonatan Soares
Red 46	Cangucu, Rio Grande do Sul, Brazil	-31.2059	-52.8277	Tropical and Subtropical Grasslands, Savannas and Shrublands	Uruguavan savanna	Photograph	2013	Caroline Sartor
Red 47	Carazinho Rio Grande do Sul Brazil	-28 2872	-52 7128	Tropical and Subtropical Grasslands, Savannas and Shrublands	Uruguayan sayanna	Capture	2007	IBAMA
Red 18	Cruzeiro do Sul Rio Grande do Sul Brazil	-20 5206	-52 0153	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Report	2010	Carlos Banhur Kaspar
Ded 40	Unmaitá Bio Crando do Sul Brazil	27,5250	52,0105	Tropical and Subtropical Moist Broadloof Forests	Alto Doronó Atlantio foresto	Conture	2010	EZD DS
Ded 50	Humaitá, Nio Grande do Sul, Drazil	-21,3430	-33,7303	Tropical and Subtropical Mobile Divadical Follosis	Alto Perené Atlantic forest	Capture	2004	EZD DC
Ked 50	Humaita, Kio Grande do Sul, Brazil	-27,5000	-53,8623	Tropical and Subtropical Moist Broadleaf Forests	Alto Parana Atlantic forests	Capture	2006	FZB-KS
Red 51	Humaitá, Rio Grande do Sul, Brazil	-27,6011	-53,8426	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Capture	2008	Carlos Benhur Kasper
Red 52	Lagoa Vermelha, Rio Grande do Sul, Brazil	-28,1724	-51,5280	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Capture	2004	Eduardo Eizirik
Red 53	Lajeado, Rio Grande do Sul, Brazil	-29,4537	-51,9441	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	2013	Flavia Tirelli
Red 54	Mariana Pimentel, Rio Grande do Sul, Brazil	-30,3379	-51,5709	Tropical and Subtropical Grasslands, Savannas and Shrublands	Uruguayan savanna	Report	2010	Carlos Benhur Kasper
Red 55	Turvo State Park, Rio Grande do Sul, Brazil	-27.2028	-53.8549	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	2010	Carlos Benhur Kasper
Red 56	Serra Geral Biological Reserve Rio Grande do Sul Brazil	-29 1582	-50.0513	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Photograph	2010	Iuliana Santos
Red 57	São Cabrial Dio Granda do Sul Prazil	20,1532	52 8205	Tropical and Subtropical Gracelande, Savannee and Shrublande	Uruguovon covonno	Photograph	2012	Florio Tiralli
Keu J/	sao Gabrier, Kio Grande do Sui, Brazil	-30,3444	-33,6373	riopical and Subtropical Grassiands, Savannas and Shrublands	Oruguayan savanna	rnotograph	2015	Flavia I lielli

Samples	Location	Coord	inates	Biome	Ecorogion	Sample type	Voor	Source	
Samples	Eocation	Latitude	Longitude	Bioine	Ecoregion	Sample type	Tear	bource	
Red 58	Seberi, Rio Grande do Sul, Brazil	-27,5129	-53,3658	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Report	2010	Carlos Benhur Kasper	
Red 59	São Cristóvão do Sul, Santa Catarina, Brazil	-27,3436	-50,4298	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Photograph	2004	Jorge Cherem	
Red 60	Chapecó, Santa Catarina, Brazil	-27,2039	-52,6287	Tropical and Subtropical Moist Broadleaf Forests	Alto Paraná Atlantic forests	Photograph	2009	Jorge Cherem	
Red 61	Serra do Tabuleiro State Park, Santa Catarina, Brazil	-27,8490	-48,7107	Tropical and Subtropical Moist Broadleaf Forests	Atlantic Forests	Report	no data	Marcos Tortatto	
Red 62	Serra do Itajaí State Park, Santa Catarina, Brazil	-27,0387	-49,2211	Tropical and Subtropical Moist Broadleaf Forests	Atlantic Forests	Photograph	2010	CENAP ICMBio	
Red 63	Serra do Itajaí State Park, Santa Catarina, Brazil	-27,0387	-49,2211	Tropical and Subtropical Moist Broadleaf Forests	Atlantic Forests	Photograph	2010	CENAP ICMBio	
Red 64	Xanxerê, Santa Catarina, Brazil	-26,8322	-52,4145	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Photograph	2004	Jorge Cherem	
Red 65	Palmas, Tocantins, Brazil	-10,1132	-48,2618	Tropical and Subtropical Moist Broadleaf Forests	Mato Grosso seasonal forests	Report	2011	Guilherme Trovati	
Red 66	Bella Vista, Corrientes, Argentina	-27,0336	-65,2915	Tropical and Subtropical Grasslands, Savannas and Shrublands	Dry Chaco	Photograph	no data	Anibal Parera	
Red 67	Lihue, Argentina	-37,6449	-65,6285	Temperate Grasslands, Savannas and Shrublands	Espinal	Report	no data	Javier Pereira	
Red 68	Wildermuth Reserve, Santa Fe, Argentina	-32,1247	-61,3858	Temperate Grasslands, Savannas and Shrublands	Humid Pampas	Photograph	2012	Javier Pereira	
Red 69	Cerro Cortado, Bolivia	-19,4489	-62,3731	Tropical and Subtropical Grasslands, Savannas and Shrublands	Dry Chaco	Photograph	no data	Leonardo Maffei	
Red 70	Villavicencio, Colombia	4,0284	-73,6138	Tropical and Subtropical Dry Broadleaf Forests	Apure-Villavicencio dry forests	Photograph	1972	Esteban Payan, Panthera	
Red 71	San Fernando, Mexico	24,7929	-98,0020	Deserts and Xeric Shrublands	Tamaulipan mezquital	Photograph	no data	Michael Tewes	
Red 72	Tamaulipas, Mexico	24,0131	-98,6251	Deserts and Xeric Shrublands	Tamaulipan matorral	Photograph	2013	Francisco Illescas	
Red 73	Ledesma, Jujuy, Argentina	-23,8438	-64,7711	Tropical and Subtropical Grasslands, Savannas and Shrublands	Dry Chaco	Photograph	1959	American Museum of Natural History	
Red 74	Santiago Del Estero, Argentina	-27,8297	-64,3222	Tropical and Subtropical Grasslands, Savannas and Shrublands	Dry Chaco	Photograph	1916	American Museum of Natural History	
Red 75	El Puente, Bolivia	-21,2867	-65,2095	Tropical and Subtropical Grasslands, Savannas and Shrublands	Dry Chaco	Photograph	s/ data	American Museum of Natural History	
Red 76	Belém, Pará, Brazil	-1,8253	-48,4292	Tropical and Subtropical Moist Broadleaf Forests	Tocantins/Pindare moist forests	Photograph	1982	Tiago Freitas, MPEG	
Red 77	Tocantins River, Tucuruí, Pará, Brazil	-5,3084	-48,8845	Tropical and Subtropical Moist Broadleaf Forests	Tocantins/Pindare moist forests	Photograph	1988	Tiago Freitas, MPEG	
Red 78	Entre Rios do Sul, Rio Grande do Sul, Brazil	-27,5311	-52,7196	Tropical and Subtropical Grasslands, Savannas and Shrublands	Uruguayan savanna	Photograph	no data	Lucas Gonçalves da Silva	
Red 79	Vila São Francisco, Urubici, Santa Catarina, Brazil	-28,0252	-49,6021	Tropical and Subtropical Moist Broadleaf Forests	Araucaria moist forests	Photograph	1988	Jorge Cherem	
Red 80	Palmas, Tocantins, Brazil	-9,9500	-48,3333	Tropical and Subtropical Moist Broadleaf Forests	Mato Grosso seasonal forests	Report	no data	Tadeu de Oliveira	
Red 81	Bogota, Cundinamarca, Colombia	4,5705	-73,9791	Tropical and Subtropical Dry Broadleaf Forests	Apure-Villavicencio dry forests	Photograph	no data	American Museum of Natural History	
Red 82	Paramo de Chingasa, Colombia	4,5000	-73,7500	Tropical and Subtropical Dry Broadleaf Forests	Apure-Villavicencio dry forests	Report	no data	Tadeu de Oliveira	
Red 83	La Libertad, Peten, Guatemala	16,7654	-90,1563	Tropical and Subtropical Moist Broadleaf Forests	Petén-Veracruz moist forests	Photograph	1925	Smithsonian Institution	
Red 84	Peten, Guatemala	17,2167	-89,6167	Tropical and Subtropical Moist Broadleaf Forests	Petén-Veracruz moist forests	Photograph	no data	Tadeu de Oliveira	
Red 85	Cintalapa, Chiapas, Mexico	16,6073	-93,9618	Tropical and Subtropical Dry Broadleaf Forests	Chiapas Depression dry forests	Photograph	1951	American Museum of Natural History	
Red 86	Escuinapa, Sinaloa, Mexico	22,8677	-105,7760	Tropical and Subtropical Dry Broadleaf Forests	Sinaloan dry forests	Photograph	1904	American Museum of Natural History	
Red 87	Gomez Farias, Tamaulipas, Mexico	23,0487	-99,1605	Tropical and Subtropical Moist Broadleaf Forests	Veracruz moist forests	Photograph	1951	American Museum of Natural History	
Red 88	Juchitan, Oaxaca, Mexico	16,4538	-94,9998	Tropical and Subtropical Dry Broadleaf Forests	Southern Pacific dry forests	Photograph	1962	American Museum of Natural History	
Red 89	La Tuxpena, Champoton, Mexico	19,3500	-90,7167	Tropical and Subtropical Dry Broadleaf Forests	Yucatán dry forests	Report	no data	Tadeu de Oliveira	
Red 90	La Tuxpena, Champoton, Mexico	27,0875	-102,8271	Deserts and Xeric Shrublands	Chihuahuan desert	Photograph	1911	Smithsonian Institution	
Red 91	Tehuantepec, Oaxaca, Mexico	16,3628	-95,2211	Tropical and Subtropical Dry Broadleaf Forests	Southern Pacific dry forests	Photograph	no data	American Museum of Natural History	
Red 92	Brownsville, Cameron County, Texas, United States	26,1806	-97,4368	Tropical and Subtropical Grasslands, Savannas and Shrublands	Western Gulf coastal grasslands	Photograph	1892	Smithsonian Institution	
Red 93	Brownsville, Texas, United States	25,9167	-97,4833	Tropical and Subtropical Grasslands, Savannas and Shrublands	Western Gulf coastal grasslands	Report	no data	Tadeu de Oliveira	
Red 94	Iquitos, Maynas, Peru	-3,7523	-73,1159	Tropical and Subtropical Moist Broadleaf Forests	Napo moist forests	Photograph	2002	Esteban Payan, Panthera	

APÊNDICE 3: TABELA SUPLEMENTAR CAPÍTULO 4

Registros *Panthera pardus*

Supplementary table 1 - Location records for Panthera pardus.

Id	Subspecies	Location	Deg	WGS84	Biome	Ecorregion	Sample	Year	Source
-			Latitude	Longitude					
Doubtful Mel. 01	saxicolor	Tandoureh National Park, Iran	37,3762	58,5006	Temperate Coniferous Forest	Caucasus-Anatolian-Hyrcanian temperate forests	Report	no data	Asian Leopard Group
Doubtful Mel. 02	pardus	Chyulu Hills National Park, Kenya	-2,8161	38,1473	Tropical and Subtropical Grasslands, Savannas and Shrublands	East African Acacia Savannas	Report	no data	Lion Guardians
Doubtful Mel. 03	pardus	Mount Kenya's, Kenya	-0,3062	37,1866	Tropical and Subtropical Moist Broadleaf Forests	East African montane forests	Report	no data	Video Mount Kenya/Sunquist & Sunquist 2002
Doubtful Mel. 04	pardus	Lydenburg, South Africa	-24,9221	30,6565	Montane Grasslands and Shrublands	Drakensberg Montane Woodlands and Grasslands	Report	no data	Report by Andrew Stein
Melanistic 01	fusca	Manas National Park, Bhutan	26,8011	91,0330	Tropical and Subtropical Moist Broadleaf Forests	Brahmaputra Valley semi-evergreen forests	Photograph	no data	Smithsonian Institution
Melanistic 02	fusca	Tsamang, Monggar, Bhutan	27,5048	91,1057	Temperate Broadleaf and Mixed Forests	Eastern Himalayan broadleaf forests	Photograph	no data	Smithsonian Institution
Melanistic 03	fusca	Southern Lung, China	28,2364	92,7316	Montane Grasslands and Shrublands	Eastern Himalayan alpine shrub and meadows	Photograph	no data	Smithsonian Institution
Melanistic 04	fusca	Addis Ababa, Abissynya, Ethiopia	9,0445	38,6967	Montane Grasslands and Shrublands	Ethiopian montane grasslands and woodlands	Photograph	1909	National Museum of Natural History USA
Melanistic 05	fusca	Achanakmar Tiger Reserve, India	22,4528	81,5555	Tropical and Subtropical Moist Broadleaf Forests	Eastern highlands moist deciduous forests	Report	no data	Milind Pariwakam/Biswajit Mohanty
Melanistic 06	fusca	Achanakmar Tiger Reserve, India	22,5980	81,8327	Tropical and Subtropical Moist Broadleaf Forests	Eastern highlands moist deciduous forests	Photograph	no data	Milind Pariwakam/Biswajit Mohanty
Melanistic 07	fusca	Achanakmar Tiger Reserve, India	22,3421	81,8245	Tropical and Subtropical Moist Broadleaf Forests	Eastern highlands moist deciduous forests	Report	no data	Milind Pariwakam/Biswajit Mohanty
Melanistic 08	fusca	Bhadra Tiger Reserve, India	13,4910	75,6496	Tropical and Subtropical Moist Broadleaf Forests	North Western Ghats moist deciduous forests	Photograph	2012	Conservation India
Melanistic 09	fusca	Bhadra Tiger Reserve, India	13,6189	75,6286	Tropical and Subtropical Moist Broadleaf Forests	North Western Ghats moist deciduous forests	Photograph	2012	Conservation India
Melanistic 10	fusca	Chhattisgarh, India	23,9813	82,0120	Tropical and Subtropical Dry Broadleaf Forests	Narmada Valley dry deciduous forests	Report	no data	Milind Pariwakam/Biswajit Mohanty
Melanistic 11	fusca	Dandeli-Anshi Tiger Reserve, india	13,1213	75,0433	Tropical and Subtropical Moist Broadleaf Forests	Malabar Coast moist forests	Photograph	2013	Wildlife Conservation Society
Melanistic 12	fusca	Dibrugarh, India	27,4848	95,0622	Tropical and Subtropical Moist Broadleaf Forests	Brahmaputra Valley semi-evergreen forests	Photograph	no data	Kashmira Kakati
Melanistic 13	fusca	Kaziranga National Park, India	26,6911	93,4945	Tropical and Subtropical Moist Broadleaf Forests	Brahmaputra Valley semi-evergreen forests	Photograph	no data	World Wild Fund
Melanistic 14	fusca	Maijan Bungalow Brahmaputra Ghat, India	27,5008	94,9323	Tropical and Subtropical Moist Broadleaf Forests	Brahmaputra Valley semi-evergreen forests	Photograph	no data	Kashmira Kakati
Melanistic 15	fusca	Mudumalai National Park, Central India, India	11,5087	76,5651	Tropical and Subtropical Moist Broadleaf Forests	South Western Ghats moist deciduous forests	Photograph	2013	Phillip Ross
Melanistic 16	fusca	Orissa, India	20,3555	80,9707	Tropical and Subtropical Moist Broadleaf Forests	Eastern highlands moist deciduous forests	Report	no data	Milind Pariwakam/Biswajit Mohanty
Melanistic 17	fusca	Pakke Tiger Reserve in Arunachal Pradesh, India	28,5669	95,9691	Temperate Broadleaf and Mixed Forests	Eastern Himalayan broadleaf forests	Photograph	2013	Milind Pariwakam/Biswajit Mohanty
Melanistic 18	fusca	Pakke Tiger Reserve in Arunachal Pradesh, India	28,6604	95,6358	Temperate Broadleaf and Mixed Forests	Eastern Himalayan broadleaf forests	Photograph	no data	Milind Pariwakam/Biswajit Mohanty
Melanistic 19	fusca	Periyar Wildlife Sanctuary, India	9,2756	76,9211	Tropical and Subtropical Moist Broadleaf Forests	South Western Ghats moist deciduous forests	Report	no data	Milind Pariwakam/Biswajit Mohanty
Melanistic 20	melas	Baluran National Park, Java, Indonesia	-7,8531	114,4085	Tropical and Subtropical Moist Broadleaf Forests	Eastern Java-Bali rain forests	Photograph	2012	Copenhague Zoo
Melanistic 21	melas	Gunung Gede Pangrango National Park, West Java, Indonesia	-6,8038	106,9310	Tropical and Subtropical Moist Broadleaf Forests	Western Java montane rain forests	Photograph	no data	Anton Ario
Melanistic 22	melas	Gunung Salak National Park, Java, Indonesia	-7.1238	107.3197	Tropical and Subtropical Moist Broadleaf Forests	Western Java montane rain forests	Photograph	no data	CIFOR
Melanistic 23	melas	Halimun-Salak, Java, Indonesia	-6.7671	106,5601	Tropical and Subtropical Moist Broadleaf Forests	Western Java montane rain forests	Photograph	2004	Anhar Harahap
Melanistic 24	melas	Halimun-Salak, Java, Indonesia	-6.7832	106.6828	Tropical and Subtropical Moist Broadleaf Forests	Western Java montane rain forests	Photograph	2005	Anhar Harahan
Melanistic 25	melas	Ujung Kulon National Park, Java, Indonesia	-6.7524	105.3290	Tropical and Subtropical Moist Broadleaf Forests	Western Java rain forests	Photograph	no data	World Wild Fund
Melanistic 26	melas	Western Java, Indonesia	-6.6280	105,9386	Tropical and Subtropical Moist Broadleaf Forests	Western Java rain forests	Photograph	1907	National Museum of Natural History USA
Melanistic 27	delacouri	Kenvir Wildlife Corridor, Malaysia	5.2801	102,6407	Tropical and Subtropical Moist Broadleaf Forests	Peninsular Malaysian rain forests	Photograph	2012	Reuben Clements
Melanistic 28	delacouri	Kenvir Wildlife Corridor, Malaysia	5 1205	102,0107	Tropical and Subtropical Moist Broadleaf Forests	Peninsular Malaysian rain forests	Photograph	no data	Kenvir Wildlife Corridor Leopard Project
Melanistic 29	delacouri	Kenvir Wildlife Corridor, Malaysia	5 2390	102,7215	Tropical and Subtropical Moist Broadleaf Forests	Peninsular Malaysian rain forests	Photograph	2011	Kae Kawanishi
Melanistic 30	delacouri	Malay Peninsula Malaysia	3 3657	102,1210	Tropical and Subtropical Moist Broadleaf Forests	Peninsular Malaysian rain forests	Photograph	2009	Kae Kawanishi
Melanistic 31	delacouri	Malay Peninsula, Malaysia Malay Peninsula Malaysia	4 4303	103 1427	Tropical and Subtropical Moist Broadleaf Forests	Peninsular Malaysian rain forests	Photograph	2009	Kae Kawanishi
Melanistic 37	delacouri	Malay Peningula Malaysia	4,4536	102 5160	Tropical and Subtropical Moist Broadleaf Forests	Peningular Malaysian rain forests	Photograph	2009	Kae Kawanishi
Melanistic 32	delacouri	Malay Peningula, Malaysia Malay Peningula, Malaysia	4,4550	102,3100	Tropical and Subtropical Moist Broadleaf Forests	Peningular Malaysian rain forests	Photograph	2009	Kae Kawanishi
Melanistic 34	delacouri	Malay Peninsula, Malaysia Malay Peninsula, Malaysia	4,2904	102,5501	Tropical and Subtropical Moist Broadleaf Forests	Peninsular Malaysian rain forests	Photograph	2009	Kae Kawanishi
Melanistic 35	delacouri	Malay Peningula, Malaysia Malay Peningula, Malaysia	4,0748	102,8370	Tropical and Subtropical Moist Broadleaf Forests	Peningular Malaysian rain forests	Photograph	2009	Kae Kawanishi
Malanistic 35	delacouri	Malay Peningula, Malaysia	4,1504	102,5524	Tropical and Subtropical Moist Broadlaaf Forests	Poningular Malaysian rain forests	Photograph	2009	Kac Kawanishi
Melanistic 30	delacouri	Malay Peningula, Malaysia	4,2903	102,7304	Tropical and Subtropical Moist Broadlaaf Forests	Peningular Malaysian rain forests	Photograph	2009	Kae Kawanishi
Melanistic 37	delacouri	Malay Peninsula, Malaysia	5,4000	102,1140	Tropical and Subtropical Moist Broadleaf Forests	Peningular Malaysian rain forests	Photograph	2009	Kae Kawanishi
Melanistic 30	delacouri	Malay Peningula, Malaysia	5,7007	101,9804	Tropical and Subtropical Moist Broadlaaf Forests	Peningular Malaysian rain forests	Photograph	2009	Kae Kawanishi
Malanistic 39	delacouri	Malay Peninsula, Malaysia	5,4091	101,0545	Tropical and Subtropical Moist Broadlash Forests	Peninsular Malaysian rain forests	Photograph Dhataaraah	2009	Kae Kawaiisii
Malanistic 40	delacouri	Malay Peninsula, Malaysia	5,6240	101,7890	Tropical and Subtropical Moist Broadleaf Forests	Peninsular Malaysian rain forests	Photograph Dhataanaah	2009	Kae Kawanishi
Malanistic 41	delacouri	Malay Peninsula, Malaysia	12 8065	101,3709	Tropical and Subtropical Moist Broadleaf Forests	Fennisular Malaysian rain forests	Photograph Dhataanaah	2009	Kae Kawanishi
Melanistic 42	aeiacouri	Malay Pennisula, Thailand	12,8903	99,5874	Tropical and Subtropical Moist Broadleal Forests	Kayan-Karen/Tenasserini moist forests	Photograph	2009	Kae Kawamsm
Melanistic 43	aelacouri	Malay Peninsula, Inaliand	13,13/5	99,2334	Tropical and Subtropical Moist Broadlear Forests	Kayan-Karen/Tenasserim moist forests	Photograph	2009	Kae Kawanishi
Melanistic 44	aelacouri	Malay Peninsula, Malaysia	6,1715	101,0211	Tropical and Subtropical Moist Broadlear Forests	Peninsular Malaysian rain forests	Photograph	no data	American Museum of Natural History USA
Melanistic 45	delacouri	Taman Negara Park, Malaysia	5,2790	102,4918	Tropical and Subtropical Moist Broadleaf Forests	Peninsular Malaysian rain forests	Photograph	2010	Kae Kawanishi
Melanistic 46	fusca	Kangchenjunga Conservation Area, Nepal	27,7408	87,9714	Montane Grasslands and Shrublands	Eastern Himalayan alpine meadows	Photograph	2013	Thapa et al 2013
Melanistic 47	kotiya	Deniyaya, Sri Lanka	6,7561	80,6977	Tropical and Subtropical Moist Broadleaf Forests	Sri Lankan moist forest	Photograph	no data	Andrew Kittle
Melanistic 48	delacouri	Ban Krang, Thailand	16,7477	100,2027	Tropical and Subtropical Moist Broadleaf Forests	Chao Phraya freshwater swamp forests	Photograph	no data	American Museum of Natural History USA
Melanistic 49	delacouri	Chiang Mai, Thailand	18,7627	98,8565	Tropical and Subtropical Moist Broadleaf Forests	Kayah-Karen/Tenasserim moist forests	Photograph	2013	Bruce Kekule
Melanistic 50	delacouri	Huai Kha Khaeng Wildlife Sanctuary, Thailand	15,6539	99,5247	Tropical and Subtropical Dry Broadleaf Forests	Indochina dry forests	Photograph	2009	Bruce Kekule
Melanistic 51	delacouri	Huai Kha Khaeng Wildlife Sanctuary, Thailand	15,1661	99,2784	Tropical and Subtropical Moist Broadleaf Forests	Kayah-Karen/Tenasserim moist forests	Photograph	2013	Bruce Kekule
Melanistic 52	delacouri	Huai Kha Khaeng Wildlife Sanctuary, Thailand	15,6986	98,7621	Tropical and Subtropical Moist Broadleaf Forests	Kayah-Karen/Tenasserim moist forests	Photograph	no data	Kae Kawanishi
Melanistic 53	delacouri	Huai Kha Khaeng Wildlife Sanctuary, Thailand	15,5612	98,9229	Tropical and Subtropical Moist Broadleaf Forests	Kayah-Karen/Tenasserim moist forests	Photograph	2013	Bruce Kekule
Melanistic 54	delacouri	Huai Kha Khaeng Wildlife Sanctuary, Thailand	15,0417	98,3983	Tropical and Subtropical Moist Broadleaf Forests	Chao Phraya lowland moist deciduous forests	Photograph	2012	Wildlife Conservation Society
Melanistic 55	delacouri	Huai Kha Khaeng Wildlife Sanctuary, Thailand	14,4518	98,8936	Tropical and Subtropical Moist Broadleaf Forests	Chao Phraya lowland moist deciduous forests	Photograph	2012	Wildlife Conservation Society
Melanistic 56	delacouri	Huai Kha Khaeng Wildlife Sanctuary, Thailand	15,3042	99,2820	Tropical and Subtropical Moist Broadleaf Forests	Kayah-Karen/Tenasserim moist forests	Photograph	2013	Wildlife Conservation Society

ы	Subenaciae	Location	Deg '	WGS84	Biome	Ecorregion	Sample	Voor	Source
Iu	Subspecies	Location	Latitude	Longitude	Biolife	Ecorregion	Sample	Tear	3001 CE
Melanistic 57	delacouri	Huai Kha Khaeng Wildlife Sanctuary Thailand	15 1038	99 1074	Tropical and Subtropical Moist Broadleaf Forests	Kavah-Karen/Tenasserim moist forests	Photograph	2013	Wildlife Conservation Society
Malanistia 59	delacouri	Huai Kha Khaang Wildlife Senetuary, Thailand	15 1041	08 0874	Tropical and Subtropical Moist Broadlast Forests	Kayah Karan/Tanasserim moist forests	Photograph	2012	Wildlife Conservation Society
M L	uelacouri	Real No. 1 No. 1 D. 1 Th. 1	13,1941	90,9074	Topical and Subtropical Moist Broadlear Polesis	Kayan-Karen/Tenasserini moist forests	Fliotograph	2013	while conservation society
Melanistic 59	aelacouri	Kaeng Krachan National Park, Thailand	13,0750	99,5457	Tropical and Subtropical Moist Broadleaf Forests	Kayan-Karen/Tenasserim moist forests	Photograph	2009	Bruce Kekule
Melanistic 60	delacouri	Kaeng Krachan National Park, Thailand	13,1241	99,4217	Tropical and Subtropical Moist Broadleaf Forests	Kayah-Karen/Tenasserim moist forests	Photograph	2009	Bruce Kekule
Melanistic 61	delacouri	Kaeng Krachan National Park, Thailand	13,0125	99,2634	Tropical and Subtropical Moist Broadleaf Forests	Kayah-Karen/Tenasserim moist forests	Photograph	2009	Bruce Kekule
Melanistic 62	delacouri	Khao Sok National Park, Thailand	8,9317	98,5110	Tropical and Subtropical Moist Broadleaf Forests	Kayah-Karen/Tenasserim moist forests	Photograph	no data	Wildlife Conservation Society
Melanistic 63	delacouri	Kuiburi National Park, Thailand	12,3004	99,5971	Tropical and Subtropical Moist Broadleaf Forests	Kayah-Karen/Tenasserim moist forests	Photograph	no data	Kae Kawanishi
Melanistic 64	delacouri	Malay Peninsula, Thailand	8,5951	98.4122	Tropical and Subtropical Moist Broadleaf Forests	Kavah-Karen/Tenasserim moist forests	Photograph	2009	Kae Kawanishi
Melanistic 65	delacouri	Malay Peninsula Malaysia	3 2732	102 3561	Tropical and Subtropical Moist Broadleaf Forests	Peninsular Malaysian rain forests	Photograph	2009	Kae Kawanishi
Melanistic 66	delacouri	Ban Krang Thailand	12 0053	00 3327	Tropical and Subtropical Moist Broadleaf Forests	Kayah Karan/Tanassarim moist forests	Photograph	2002	Bruce Kekule
M l		With Contraction	12,9955	102.0202	Topical and Subtropical Moist Broadcal Polests	Rayan-Raten Tenasserini moist forests	Thotograph	2013	
Melanistic 67	delacouri	Kenyir Wildlife Corridor, Malaysia	4,7589	102,8283	Tropical and Subtropical Moist Broadleaf Forests	Peninsular Malaysian rain forests	Photograph	2013	International Society of Zoological Sciences
Non-melanistic 01	fusca	Afeghanistan Central Highlands, Afeghanistan	35,4703	70,7899	Montane Grasslands and Shrublands	Middle Asian montane woodlands and steppe	Photograph	2011	Wildlife Conservation Society
Non-melanistic 02	pardus	Chitau, Bie, Angola	-12,9522	22,6538	Tropical and Subtropical Grasslands, Savannas and Shrublands	Angolan Miombo woodlands	Photograph	1925	American Museum of Natural History USA
Non-melanistic 03	pardus	Chitau, Bie, Angola	-12,9522	22,6538	Tropical and Subtropical Grasslands, Savannas and Shrublands	Angolan Miombo woodlands	Photograph	1925	American Museum of Natural History USA
Non-melanistic 04	pardus	Chitau, Bie, Angola	-12,9522	22,6538	Tropical and Subtropical Grasslands, Savannas and Shrublands	Angolan Miombo woodlands	Photograph	1925	American Museum of Natural History USA
Non-melanistic 05	pardus	Chitau, Bie, Angola	-12,7876	22,6620	Tropical and Subtropical Grasslands, Savannas and Shrublands	Angolan Miombo woodlands	Photograph	1925	American Museum of Natural History USA
Non-melanistic 06	pardus	Chitau, Bie, Angola	-12,7876	22,6620	Tropical and Subtropical Grasslands, Savannas and Shrublands	Angolan Miombo woodlands	Photograph	1925	American Museum of Natural History USA
Non-melanistic 07	saxicolor	Zanguezur State Sanctuary, Armenia	39,0436	46,4373	Temperate Broadleaf and Mixed Forests	Caucasus-Anatolian-Hyrcanian temperate forests	Photograph	no data	Thomas Gray
Non-melanistic 08	fusca	Manas National Park, Bhutan	26,8923	91,0124	Tropical and Subtropical Moist Broadleaf Forests	Himalayan subtropical broadleaf forests	Photograph	no data	Smithsonian Institution
Non-melanistic 09	fusca	Manas National Park, Bhutan	26,8480	91,1996	Tropical and Subtropical Moist Broadleaf Forests	Himalayan subtropical broadleaf forests	Photograph	no data	Smithsonian Institution
Non-melanistic 10	fusca	Manas National Park, Bhutan	26,8270	91,1957	Tropical and Subtropical Moist Broadleaf Forests	Himalayan subtropical broadleaf forests	Photograph	no data	Smithsonian Institution
Non-melanistic 11	pardus	Central Kalahari Reserve, Botswana	-23,1392	24,1780	Deserts and Xeric Shrublands	Kalahari xeric sayanna	Photograph	no data	Andrew Stein
Non melanistic 12	pardus	Central Kalabari Beserve, Botswana	23 1096	24.0030	Deserts and Veric Shrublands	Kalahari yaric sayanna	Photograph	no data	Andrew Stein
Non-melanistic 12	puruus	Central Kalahari Reserve, Botswana	-23,1090	24,0939	Deserts and Xeric Shrublands	Kalahari keris savania	Dhata mark	no data	Andrew Stein
Non-metallistic 13	paraus	Central Kalalian Reserve, Botswalia	-22,1364	23,7200			Filotograph	no uata	Andrew Stein
Non-melanistic 14	pardus	Central Kalahari Reserve, Botswana	-21,7793	23,2238	Tropical and Subtropical Grasslands, Savannas and Shrublands	Kalahari Acacia-Baikiaea woodlands	Photograph	no data	Andrew Stein
Non-melanistic 15	pardus	Central Kalahari Reserve, Botswana	-21,5270	24,1481	Tropical and Subtropical Grasslands, Savannas and Shrublands	Kalahari Acacia-Baikiaea woodlands	Photograph	no data	Andrew Stein
Non-melanistic 16	pardus	Central Kalahari Reserve, Botswana	-21,2204	23,3095	Tropical and Subtropical Grasslands, Savannas and Shrublands	Kalahari Acacia-Baikiaea woodlands	Photograph	no data	Andrew Stein
Non-melanistic 17	pardus	Chobe National Park, Botswana	-18,8340	24,1883	Tropical and Subtropical Grasslands, Savannas and Shrublands	Zambezian and Mopane woodlands	Photograph	no data	Andrew Stein
Non-melanistic 18	pardus	Chobe National Park, Botswana	-18,5234	24,4231	Tropical and Subtropical Grasslands, Savannas and Shrublands	Zambezian Baikiaea woodlands	Photograph	no data	Andrew Stein
Non-melanistic 19	, pardus	Chobe National Park, Botswana	-18.2749	24,4725	Tropical and Subtropical Grasslands, Sayannas and Shrublands	Zambezian Baikiaea woodlands	Photograph	no data	Andrew Stein
Non melanistic 20	pardus	Ghanzi Botewana	21 5383	21 5076	Tropical and Subtropical Grasslands, Savannas and Shruhlands	Kalahari Acacia Baikiasa woodlande	Photograph	no data	Andrew Stein
Non-melanistic 20	puruus	Karlandi Transformation Darle Determone	21,5585	21,5570	Deserts and Veria Christiands	Kalahari Acacia-Daikiaca woodiandis	Dhata mark	no data	Andrew Stein
Non-meianistic 21	paraus	Kgalagadi Transfrontier Park, Botswana	-23,3373	20,7679	Deserts and Xeric Shrublands	Kalanari xeric savanna	Photograph	no data	Andrew Stelli
Non-melanistic 22	pardus	Kgalagadi Transfrontier Park, Botswana	-24,9999	21,1966	Deserts and Xeric Shrublands	Kalahari xeric savanna	Photograph	no data	Andrew Stein
Non-melanistic 23	pardus	Kgalagadi Transfrontier Park, Botswana	-24,5926	20,3313	Deserts and Xeric Shrublands	Kalahari xeric savanna	Photograph	no data	Andrew Stein
Non-melanistic 24	pardus	Kgalagadi Transfrontier Park, Botswana	-24,5773	20,3227	Deserts and Xeric Shrublands	Kalahari xeric savanna	Photograph	no data	Andrew Stein
Non-melanistic 25	pardus	Okavango Delta, Botswana	-18,3912	23,2474	Tropical and Subtropical Grasslands, Savannas and Shrublands	Zambezian Baikiaea woodlands	Photograph	no data	Andrew Stein
Non-melanistic 26	pardus	Tsao, Botswana	-20,4123	21,4723	Tropical and Subtropical Grasslands, Savannas and Shrublands	Kalahari Acacia-Baikiaea woodlands	Photograph	2009	Andrew Stein
Non-melanistic 27	, pardus	Tsao. Botswana	-20.4123	21,4723	Tropical and Subtropical Grasslands, Savannas and Shrublands	Kalahari Acacia-Baikiaea woodlands	Photograph	2009	Andrew Stein
Non-melanistic 28	nardus	Tsao Botswana	-20 4123	21 4723	Tropical and Subtropical Grasslands Savannas and Shruhlands	Kalahari Acacia-Baikiaea woodlands	Photograph	2009	Andrew Stein
Non malanistic 20	pardus	Tuli Posomio Potswana	21,0120	22,4725	Tropical and Subtropical Grasslands, Savannas and Shrublands	Zambazian and Monana woodlands	Photograph	no data	Andrew Stein
Non-metallistic 29	paraus	Tuli Reserve, Bolswalla	-21,9139	20,9100	Topical and Subtropical Grassiands, Savannas and Sin ubiands		Filotograph		Allalew Stelli
Non-melanistic 30	delacouri	Mondulkiri, Cambodia	12,4594	107,3662	Tropical and Subtropical Dry Broadleaf Forests	Southeastern Indochina dry evergreen forests	Photograph	2009	Bruce Kekule
Non-melanistic 31	delacouri	Mondulkiri Eastern Plains, Cambodia	12,5022	107,5279	Tropical and Subtropical Dry Broadleaf Forests	Southeastern Indochina dry evergreen forests	Photograph	2009	Bruce Kekule
Non-melanistic 32	delacouri	Mondulkiri Protected Forest, Cambodia	12,7827	106,9304	Tropical and Subtropical Dry Broadleaf Forests	Central Indochina dry forests	Photograph	no data	Bruce Kekule
Non-melanistic 33	delacouri	Srepok Wilderness Area, Cambodia	13,0865	107,3496	Tropical and Subtropical Dry Broadleaf Forests	Central Indochina dry forests	Photograph	no data	Bruce Kekule
Non-melanistic 34	pardus	Meuban, Cameroon	2,4069	12,6924	Tropical and Subtropical Moist Broadleaf Forests	Northwestern Congolian lowland forests	Photograph	1935	American Museum of Natural History USA
Non-melanistic 35	pardus	Ngoundi, Cameroon	3,8528	15,1198	Tropical and Subtropical Moist Broadleaf Forests	Northwestern Congolian lowland forests	Photograph	1935	American Museum of Natural History USA
Non-melanistic 36	orientalis	Duhuangzi, China	43,3754	130,8418	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2011	Shu Jin Luo
Non-melanistic 37	japonensis	Fu Tan, Yen Ching Kao, Szechuan, China	31,1713	103,6034	Temperate Coniferous Forest	Hengduan Shan conifer forests	Photograph	1922	American Museum of Natural History USA
Non-melanistic 38	japonensis	Fujian, China	26,1299	119,3211	Tropical and Subtropical Moist Broadleaf Forests	Southeast China-Hainan moist forests	Photograph	1925	American Museum of Natural History USA
Non-melanistic 39	japonensis	Fuqing, Fujian, China	25,7475	119,3734	Tropical and Subtropical Moist Broadleaf Forests	Southeast China-Hainan moist forests	Photograph	1916	American Museum of Natural History USA
Non-melanistic 40	japonensis	Futsing, Fukien Province, China	26,4773	119,2144	Tropical and Subtropical Moist Broadleaf Forests	Southeast China-Hainan moist forests	Photograph	no data	American Museum of Natural History USA
Non-melanistic 41	orientalis	Hunchun Amur Tiger National Nature Reserve, China	43,1131	130,5932	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2012	Wildlife Conservation Society
Non-melanistic 42	orientalis	Hunchun Amur Tiger National Nature Reserve, China	43,1737	130,6676	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2012	Wildlife Conservation Society
Non-melanistic 43	ianonensis	Kuan Shien Sichuan China	28 5850	111 8209	Temperate Broadleaf and Mixed Forests	Changiang Plain evergreen forests	Photograph	1932	National Museum of Natural History USA
Non-melanistic 43	fuesia	Lung China	31 0137	93 1163	Montane Grasslands and Shrublands	Southeast Tibet shrublands and meadows	Photograph	1948	American Museum of Natural History USA
Non-melanistic 45	fusca	Mengmang China	30,7464	93,1432	Montane Grasslands and Shrublands	Southeast Tibet shrublands and meadows	Photograph	no data	American Museum of Natural History USA
Non melanistic 45	oriantalia	Mijang China	13 1256	130 2200	Temperate Broadleaf and Mixed Foreste	Manchurian mixed forests	Photograph	2012	Wildlife Conservation Society
Non-melanistic 46	orientatis	Minahan C	45,1550	130,2399	Temperate broadear and Mixed Polests	Southeast China U	r notograph	2013	When the Conservation Society
Non-meianistic 47	japonensis	Minchou, Gansu, China	26,2164	119,0907	Tropical and Subtropical Moist Broadleat Forests	Southeast China Hainan moist forests	Photograph	1911	Inational Museum of Natural History USA
inon-meianistic 48	japonensis	ivanping, Fujian Province, China	20,0246	118,18/2	Tropical and Subtropical Moist Broadleaf Forests	Southeast Unina-Hainan moist forests	Photograph	1920	American Museum of Natural History USA
Non-melanistic 49	japonensis	Shansi, Hezhou, China	23,9024	111,7892	Tropical and Subtropical Moist Broadleaf Forests	Southeast China-Hainan moist forests	Photograph	no data	Asian Leopard Project
Non-melanistic 50	japonensis	Shanxi Province, China	37,8071	114,2488	Temperate Broadleaf and Mixed Forests	Central China loess plateau mixed forests	Photograph	no data	Asian Leopard Project
Non-melanistic 51	japonensis	Shanxi Province, China	37,5338	114,0875	Temperate Broadleaf and Mixed Forests	Central China loess plateau mixed forests	Photograph	no data	Asian Leopard Project

Id	Subspecies	Location	Deg	WGS84	Biome	Ecorregion	Sample	Year	Source
_			Latitude	Longitude					
Non-melanistic 52	fusca	Sichuan, China	33,2854	98,7018	Montane Grasslands and Shrublands	Southeast Tibet shrublands and meadows	Photograph	2008	Smithsonian Institution
Non-melanistic 53	japonensis	Suifu, Tseo-Jia-Keo, Sichuan, China	28,7546	104,7215	Temperate Broadleaf and Mixed Forests	Sichuan Basin evergreen broadleaf forests	Photograph	1927	National Museum of Natural History USA
Non-melanistic 54	japonensis	Suifu, Tseo-Jia-Keo, Sichuan, China	28,6382	104,7183	Temperate Broadleaf and Mixed Forests	Sichuan Basin evergreen broadleaf forests	Photograph	1929	National Museum of Natural History USA
Non-melanistic 55	japonensis	Suifu, Tseo-Jia-Keo, Sichuan, China	28,7636	104,7596	Temperate Broadleaf and Mixed Forests	Sichuan Basin evergreen broadleaf forests	Photograph	1929	National Museum of Natural History USA
Non-melanistic 56	japonensis	Tai-Yuan-Fu, Shanxi, China	38,0998	113,3001	Temperate Broadleaf and Mixed Forests	Central China loess plateau mixed forests	Photograph	1910	National Museum of Natural History USA
Non-melanistic 57	japonensis	Tashenlu, Sichuan, China	29,5977	111,9222	Tropical and Subtropical Moist Broadleaf Forests	Guizhou Plateau broadleaf and mixed forests	Photograph	1930	National Museum of Natural History USA
Non-melanistic 58	japonensis	Tseo-Jia-Keo, Sichuan, China	29,1496	112,2255	Temperate Broadleaf and Mixed Forests	Changjiang Plain evergreen forests	Photograph	1931	National Museum of Natural History USA
Non-melanistic 59	japonensis	Wen Chuan, Sichuan, China	31,4709	103,5986	Temperate Coniferous Forest	Hengduan Shan conifer forests	Photograph	no data	National Museum of Natural History USA
Non-melanistic 60	japonensis	Yenping, Fukien Province, China	26,5698	118,5703	Tropical and Subtropical Moist Broadleaf Forests	Southeast China-Hainan moist forests	Photograph	1921	American Museum of Natural History USA
Non-melanistic 61	japonensis	Yochow, Hunan, China	28,1421	112,8030	Temperate Broadleaf and Mixed Forests	Changjiang Plain evergreen forests	Photograph	no data	National Museum of Natural History USA
Non-melanistic 62	delacouri	Yunnan National Nature Reserve, China	22,1923	101,3011	Tropical and Subtropical Moist Broadleaf Forests	North Indochina subtropical moist forests	Photograph	2008	Jutzeler et al 2010
Non-melanistic 63	pardus	Akenge, Congo	2,8334	27,1776	Tropical and Subtropical Moist Broadleaf Forests	Northeastern Congo Basin moist forests	Photograph	1913	American Museum of Natural History USA
Non-melanistic 64	paraus	Akenge, Congo	2,8/24	27,2210	Tropical and Subtropical Moist Broadlear Forests	Northeastern Congo Basin moist forests	Photograph	1913	American Museum of Natural History USA
Non-melanistic 65	pardus	Bwera, Congo	-0,8704	29,3107	Tropical and Subtropical Grasslands, Savannas and Shrublands	Victoria Basin forest-savanna mosaic	Photograph	2012	National Geographic Society
Non-melanistic 66	pardus	Congo River, Ngabe, Congo	-3,0253	16,1324	Tropical and Subtropical Grasslands, Savannas and Shrublands	Western Congolian forest-savanna mosaic	Photograph	no data	Philipp Henschel
Non-melanistic 67	pardus	Nouabalé-Ndoki National Park, Congo	2,4665	16,5519	Tropical and Subtropical Moist Broadleaf Forests	Western Congo Basin moist forests	Photograph	no data	Philipp Henschel
Non-melanistic 68	pardus	Bereket Girma Wildlife Rascue, Ethiopia	9,0639	38,5470	Montane Grasslands and Shrublands	Ethiopian Highlands	Photograph	2011	Stephen Brend
Non-melanistic 69	paraus	Haro, Abyssinia, Ethiopia	9,0104	34,7012	Tropical and Subtropical Moist Broadleaf Forests	Ethiopian montane forests	Photograph	no data	American Museum of Natural History USA
Non-melanistic /0	pardus	Ivindo National Park, Gabon	0,1768	12,9879	Tropical and Subtropical Moist Broadleaf Forests	Western Congo Basin moist forests	Photograph	2009	Philipp Henschel
Non-melanistic /1	pardus	Ivindo National Park, Gabon	0,1768	12,9879	Tropical and Subtropical Moist Broadleaf Forests	Western Congo Basin moist forests	Photograph	2009	Philipp Henschel
Non-melanistic 72	pardus	Ivindo National Park, Gabon	0,1768	12,9879	Tropical and Subtropical Moist Broadleaf Forests	Western Congo Basin moist forests	Photograph	2009	Philipp Henschel
Non-melanistic 73	pardus	Ivindo National Park, Gabon	-0,2699	12,7138	Tropical and Subtropical Moist Broadleaf Forests	Western Congo Basin moist forests	Photograph	no data	Philipp Henschel
Non-melanistic 74	pardus	Koulamoutou, Gabon	-0,9773	12,3016	Tropical and Subtropical Moist Broadleaf Forests	Western Congo Basin moist forests	Photograph	no data	Philipp Henschel
Non-melanistic 75	pardus	Lope National Park, Gabon	-0,2151	11,5191	Tropical and Subtropical Grasslands, Savannas and Shrublands	Western Congolian forest-savanna mosaic	Photograph	no data	Philipp Henschel
Non-melanistic 76	pardus	Lope National Park, Gabon	-0,2151	11,5191	Tropical and Subtropical Grasslands, Savannas and Shrublands	Western Congolian forest-savanna mosaic	Photograph	no data	Philipp Henschel
Non-melanistic 77	pardus	Lope National Park, Gabon	-0,5203	11,4897	Tropical and Subtropical Moist Broadleaf Forests	Congolian Coastal Forests	Photograph	no data	Philipp Henschel
Non-melanistic 78	pardus	Lope National Park, Gabon	-0,5203	11,4897	Tropical and Subtropical Moist Broadleaf Forests	Congolian Coastal Forests	Photograph	no data	Philipp Henschel
Non-melanistic 79	pardus	Lope National Park, Gabon	-0,6079	11,6042	Tropical and Subtropical Moist Broadleaf Forests	Congolian Coastal Forests	Photograph	no data	Philipp Henschel
Non-melanistic 80	pardus	Lope National Park, Gabon	-0,6606	11,5551	Tropical and Subtropical Moist Broadleaf Forests	Congolian Coastal Forests	Photograph	no data	Philipp Henschel
Non-melanistic 81	pardus	Lope National Park, Gabon	-0,1773	11,4754	Tropical and Subtropical Grasslands, Savannas and Shrublands	Western Congolian forest-savanna mosaic	Photograph	no data	Philipp Henschel
Non-melanistic 82	pardus	Lope National Park, Gabon	-0,3088	11,6332	Tropical and Subtropical Moist Broadleaf Forests	Congolian Coastal Forests	Photograph	no data	Philipp Henschel
Non-melanistic 83	pardus	Ogooue River, Kan Kan, Gabon	-0,0333	12,3136	Tropical and Subtropical Moist Broadleaf Forests	Western Congo Basin moist forests	Photograph	no data	Philipp Henschel
Non-melanistic 84	pardus	Ongongo, Gabon	1,3084	11,6978	Tropical and Subtropical Moist Broadleaf Forests	Congolian Coastal Forests	Photograph	no data	Philipp Henschel
Non-melanistic 85	pardus	Plateau Bateke National Park, Gabon	-2,2737	14,0952	Tropical and Subtropical Grasslands, Savannas and Shrublands	Western Congolian forest-savanna mosaic	Photograph	no data	Philipp Henschel
Non-melanistic 86	saxicolor	Vashlovani Reserve, Georgia	41,2115	46,4417	Deserts and Xeric Shrublands	Azerbaijan shrub desert and steppe	Photograph	no data	Asian Leopard Project
Non-melanistic 87	pardus	Mole National Park, Ghana	9,4323	-1,7133	Tropical and Subtropical Grasslands, Savannas and Shrublands	West Sudanian savanna	Photograph	no data	National Geographic Society
Non-melanistic 88	pardus	Mole National Park, Ghana	9,3845	-2,0271	Tropical and Subtropical Grasslands, Savannas and Shrublands	West Sudanian savanna	Photograph	no data	National Geographic Society
Non-melanistic 89	fusca	Achanakmar Tiger Reserve, India	22,5980	81,8327	Tropical and Subtropical Moist Broadleaf Forests	Eastern highlands moist deciduous forests	Photograph	no data	Vidya Atreya
Non-melanistic 90	fusca	Achanakmar Tiger Reserve, India	22,4232	81,7286	Tropical and Subtropical Moist Broadleaf Forests	Eastern highlands moist deciduous forests	Photograph	no data	Vidya Atreya
Non-melanistic 91	fusca	Akola/Rajur, India	19,5507	73,9639	Deserts and Xeric Shrublands	Deccan thorn scrub forests	Photograph	no data	Vidya Atreya
Non-melanistic 92	fusca	Akole, India	19,3109	73,4020	Tropical and Subtropical Moist Broadleaf Forests	North Western Ghats montane rain forests	Photograph	2012	Vidya Atreya
Non-melanistic 93	fusca	Akole, India	19,3258	73,3799	Tropical and Subtropical Moist Broadleaf Forests	North Western Ghats montane rain forests	Photograph	2012	Vidya Atreya
Non-melanistic 94	fusca	Anamalai Hills, Southern Western Ghats, India	12,1058	78,9328	Tropical and Subtropical Dry Broadleaf Forests	South Deccan Plateau dry deciduous forests	Photograph	no data	World Wild Fund
Non-melanistic 95	fusca	Bagdodra, Haskhowa, India	26,7458	88,2892	Tropical and Subtropical Moist Broadleaf Forests	Himalayan subtropical broadleaf forests	Photograph	2012	World Wild Fund
Non-melanistic 96	fusca	Bandipur Tiger Reserve, India	11,6407	76,4442	Tropical and Subtropical Moist Broadleaf Forests	Southwestern Ghats moist forest	Photograph	2013	Wildlife Conservation Society
Non-melanistic 97	fusca	Bhadra Tiger Reserve, India	13,6071	75,5910	Tropical and Subtropical Moist Broadleaf Forests	North Western Ghats moist deciduous forests	Photograph	no data	Vidya Atreya
Non-melanistic 98	fusca	Bhadra Tiger Reserve, India	13,5380	75,5222	Tropical and Subtropical Moist Broadleaf Forests	North Western Ghats moist deciduous forests	Photograph	2011	Conservation India
Non-melanistic 99	fusca	Bhadra Tiger Reserve, India	13.6189	75.6286	Tropical and Subtropical Moist Broadleaf Forests	North Western Ghats moist deciduous forests	Photograph	2012	Conservation India
Non-melanistic 100	fusca	Dahra Dan, India	30,3872	78,1732	Tropical and Subtropical Moist Broadleaf Forests	Upper Gangetic Plains moist deciduous forests	Photograph	no data	Goval 2009
Non-melanistic 101	fusca	Dandeli-Anshi Tiger Reserve, India	13,1213	75.0433	Tropical and Subtropical Moist Broadleaf Forests	Malabar Coast moist forests	Photograph	2013	Wildlife Conservation Society
Non-melanistic 102	fusca	Dandeli-Anshi Tiger Reserve, India	13,1213	75.0433	Tropical and Subtropical Moist Broadleaf Forests	Malabar Coast moist forests	Photograph	2013	Wildlife Conservation Society
Non-melanistic 103	fusca	Dehing Patkai Wildlife Sanctuary, India	26.4451	93,5389	Tropical and Subtropical Moist Broadleaf Forests	Meghalaya subtropical forests	Photograph	2009	Dipankar Ghose
Non-melanistic 104	fusca	Dudhwa National Park India	27 4659	79,7461	Tropical and Subtropical Moist Broadleaf Forests	Upper Gangetic Plains moist deciduous forests	Photograph	no data	World Wild Fund
Non-melanistic 105	fusca	Dudhwa National Park India	27 2008	79.8949	Tropical and Subtropical Moist Broadleaf Forests	Upper Gangetic Plains moist deciduous forests	Photograph	no data	World Wild Fund
Non-melanistic 105	fusca	Dudhwa National Park India	27,2003	81 3510	Tropical and Subtropical Moist Broadleaf Forests	Unper Gangetic Plains moist deciduous forests	Photograph	no data	World Wild Fund
Non-melanistic 107	fusca	Garhwal Western Himalaya India	21,9555	79 3165	Montane Grasslands and Shrublands	Western Himalayan alpine shrub and Masdows	Photograph	2008	World Wild Fund
Non-melanistic 107	fusca	Gir Forest National Park India	21 2057	71 1518	Tropical and Subtropical Dry Broadleaf Foreste	Khathiar Gir dry deciduous forests	Photograph	2000 no data	Singh 2005
Non-melanistic 100	fusca	Gir Forest National Park, India	21,2037	71,1510	Tropical and Subtropical Dry Broadleaf Forests	Khathiar Gir dry deciduous forests	Photograph	no data	Smithsonian Institution
Non-melanistic 109	fusca	Guudati India	21,2721	01 7107	Tropical and Subtropical Div Broadloof Formet	Maghalaya subtropical forest:	Photograph	no data	Dipapkar Ghosa
Non-melanistic 111	jusca fusca	Guwanau, muia Haraicha Mayatuy India	20,1208	91,7107 76,1306	Deserts and Xeric Shruhlands	Northwestern thorn scrub forests	Photograph	1936	American Museum of Natural History USA
Non-melanistic 112	fusca	Haridwar, Rajaji National Park Chila Rappe, India	30,7922	78 3142	Tropical and Subtropical Moist Broadleaf Forests	Unper Gangetic Plains moist deciduous forests	Photograph	no data	Smithsonian Institution
rion-meidilistie 112	јизси	manuwar, Rajaji manonal Faik Cillia Ralige, illula	50,0409	10,0142	ropical and Subtropical MOISt Dibadical Polesis	opper Gaugetie r iams moist deciduous forests	i notograph	no uata	Sinuisonan Institution

Id	Subspecies	Location	Deg V	WGS84	Biome	Ecorregion	Sample	Vear	Source
Iu	Subspecies	Elocation	Latitude	Longitude	Dione	Ecorregion	Sample	i cai	bource
Non-melanistic 113	fusca	Hyhama, Jammu And Kashmir, India	33,9766	77,4887	Montane Grasslands and Shrublands	Tibetan Plateau steppe	Photograph	1911	National Museum of Natural History USA
Non-melanistic 114	fusca	Hyhama, Jammu And Kashmir, India	33,6569	77,7122	Montane Grasslands and Shrublands	Tibetan Plateau steppe	Photograph	1911	National Museum of Natural History USA
Non-melanistic 115	fusca	Jevpore-Dehing Area, India	27,1370	95,3860	Tropical and Subtropical Moist Broadleaf Forests	Brahmaputra Valley semi-evergreen forests	Photograph	no data	Kashmira Kakati
Non-melanistic 116	fusca	Jevpore-Dehing Area, India	27,1370	95,3860	Tropical and Subtropical Moist Broadleaf Forests	Brahmaputra Valley semi-evergreen forests	Photograph	no data	Kashmira Kakati
Non-melanistic 117	fusca	Ievpore-Dehing Area India	27 1370	95 3860	Tropical and Subtropical Moist Broadleaf Forests	Brahmanutra Valley semi-evergreen forests	Photograph	no data	Kashmira Kakati
Non-melanistic 118	fusca	Jeypore Dehing Area, India	27,1570	95,5366	Tropical and Subtropical Moist Broadleaf Forests	Brahmaputra Valley semi-evergreen forests	Photograph	no data	Kashmira Kakati
Non-melanistic 110	fusea	Jeypore-Dening Area, India	27,0584	05 5102	Tropical and Subtropical Moist Broadlaaf Forests	Brahmaputra Valley semi-evergreen forests	Photograph	no data	Kashmira Kakati
Non-melanistic 119	fusca	Jeypore-Dening Area, India	27,2400	95,5195	Tropical and Subtropical Moist Broadleaf Forests	Brahmaputra Valley semi-evergreen forests	Photograph Dhataanaah	no data	Kashmina Kakati
Non-melanistic 120	fusca	Jeypore-Denning Area, India	27,2488	95,5195	Tropical and Subtropical Moist Broadleal Forests	Brannaputra vaney semi-evergreen forests	Photograph	no data	Kasiinira Kakau
Non-melanistic 121	fusca	Jeypore-Dehing Area, India	27,6499	95,4474	Tropical and Subtropical Moist Broadleaf Forests	Brahmaputra Valley semi-evergreen forests	Photograph	no data	Kashmira Kakati
Non-melanistic 122	fusca	Jeypore-Dehing Area, India	27,1285	95,8475	Temperate Broadleaf and Mixed Forests	Eastern Himalayan broadleaf forests	Photograph	no data	Kashmira Kakati
Non-melanistic 123	fusca	Jeypore-Dehing Area, India	27,1285	95,8475	Temperate Broadleaf and Mixed Forests	Eastern Himalayan broadleaf forests	Photograph	no data	Kashmira Kakati
Non-melanistic 124	fusca	Jeypore-Dehing Area, India	27,2331	95,6986	Tropical and Subtropical Moist Broadleaf Forests	Brahmaputra Valley semi-evergreen forests	Photograph	no data	Kashmira Kakati
Non-melanistic 125	fusca	Jeypore-Dehing Area, India	27,2331	95,6986	Tropical and Subtropical Moist Broadleaf Forests	Brahmaputra Valley semi-evergreen forests	Photograph	no data	Kashmira Kakati
Non-melanistic 126	fusca	Jeypore-Dehing Area, India	27,3618	95,7520	Tropical and Subtropical Moist Broadleaf Forests	Brahmaputra Valley semi-evergreen forests	Photograph	no data	Kashmira Kakati
Non-melanistic 127	fusca	Jeypore-Dehing Area, India	27,3618	95,7520	Tropical and Subtropical Moist Broadleaf Forests	Brahmaputra Valley semi-evergreen forests	Photograph	no data	Kashmira Kakati
Non-melanistic 128	fusca	Jeypore-Dehing Area, India	27,4243	95,7601	Tropical and Subtropical Moist Broadleaf Forests	Brahmaputra Valley semi-evergreen forests	Photograph	no data	Kashmira Kakati
Non-melanistic 129	fusca	Jevpore-Dehing Area, India	27,4243	95,7601	Tropical and Subtropical Moist Broadleaf Forests	Brahmaputra Valley semi-evergreen forests	Photograph	no data	Kashmira Kakati
Non-melanistic 130	fusca	Jevnore-Dehing Area India	27 5402	95 7905	Tropical and Subtropical Moist Broadleaf Forests	Brahmanutra Valley semi-evergreen forests	Photograph	no data	Kashmira Kakati
Non melanistic 131	fusca	Jeypore Dehing Area, India	27,5402	95,7905	Tropical and Subtropical Moist Broadleaf Forests	Brahmaputra Valley semi evergreen forests	Photograph	no data	Kashmira Kakati
Non-melanistic 131	fusca	Jeypore-Dening Area, India	27,5402	95,7905	Tropical and Subtropical Moist Broadleaf Forests	Brahmaputra Valley semi-evergreen forests	Photograph Dhataanaah	no data	Kashmina Kakati
Non-metamstic 152	fusca	Jeypore-Dennig Area, India	27,3402	93,7903	Tropical and Subtropical Moist Broadleaf Forests	Brannaputra vaney semi-evergreen forests	Photograph	no data	Kasiinira Kakau
Non-melanistic 133	fusca	Kabini, Bandipur, India	34,1378	75,0364	Temperate Broadleaf and Mixed Forests	Western Himalayan broadleaf forests	Photograph	no data	Vidya Atreya
Non-melanistic 134	fusca	Karnataka, India	12,8232	76,0097	Tropical and Subtropical Moist Broadleaf Forests	North Western Ghats moist deciduous forests	Photograph	2013	World Wild Fund
Non-melanistic 135	fusca	Kanavde, India	19,5468	74,0299	Deserts and Xeric Shrublands	Deccan thorn scrub forests	Photograph	no data	Vidya Atreya
Non-melanistic 136	fusca	Kanha Tiger Reserve, Madhya Pradesh, India	23,2809	80,4837	Tropical and Subtropical Moist Broadleaf Forests	Eastern Deccan plateau moist forests	Photograph	no data	Christoph Knogge
Non-melanistic 137	fusca	Kanha Tiger Reserve, Madhya Pradesh, India	23,0263	80,7801	Tropical and Subtropical Moist Broadleaf Forests	Eastern Deccan plateau moist forests	Photograph	2013	Sandeep Sharma
Non-melanistic 138	fusca	Knagar, India	19,5177	74,0293	Deserts and Xeric Shrublands	Deccan thorn scrub forests	Photograph	no data	Vidya Atreya
Non-melanistic 139	fusca	Kormar Gudda, India	22,9019	81,1676	Tropical and Subtropical Moist Broadleaf Forests	Eastern Deccan plateau moist forests	Photograph	no data	Kashmira Kakati
Non-melanistic 140	fusca	Kundur, India	23,4147	80,7939	Tropical and Subtropical Moist Broadleaf Forests	Eastern Deccan plateau moist forests	Photograph	no data	Kashmira Kakati
Non-melanistic 141	fusca	Kunwara Forest India	34 5811	74 3511	Temperate Broadleaf and Mixed Forests	Western Himalayan broadleaf forests	Photograph	no data	Kashmira Kakati
Non-melanistic 142	fusca	Madras, Mayatuy, India	31,4190	76,5938	Tropical and Subtropical Coniferous Forests	Himalayan subtropical pine forests	Photograph	1936	American Museum of Natural History USA
Non-melanistic 143	fusca	Mundanthurai Sanctuary India	8 7603	77 2816	Tropical and Subtropical Moist Broadleaf Forests	Southwestern Ghats moist forest	Photograph	no data	Christoph Knogge
Non-melanistic 144	fusca	Mundanthurai Sanctuary, India	8 7252	77 2885	Tropical and Subtropical Moist Broadleaf Forests	Southwestern Ghats moist forest	Photograph	no data	Christoph Knogge
Non malanistic 145	fusea	Negeriunggeger Sriseilem Tiger Beserve, indie	16 4000	70.2564	Tropical and Subtropical Dry Provide Forests	Control Docean Plotony dry docidyous forests	Photograph	2011	World Wild Fund
Non-melanistic 145	fusca	Nagarjunasagar Sitsanan Tiger Reserve, india	26.0456	79,2304	Tropical and Subtropical Dry Broadland Forests	Backmannten Vallas anni assanten fanata	Photograph Dhotograph	2011	World Wild Fund
Non-melanistic 146	fusca	Naimen National Park, India	20,9430	92,7323	Tropical and Subtropical Moist Broadleaf Forests	Brannaputra vaney semi-evergreen forests	Photograph	2011	
Non-melanistic 14/	fusca	Pauri Garhwal, India	29,8702	/8,94//	Tropical and Subtropical Coniferous Forests	Himalayan subtropical pine forests	Photograph	no data	Goyal 2009
Non-melanistic 148	fusca	Pakke Tiger Reserve in Arunachal Pradesh, India	28,5669	95,9691	Temperate Broadleaf and Mixed Forests	Eastern Himalayan broadleaf forests	Photograph	2013	Milind Pariwakam/Biswajit Mohanty
Non-melanistic 149	fusca	Philibit, India	28,6421	79,9662	Tropical and Subtropical Moist Broadleaf Forests	Upper Gangetic Plains moist deciduous forests	Photograph	2010	World Wild Fund
Non-melanistic 150	fusca	Pilibhit, India	28,6355	79,8480	Tropical and Subtropical Moist Broadleaf Forests	Upper Gangetic Plains moist deciduous forests	Photograph	2010	World Wild Fund
Non-melanistic 151	fusca	Sanaripur, India	30,0183	77,5406	Tropical and Subtropical Moist Broadleaf Forests	Upper Gangetic Plains moist deciduous forests	Photograph	1923	American Museum of Natural History USA
Non-melanistic 152	fusca	Sanaripur, India	30,0183	77,5406	Tropical and Subtropical Moist Broadleaf Forests	Upper Gangetic Plains moist deciduous forests	Photograph	1923	American Museum of Natural History USA
Non-melanistic 153	fusca	Sanaripur, India	29,9502	77,5913	Tropical and Subtropical Moist Broadleaf Forests	Upper Gangetic Plains moist deciduous forests	Photograph	1923	American Museum of Natural History USA
Non-melanistic 154	fusca	Sanjay Gandhi National Park, India	19,2325	72,9024	Tropical and Subtropical Moist Broadleaf Forests	Malabar Coast moist forests	Photograph	2012	Conservation India
Non-melanistic 155	fusca	Sanjay Gandhi National Park, India	19,2141	72,9253	Tropical and Subtropical Moist Broadleaf Forests	Malabar Coast moist forests	Photograph	2013	Conservation India
Non-melanistic 156	fusca	Sanjay Gandhi National Park, India	19,1726	72,8914	Tropical and Subtropical Moist Broadleaf Forests	Malabar Coast moist forests	Photograph	2013	Conservation India
Non-melanistic 157	fusca	Sanjay Gandhi National Park, India	19,1726	72,8914	Tropical and Subtropical Moist Broadleaf Forests	Malabar Coast moist forests	Photograph	2013	Conservation India
Non-melanistic 158	fusca	Sariska Tiger Reserve, India	27,4076	76,7404	Tropical and Subtropical Dry Broadleaf Forests	Khathiar-Gir dry deciduous forests	Photograph	no data	National Geographic Society
Non-melanistic 159	fusca	Sariska Tiger Reserve, India	27,3019	76,7276	Tropical and Subtropical Dry Broadleaf Forests	Khathiar-Gir dry deciduous forests	Photograph	no data	National Geographic Society
Non-melanistic 160	fusca	Sariska Tiger Reserve, India	27,2146	76,4171	Tropical and Subtropical Dry Broadleaf Forests	Khathiar-Gir dry deciduous forests	Photograph	no data	Chauhan et al 2005
Non-melanistic 161	fusca	Sariska Tiger Reserve, India	27,2146	76.4171	Tropical and Subtropical Dry Broadleaf Forests	Khathiar-Gir dry deciduous forests	Photograph	no data	Chauhan et al 2006
Non-melanistic 162	fusca	Sariska Tiger Reserve India	27 2426	76 3155	Tropical and Subtropical Dry Broadleaf Forests	Khathiar-Gir dry deciduous forests	Photograph	no data	Chauhan et al 2007
Non melanistic 163	fusca	Sariska Tiger Reserve, India	27,2420	76,2561	Tropical and Subtropical Dry Broadleaf Forests	Khathiar Gir dry deciduous forests	Photograph	no data	Chauhan et al 2009
Non-melanistic 163	fuscu	Sariska Tiger Reserve, India	27,1100	76,2301	Transient and Subtropical Day Dreadlash Forests	Khathian Cin dry deciduous forests	Dhata araah	no data	Chauhan et al 2000
Non-melanistic 164	jusca	Sariska Tiger Reserve, India	27,5059	72,0862	Dependential Subtropical Dry Broadlear Forests	Channel of any deciduous lofests	Photograph	no data	Video Atmos
Non-melanistic 165	fusca	Shivaji, India	19,5854	73,9862	Deserts and Xeric Shrubiands	Deccan thorn scrub forests	Photograph	no data	vidya Atreya
Non-melanistic 166	fusca	Siliguri, Prakash Nagar, India	26,8001	88,4827	ropical and Subtropical Grasslands, Savannas and Shrublands	Terai-Duar savanna and grasslands	Photograph	2011	Vidya Atreya
Non-melanistic 167	fusca	Tadoba Andhari Tiger Reserve, Maharashtra, India	20,2085	79,5276	Tropical and Subtropical Dry Broadleaf Forests	Central Deccan Plateau dry deciduous forests	Photograph	no data	Vidya Atreya
Non-melanistic 168	fusca	Talewadi, India	19,5107	73,9672	Deserts and Xeric Shrublands	Deccan thorn scrub forests	Photograph	no data	Vidya Atreya
Non-melanistic 169	fusca	Uttarakhand, India	30,0002	80,2295	Temperate Broadleaf and Mixed Forests	Western Himalayan broadleaf forests	Photograph	no data	Goyal 2009
Non-melanistic 170	fusca	Uttarakhand, India	30,3109	79,6338	Montane Grasslands and Shrublands	Western Himalayan alpine shrub and Meadows	Photograph	no data	Goyal 2009
Non-melanistic 171	fusca	Uttarakhand, India	30,4446	79,6386	Montane Grasslands and Shrublands	Western Himalayan alpine shrub and Meadows	Photograph	no data	Goyal 2009
Non-melanistic 172	fusca	Uttarakhand, India	29,9234	79,6530	Tropical and Subtropical Coniferous Forests	Himalayan subtropical pine forests	Photograph	no data	Goyal 2009
Non-melanistic 173	fusca	Uttaranchal, India	30,3076	80,1796	Montane Grasslands and Shrublands	Western Himalayan alpine shrub and Meadows	Photograph	no data	Marker & Sivamani 2009

Id	Subspecies	Location	Deg WGS84		Biome	Ecorregion	Sample	Vear	Source
Iu	Subspecies	Location	Latitude	Longitude	Diome	Ecorregion	Sample	icai	300100
Non-melanistic 174	fusca	Vitbhatti, India	19,5298	74.0396	Deserts and Xeric Shrublands	Deccan thorn scrub forests	Photograph	no data	Vidva Atreva
Non-melanistic 175	melas	Baluran National Park Java Indonesia	-7 8044	114 3797	Tropical and Subtropical Moist Broadleaf Forests	Eastern Java-Bali rain forests	Photograph	2012	Copenhague Zoo
Non-melanistic 176	melas	Baluran National Park, Java, Indonesia	-7 8878	114 3786	Tropical and Subtropical Moist Broadleaf Forests	Eastern Java-Bali rain forests	Photograph	2012	Copenhague Zoo
Non melanistic 170	melas	Bangkung Java Indonesia	6 7706	106 4565	Tropical and Subtropical Moist Broadleaf Forests	Western Java rain forests	Photograph	no data	WildCru
Non-melanistic 177	metus	Currun Salah National Dark Jawa Jadanasia	-0,7700	107,4255	Transiant and Subtraniant Maint Data dia of Forests	Western Java rain forests	Dhata araah	no data	CIEOD
Non-metamstic 178	metas	Gunung Salak National Park, Java, Indonesia	-1,2347	107,4333	Tropical and Subtropical Moist Broadlear Forests	western Java rain forests	Photograph	no data	
Non-melanistic 179	metas	Halimun-Salak, Java, Indonesia	-6,/84/	106,5780	Tropical and Subtropical Moist Broadleaf Forests	western Java rain forests	Photograph	2004	Annar Haranap
Non-melanistic 180	melas	Mount Halimun-Salak National Park, Java, Indonesia	-7,1029	107,3755	Tropical and Subtropical Moist Broadleaf Forests	Western Java rain forests	Photograph	no data	CIFOR
Non-melanistic 181	melas	Pelaboean Ratoe, Java, Indonesia	-6,9882	106,5549	Tropical and Subtropical Moist Broadleaf Forests	Western Java rain forests	Photograph	1909	National Museum of Natural History USA
Non-melanistic 182	melas	Ujung Kulon National Park, Java, Indonesia	-6,7339	105,3438	Tropical and Subtropical Moist Broadleaf Forests	Western Java rain forests	Photograph	no data	WildCru
Non-melanistic 183	saxicolor	Alborz Mountains, Iran	36,4611	51,4824	Temperate Broadleaf and Mixed Forests	Caspian Hyrcanian mixed forests	Photograph	no data	Farhadinia et al 2007
Non-melanistic 184	saxicolor	Bafq, Iran	31,8150	55,2717	Deserts and Xeric Shrublands	Central Persian desert basins	Photograph	2012	Asian Leopard Project
Non-melanistic 185	saxicolor	Bafq, Iran	31,7713	55,3136	Deserts and Xeric Shrublands	Central Persian desert basins	Photograph	2013	Panthera
Non-melanistic 186	saxicolor	Bafq, Iran	31,7713	55,3136	Deserts and Xeric Shrublands	Central Persian desert basins	Photograph	2013	Panthera
Non-melanistic 187	saxicolor	Bafq, Iran	32,2349	55,4353	Deserts and Xeric Shrublands	Central Persian desert basins	Photograph	2013	Panthera
Non-melanistic 188	saxicolor	Bafg. Iran	32,2349	55,4353	Deserts and Xeric Shrublands	Central Persian desert basins	Photograph	2013	Panthera
Non-melanistic 189	savicolor	Bafa Iran	31,6719	55,0649	Deserts and Xeric Shrublands	Central Persian desert basins	Photograph	2013	Panthera
Non melanistic 100	savioolov	Parry National Bark Iron	20,6570	52 1614	Temperate Breedleaf and Mixed Forests	Zagras Mountains forest stanna	Photograph	no data	Aresh Ghaddousi
Non-melanistic 190	suxicolor	Bannu National Park, Itan	29,0379	52,0024	Temperate Broadleaf and Mixed Forests	Zagros Mountains forest steppe	Photograph Dhotograph	no data	Arash Chaddousi
Non-melanistic 191	saxicolor	Bamu National Park, Iran	29,8807	52,9054	Temperate Broadlear and Mixed Forests	Zagros Mountains forest steppe	Photograph	no data	Arasii Ghoddousi
Non-melanistic 192	saxicolor	Bamu National Park, Iran	29,8339	52,9008	Temperate Broadleaf and Mixed Forests	Zagros Mountains forest steppe	Photograph	no data	Arash Ghoddousi
Non-melanistic 193	saxicolor	Bamu National Park, Iran	29,8853	52,9552	Temperate Broadleaf and Mixed Forests	Zagros Mountains forest steppe	Photograph	no data	Arash Ghoddousi
Non-melanistic 194	saxicolor	Bamu National Park, Iran	29,8853	52,9552	Temperate Broadleaf and Mixed Forests	Zagros Mountains forest steppe	Photograph	no data	Arash Ghoddousi
Non-melanistic 195	saxicolor	Bamu National Park, Iran	29,8853	52,9552	Temperate Broadleaf and Mixed Forests	Zagros Mountains forest steppe	Photograph	no data	Arash Ghoddousi
Non-melanistic 196	saxicolor	Bamu National Park, Iran	29,8853	52,9552	Temperate Broadleaf and Mixed Forests	Zagros Mountains forest steppe	Photograph	no data	Arash Ghoddousi
Non-melanistic 197	saxicolor	Bamu National Park, Iran	29,8853	52,9552	Temperate Broadleaf and Mixed Forests	Zagros Mountains forest steppe	Photograph	no data	Arash Ghoddousi
Non-melanistic 198	saxicolor	Bamu National Park, Iran	29,8150	52,9750	Temperate Broadleaf and Mixed Forests	Zagros Mountains forest steppe	Photograph	no data	Arash Ghoddousi
Non-melanistic 199	saxicolor	Bandar-Gaz, Iran	26,6795	55,0549	Deserts and Xeric Shrublands	South Iran Nubo-Sindian desert and semi-desert	Photograph	no data	Asian Leopard Project
Non-melanistic 200	saxicolor	Birk Protected Area, Iran	29,6558	58,3126	Deserts and Xeric Shrublands	South Iran Nubo-Sindian desert and semi-desert	Photograph	no data	Asian Leopard Project
Non-melanistic 201	saxicolor	Birk Protected Area, Iran	29,5872	58,3913	Deserts and Xeric Shrublands	South Iran Nubo-Sindian desert and semi-desert	Photograph	no data	Asian Leopard Project
Non-melanistic 202	savicolor	Dargaz Khorasan Province Iran	36 9854	58 6955	Deserts and Xeric Shrublands	Central Persian desert hasins	Photograph	no data	Asian Leonard Project
Non-melanistic 202	savicolor	Ghorkhod & Behkadeh Reserve Iran	37,6015	56,5290	Temperate Broadleaf and Mixed Forests	Caucasus-Anatolian-Hyrcanian temperate forests	Photograph	no data	Farbadinia et al 2007
Non malanistic 205	savioolov	Golosten National Bark, Iran	28 0852	56 1969	Montana Grasslands and Shriblands	Kopat Dag woodlands and forest stappe	Photograph	no data	Asian L appard Project
Non-melanistic 204	suxicolor	Constant National Fark, Itali	38,0832	54,4808	Deserts and You's Shrublands	Convice leader to the set	Photograph Dhotograph	no data	Asian Leopard Project
Non-metamstic 205	saxicolor	Gorgan-Golestan, Iran	37,2019	54,6584	Deserts and Xeric Shrublands	Caspian lowland desert	Photograph	no data	Asian Leopard Project
Non-melanistic 206	saxicolor	Gorgan-Golestan, Iran	37,2709	54,3942	Deserts and Xeric Shrublands	Caspian lowland desert	Photograph	no data	Asian Leopard Project
Non-metallistic 207	SULLEOIDI	Gouladali, Bujilulu, Itali	37,4797	57,2098	Deserts and Aeric Sindolands		Filolograph	1936	American Museum of Natural History OSA
Non-melanistic 208	saxicolor	Kerman, Iran	30,3739	57,3553	Montane Grassiands and Shrublands	Kun Rud and Eastern Iran montane woodlands	Photograph	no data	Asian Leopard Project
Non-melanistic 209	saxicolor	Khaeez Area, Iran	28,7051	51,5107	Deserts and Xeric Shrublands	South Iran Nubo-Sindian desert and semi-desert	Photograph	no data	Abdoli et al 2008
Non-melanistic 210	saxicolor	Khojir National Park, Iran	35,5963	51,8186	Deserts and Xeric Shrublands	Central Persian desert basins	Photograph	no data	Asian Leopard Project
Non-melanistic 211	saxicolor	Khorasan Province, Iran	35,8595	60,1116	Deserts and Xeric Shrublands	Central Persian desert basins	Photograph	no data	Asian Leopard Project
Non-melanistic 212	saxicolor	Khorasan Province, Iran	33,2073	60,3131	Montane Grasslands and Shrublands	Kuh Rud and Eastern Iran montane woodlands	Photograph	no data	Asian Leopard Project
Non-melanistic 213	saxicolor	Khorasan Province, Iran	35,5268	59,2535	Montane Grasslands and Shrublands	Kuh Rud and Eastern Iran montane woodlands	Photograph	no data	Asian Leopard Project
Non-melanistic 214	saxicolor	Khorasan Province, Iran	34,2792	58,7812	Deserts and Xeric Shrublands	Central Persian desert basins	Photograph	no data	Asian Leopard Project
Non-melanistic 215	saxicolor	Khorasan Province, Iran	33,1146	59,2725	Montane Grasslands and Shrublands	Kuh Rud and Eastern Iran montane woodlands	Photograph	no data	Asian Leopard Project
Non-melanistic 216	saxicolor	Khorasan Province, Iran	35,6120	58,3048	Montane Grasslands and Shrublands	Kuh Rud and Eastern Iran montane woodlands	Photograph	no data	Asian Leopard Project
Non-melanistic 217	saxicolor	Khosh, Semnan Province, Iran	35,5550	55,3459	Deserts and Xeric Shrublands	Central Persian desert basins	Photograph	no data	Asian Leopard Project
Non-melanistic 218	saxicolor	Kiamaki Wildlife Reserve, Iran	38,7594	45.8547	Temperate Grasslands, Savannas and Shrublands	Eastern Anatolian montane steppe	Photograph	no data	Asian Leonard Project
Non-melanistic 219	saxicolor	Laristan, Bariz, Iran	33,5913	49,1922	Temperate Broadleaf and Mixed Forests	Zagros Mountains forest steppe	Photograph	1963	National Museum of Natural History USA
Non-melanistic 220	savicolor	I aristan Fars Iran	33 3084	49 2420	Temperate Broadleaf and Mixed Forests	Zagros Mountains forest steppe	Photograph	1963	National Museum of Natural History USA
Non melanistic 220	savicolor	Mazandaran Iran	36 3078	52 1673	Temperate Broadleaf and Mixed Forests	Caspian Hyrcanian mixed forests	Photograph	no data	Asian Leonard Project
Non-melanistic 221		Mazandaran, Iran	26,2206	52,1075	Temperate Droadleaf and Mixed Forests	Caspian Hyreanian mixed forests	Dhata araah	no data	Asian Leopard Project
Non-metamstic 222	saxicolor	Mazandaran, Iran	30,3290	53,0279	Temperate Broadlear and Mixed Forests	Caspian Hyrcanian mixed forests	Photograph	no data	Asian Leopard Project
Non-melanistic 223	saxicolor	Neisnabour, Knorasan Province, Iran	36,2544	58,8633	Temperate Conferous Forest	Caucasus-Anatonan-Hyrcanian temperate forests	Photograph	no data	Asian Leopard Project
Non-melanistic 224	saxicolor	North Khorasan, Iran	35,8884	58,6493	Deserts and Xeric Shrublands	Central Persian desert basins	Photograph	2012	Asian Leopard Project
Non-melanistic 225	saxicolor	Qualanlu, Iran	37,5376	56,4123	Temperate Coniferous Forest	Caucasus-Anatolian-Hyrcanian temperate forests	Photograph	2013	Andrew Stein
Non-melanistic 226	saxicolor	Qualanlu, Iran	37,5425	56,1588	Temperate Broadleaf and Mixed Forests	Caspian Hyrcanian mixed forests	Photograph	2013	Andrew Stein
Non-melanistic 227	saxicolor	Sarigol National Park, Iran	37,8396	57,0308	Montane Grasslands and Shrublands	Kopet Dag woodlands and forest steppe	Photograph	2007	Farhadinia et al 2010
Non-melanistic 228	saxicolor	Sarigol National Park, Iran	37,8784	56,6037	Montane Grasslands and Shrublands	Kopet Dag woodlands and forest steppe	Photograph	2007	Farhadinia et al 2010
Non-melanistic 229	saxicolor	Talysh Mountains, Iran	38,8721	46,3442	Temperate Grasslands, Savannas and Shrublands	Eastern Anatolian montane steppe	Photograph	2007	Lukarevsky et al 2007
Non-melanistic 230	saxicolor	Tandoureh National Park, Iran	37,2770	58,4683	Montane Grasslands and Shrublands	Kopet Dag woodlands and forest steppe	Photograph	no data	Sayed Babak
Non-melanistic 231	pardus	Cheranganghi Hills, Kenya	-1,4972	36,6726	Tropical and Subtropical Grasslands, Savannas and Shrublands	East African Acacia Savannas	Photograph	no data	American Museum of Natural History USA
Non-melanistic 232	pardus	Cheranganghi Hills, Kenya	-1,6135	36,7174	Tropical and Subtropical Grasslands, Savannas and Shrublands	East African Acacia Savannas	Photograph	no data	American Museum of Natural History USA
Non-melanistic 233	pardus	Elgeyo Forest, Kenya	1,0730	35,2871	Tropical and Subtropical Moist Broadleaf Forests	East African montane forests	Photograph	no data	American Museum of Natural History USA
Non-melanistic 234	pardus	Endau, Kenya	-1,3345	38,6644	Tropical and Subtropical Grasslands, Savannas and Shrublands	East African Acacia Savannas	Photograph	no data	Smithsonian Institution

Id	Subspecies	Location	Deg \	VGS84	Biome	Ecorregion	Sample	Year	Source
	F		Latitude	Longitude			~ p		
Non-melanistic 235	pardus	Ewaso Lions Camp, Kenya	-1,4226	36,8473	Tropical and Subtropical Grasslands, Savannas and Shrublands	East African Acacia Savannas	Photograph	no data	Phillip Henschel
Non-melanistic 236	pardus	Guaso Ngishu Plateau, Kenya	-1,1088	36,5234	Tropical and Subtropical Grasslands, Savannas and Shrublands	East African Acacia Savannas	Photograph	1909	National Museum of Natural History USA
Non-melanistic 237	pardus	Kampi Moto, Nakuru, Kenya	-0,4294	36,1020	Tropical and Subtropical Grasslands, Savannas and Shrublands	East African Acacia Savannas	Photograph	1909	National Museum of Natural History USA
Non-melanistic 238	pardus	Lake Naivasha, Kenya	-0,6986	36,3578	Tropical and Subtropical Grasslands, Savannas and Shrublands	East African Acacia Savannas	Photograph	1909	National Museum of Natural History USA
Non-melanistic 239	pardus	Lake Naivasha, S End, Kenya	-0,8683	36,2074	Tropical and Subtropical Grasslands, Savannas and Shrublands	East African Acacia Savannas	Photograph	1909	National Museum of Natural History USA
Non-melanistic 240	pardus	Masai Mara Game Reserve, Kenya	-1,4803	35,1052	Tropical and Subtropical Grasslands, Savannas and Shrublands	East African Acacia Savannas	Photograph	no data	Smithsonian Institution
Non-melanistic 241	pardus	Magadi, Kenya	-1,7446	36,3396	Tropical and Subtropical Grasslands, Savannas and Shrublands	East African Acacia Savannas	Photograph	2010	Smithsonian Institution
Non-melanistic 242	pardus	Magadi, Kenya	-1,7837	36,3508	Tropical and Subtropical Grasslands, Savannas and Shrublands	East African Acacia Savannas	Photograph	2010	Smithsonian Institution
Non-melanistic 243	pardus	Masai Mara National Park, Kenya	-1,2992	34,8167	Tropical and Subtropical Moist Broadleaf Forests	East African montane forests	Photograph	no data	Phillip Henschel
Non-melanistic 244	pardus	Masai Mara National Park, Kenya	-1,6613	35,3135	Tropical and Subtropical Grasslands, Savannas and Shrublands	East African Acacia Savannas	Photograph	no data	Phillip Henschel
Non-melanistic 245	pardus	Masai Mara National Park, Kenya	-1,4010	34,8578	Tropical and Subtropical Grasslands, Savannas and Shrublands	East African Acacia Savannas	Photograph	no data	Phillip Henschel
Non-melanistic 246	, pardus	Mount Kenya's, Kenya	-0,3075	37,5967	Tropical and Subtropical Grasslands, Savannas and Shrublands	East African Acacia Savannas	Photograph	no data	Smithsonian Institution
Non-melanistic 247	, pardus	Mount Kenva's, Kenva	0.0003	37,6178	Tropical and Subtropical Moist Broadleaf Forests	East African montane forests	Photograph	no data	Smithsonian Institution
Non-melanistic 248	pardus	Ol Pejeta Kenya's Laikipia District, Kenya	0.1262	36.8511	Tropical and Subtropical Grasslands, Savannas and Shrublands	East African Acacia Savannas	Photograph	no data	Smithsonian Institution
Non-melanistic 249	nardus	South Samburu, Kenya	-3.6851	39,2473	Tropical and Subtropical Grasslands, Savannas and Shrublands	East African Acacia Savannas	Photograph	no data	Phillip Henschel
Non-melanistic 250	pardus	Samburu Natural Reserve, Kenya	1.0857	38,2465	Deserts and Xeric Shrublands	Masai xeric grasslands and shrublands	Photograph	no data	Andrew Stein
Non-melanistic 251	pardus	Selenkay Safari Camp, Kenya	-0.4115	36,0993	Tropical and Subtropical Grasslands, Savannas and Shrublands	Fast African Acacia Savannas	Photograph	no data	Andrew Stein
Non-melanistic 257	pardus	Shaha National Reserve Kenya	0 5476	37 2778	Tropical and Subtropical Grasslands, Savannas and Shrublands	East African Acacia Savannas	Photograph	no data	Andrew Stein
Non melanistic 252	pardus	Tumaran Banch Kenya	0,1099	36 7082	Tropical and Subtropical Grasslands, Savannas and Shrublands	East African Acacia Savannas	Photograph	2000	Andrew Stein
Non melanistic 255	pardus	Tumaren Ranch, Kenya	0,1601	36,6890	Tropical and Subtropical Grasslands, Savannas and Shrublands	East African Acacia Savannas	Photograph	2009	Andrew Stein
Non-melanistic 255	pardus	Tumaren Ranch, Kenya	0,1001	26 9927	Tropical and Subtropical Grasslands, Savannas and Shrublands	East African Acadia Savannas	Photograph	2000	Andrew Stein
Non-melanistic 255	paraus	Tumaren Ranch, Kenya	0,1252	36,80027	Tropical and Subtropical Grasslands, Savannas and Shrublands	East African Acadia Savannas	Photograph	2010	Andrew Stein
Non-melanistic 250	paraus	Tumaren Kanch, Kenya	0,1113	26 0700	Tropical and Subtropical Grasslands, Savannas and Shrublands	East African Acadia Savannas	Photograph Dhotograph	2009	Andrew Stein
Non-melanistic 257	paraus	Vai Caast Bravings Kanan	-0,0001	20,0/00	Tropical and Subtropical Grasslands, Savannas and Shrublands	East African Acacia Savannas	Photograph Dhata mark	2008	Andrew Stein
Non-metamistic 258	paraus	Vol, Coast Province, Kenya	-3,3707	36,3136	Tropical and Subtropical Grassiands, Savannas and Shrublands	East Airican Acacia Savannas	Photograph	2000	National Museum of Natural History USA
Non-melanistic 259	delacouri	Nam Et-Phou Louey, Laos	20,6599	105,2908	Tropical and Subtropical Moist Broadleaf Forests	North Indochina subtropical moist forests	Photograph	2009	A mariaan Musaum of Natural History USA
Non-melanistic 261	nardus	Monrovia Liberia	6 3345	-10 6443	Tropical and Subtropical Moist Broadleaf Forests	Guinean Moist Forests	Photograph	no data	American Museum of Natural History USA
Non-melanistic 262	pardus	Lifupa Game Camp Malawi	-13 0872	33 1512	Tropical and Subtropical Grasslands, Savannas and Shrublands	Southern Miombo woodlands	Photograph	no data	Smithsonian Institution
Non-melanistic 262	pardus	Lifupa Game Camp, Malawi	-13 1053	33 1605	Tropical and Subtropical Grasslands, Savannas and Shrublands	Southern Miombo woodlands	Photograph	no data	Smithsonian Institution
Non-melanistic 264	pardus	Mbobo, Malawi	-13.0286	33,9612	Tropical and Subtropical Grasslands, Savannas and Shrublands	Central Zambezian Miombo woodlands	Photograph	1946	American Museum of Natural History USA
Non-melanistic 265	delacouri	Endau-Rompin National Park, Malaysia	6.3561	101.3821	Tropical and Subtropical Moist Broadleaf Forests	Peninsular Malaysian rain forests	Photograph	2003	Asian Leopard Project
Non-melanistic 266	delacouri	Endau-Rompin National Park, Malaysia	6.0600	101,5340	Tropical and Subtropical Moist Broadleaf Forests	Peninsular Malaysian rain forests	Photograph	2010	Bruce Kekule
Non-melanistic 267	delacouri	Salween River, Myanmar	20.0657	98,4779	Tropical and Subtropical Moist Broadleaf Forests	Kavah-Karen/Tenasserim moist forests	Photograph	1899	Bertha Ferrars
Non-melanistic 268	pardus	Chiputo, Mocambique	-14,8612	32,2915	Tropical and Subtropical Grasslands, Savannas and Shrublands	Southern Miombo woodlands	Photograph	no data	American Museum of Natural History USA
Non-melanistic 269	pardus	Lake Malawi, Mocambique	-12,5962	34,9996	Tropical and Subtropical Grasslands, Savannas and Shrublands	Eastern Miombo woodlands	Photograph	no data	National Museum of Natural History USA
Non-melanistic 270	pardus	Niassa, Mocambique	-12,1415	36,1377	Tropical and Subtropical Grasslands, Savannas and Shrublands	Eastern Miombo woodlands	Photograph	2013	Niassa Lion Project
Non-melanistic 271	, pardus	Chasie, Karakuwisa, Namibia	-19,1400	20,1400	Tropical and Subtropical Grasslands, Savannas and Shrublands	Kalahari Acacia-Baikiaea woodlands	Photograph	1952	National Museum of Natural History USA
Non-melanistic 272	, pardus	Chasie, Karakuwisa, Namibia	-19.1400	20,1400	Tropical and Subtropical Grasslands, Savannas and Shrublands	Kalahari Acacia-Baikiaea woodlands	Photograph	1952	National Museum of Natural History USA
Non-melanistic 273	pardus	Epukiro, Namibia	-21.6196	20,0000	Deserts and Xeric Shrublands	Kalahari xeric sayanna	Photograph	2012	Andrew Stein
Non-melanistic 274	nardus	Erindi Game Reserve, Namibia	-21.4790	16.4574	Deserts and Xeric Shrublands	Kalahari xeric sayanna	Photograph	no data	Andrew Stein
Non-melanistic 275	pardus	Erindi Game Reserve. Namibia	-21.6078	16.4067	Deserts and Xeric Shrublands	Kalahari xeric sayanna	Photograph	2010	Andrew Stein
Non-melanistic 276	pardus	Ettien Reserve Namibia	-20 7896	19 9967	Tropical and Subtropical Grasslands, Savannas and Shrublands	Kalahari Acacia-Baikiaea woodlands	Photograph	no data	Andrew Stein
Non-melanistic 277	pardus	Ku Game Ranch, Namibia	-19.9140	16,1918	Tropical and Subtropical Grasslands, Savannas and Shrublands	Angolan Monane woodlands	Photograph	no data	Ezekiel Fabiano Chimbioputo
Non-melanistic 278	pardus	Naukluft Mountains Park Namibia	-24 1521	16 2544	Deserts and Xeric Shrublands	Namibian sayanna woodlands	Photograph	2013	Duke University
Non-melanistic 279	pardus	Naukluft Mountains Park Namibia	-24 1954	16 1514	Deserts and Xeric Shrublands	Namibian sayanna woodlands	Photograph	2013	Duke University
Non-melanistic 280	pardus	Okaputa Namibia	-20.0934	17 5168	Tropical and Subtropical Grasslands, Savannas and Shrublands	Kalahari Acacia-Baikiaea woodlands	Photograph	no data	Andrew Stein
Non-melanistic 281	pardus	Okaputa, Namibia	-20,0934	17,5168	Tropical and Subtropical Grasslands, Savannas and Shrublands	Kalahari Acacia-Baikiaea woodlands	Photograph	no data	Andrew Stein
Non melanistic 287	pardus	Okaputa, Namibia	20,0934	17,5168	Tropical and Subtropical Grasslands, Savannas and Shrublands	Kalahari Acacia Baikiaea woodlands	Photograph	no data	Andrew Stein
Non-melanistic 282	pardus	Okaputa, Namibia	20,0934	17,5168	Tropical and Subtropical Grasslands, Savannas and Shrublands	Kalahari Acacia Baikiaca woodlands	Photograph	no data	Andrew Stein
Non-melanistic 285	pardus	Otijnono. Namibio	20,0934	20 1026	Tropical and Subtropical Grasslands, Savannas and Shrublands	Kalahari Acacia Baikiaca woodlanda	Photograph	2012	Andrew Stein
Non-melanistic 284	paraus	Otjinene, Namibia	-20,8011	16 7409	Deserts and Varia Shruhlands	Kalahari koria sayappa	Photograph	2012	Fradrial Eshiana Chimbionuta
Non-melanistic 285	paraus	Otjiwarongo, Namibia	-20,3101	10,7490	Deserts and Xeric Shrublands	Kalahari xeric savanna	Photograph Dhotograph	2009	Ezekiel Fabiano Chimbioputo
Non-melanistic 280	paraus	Otjiwarongo, Namibia	-20,4627	17,1710	Deserts and Xeric Shrublands	Kalahari xeric savalila	Photograph Dhata mark	2010	Ezekiel Fabiano Chimbioputo
Non-melanistic 287	paraus	Otimarongo, Namibia	-20,4030	17,1714	Deserts and Xeric Shrublands	Kalahari xeric sayanna	Photograph	2010	Ezekiel Fabiano Chimbiopulo
Non-melanistic 288	paraus	Otjiwarongo, Namibia	-20,4364	17,0072	Deserts and Xeric Shrublands	Kalanari xeric savanna	Photograph	2010	Ezekiel Fabiano Unimpioputo
Non-meianistic 289	paraus	Otjiwarongo, Namibia	-20,3995	17,0962	Deserts and Xeric Shrublands	Kalanari xeric savanna	Photograph	2010	Ezekiel Fabiano Chimbioputo
Non-melanistic 290	pardus	Otjiwarongo, Namibia	-20,4582	17,0907	Deserts and Xeric Shrublands	Kalahari xeric savanna	Photograph	2010	Ezekiel Fabiano Chimbioputo
Non-melanistic 291	pardus	Otjiwarongo, Namibia	-20,3890	17,0827	Deserts and Xeric Shrublands	Kalahari xeric savanna	Photograph	2010	Ezekiel Fabiano Chimbioputo
Non-melanistic 292	pardus	Otjiwarongo, Namibia	-20,4587	17,1401	Deserts and Xeric Shrublands	Kalahari xeric savanna	Photograph	2010	Ezekiel Fabiano Chimbioputo
INOn-melanistic 293	pardus	Otjiwarongo, Namibia	-20,4674	16,9741	Deserts and Xeric Shrublands	Kalahari xeric savanna	Photograph	2010	Ezekiel Fabiano Chimbioputo
Non-melanistic 294	pardus	Otjiwarongo, Namibia	-20,4788	17,1425	Deserts and Xeric Shrublands	Kalahari xeric savanna	Photograph	2011	Ezekiel Fabiano Chimbioputo
Non-melanistic 295	pardus	Otjiwarongo, Namibia	-20,4331	17,0815	Deserts and Xeric Shrublands	Kalahari xeric savanna	Photograph	2011	Ezekiel Fabiano Chimbioputo

ы	Subanasias	ubenasies Leastion	Deg WGS84		Diama	Ecomogion	Sampla	Voor	Source
Iu	subspecies	Location	Latitude	Longitude	Biome	Ecorregion	Sample	rear	Source
Non-melanistic 296	pardus	Reitfonten, Namibia	-20.8792	20.8462	Tropical and Subtropical Grasslands, Savannas and Shrublands	Kalahari Acacia-Baikiaea woodlands	Photograph	2011	Smithsonian Institution
Non-melanistic 297	nardus	Reitfonten Namibia	-21 4373	20,6209	Tropical and Subtropical Grasslands, Savannas and Shrublands	Kalahari Acacia-Baikiaea woodlands	Photograph	2011	Smithsonian Institution
Non-melanistic 298	nardus	Tsumkwe Namibia	-19 7844	20 5430	Tropical and Subtropical Grasslands, Savannas and Shrublands	Kalahari Acacia-Baikiaea woodlands	Photograph	2011	Smithsonian Institution
Non melanistic 200	pardus	Waterberg Namibia	20.4613	17 2081	Deserts and Varic Shrublands	Kalahari veric sayanna	Photograph	no data	Andrew Stein
Non-inclanistic 299	puruus	Waterberg, Namibia	-20,4013	17,2081	Deserts and Xeric Shrublands	Kalahari zeris savanna	Dhata manh	no data	Andrew Stein
Non-melanistic 300	paraus	waterberg, Namibia	-20,4613	17,2081	Deserts and Xeric Shrublands	Kalanari xeric savanna	Photograph	no data	Andrew Stein
Non-melanistic 301	pardus	Waterberg, Namibia	-20,4613	17,2081	Deserts and Xeric Shrublands	Kalahari xeric savanna	Photograph	no data	Andrew Stein
Non-melanistic 302	pardus	Waterberg, Namibia	-20,4613	17,2081	Deserts and Xeric Shrublands	Kalahari xeric savanna	Photograph	no data	Andrew Stein
Non-melanistic 303	pardus	Waterberg, Namibia	-20,4613	17,2081	Deserts and Xeric Shrublands	Kalahari xeric savanna	Photograph	no data	Andrew Stein
Non-melanistic 304	fucsia	Bardia National Park, Nepal	28,7941	81,1997	Tropical and Subtropical Moist Broadleaf Forests	Himalayan subtropical broadleaf forests	Photograph	no data	Smithsonian Institution
Non-melanistic 305	fucsia	Chitwan National Park, Nepal	27,4529	84,4404	Tropical and Subtropical Moist Broadleaf Forests	Himalayan subtropical broadleaf forests	Photograph	no data	Michigan State University
Non-melanistic 306	fucsia	Chitwan National Park, Nepal	27,4979	84,0197	Tropical and Subtropical Moist Broadleaf Forests	Himalayan subtropical broadleaf forests	Photograph	2010	Michigan State University
Non-melanistic 307	fusca	Ghansa, Nepal	28,7834	83,7560	Temperate Broadleaf and Mixed Forests	Western Himalayan broadleaf forests	Photograph	no data	Ghimirev 2006
Non-melanistic 308	nardus	Donga Nigeria	7 6133	10.0462	Tropical and Subtropical Grasslands Savannas and Shrublands	Guinean forest-sayanna mosaic	Photograph	no data	National Geographic Society
Non melanistic 300	pardus	Niger Delta Nigeria	5 1980	6 3856	Tropical and Subtropical Moist Broadleaf Forests	Niger Delta swamp forests	Photograph	no data	Ikamah 2007
Non-inclanistic 309	puruus	Otura Niemia	4 9771	6,0890	Transient and Subtropical Moist Droadcal Forests	Niger Delta swamp forests	Dhata manh	1061	National Museum of Natural History USA
Non-metanistic 510	paraus	Otuan, Nigeria	4,8771	6,0880	Tropical and Subtropical Moist Broadlear Forests	Niger Delta swamp forests	Photograph	1901	National Museum of Natural History USA
Non-melanistic 311	nımr	Dorar Mountains, Oman	17,2705	55,6455	Deserts and Xeric Shrublands	Red Sea Nubo-Sindian tropical desert and semi-desert	Photograph	no data	British Exploring Society
Non-melanistic 312	nimr	Jabal Samhan Nature Reserve, Oman	17,2712	54,8702	Deserts and Xeric Shrublands	Arabian Highlands woodlands and shrublands	Photograph	no data	Jane Budd
Non-melanistic 313	nimr	Jabal Samhan Nature Reserve, Oman	17,2246	55,1100	Deserts and Xeric Shrublands	Arabian Highlands woodlands and shrublands	Photograph	no data	Spalton et al 2006
Non-melanistic 314	nimr	Samhan Nature Reserve, Oman	17,0013	54,8161	Deserts and Xeric Shrublands	Arabian Highlands woodlands and shrublands	Photograph	no data	Jane Budd
Non-melanistic 315	nimr	Samhan Nature Reserve, Oman	17,0792	54,8472	Deserts and Xeric Shrublands	Arabian Highlands woodlands and shrublands	Photograph	no data	Jane Budd
Non-melanistic 316	fusca	Machiara National Park, Pakistan	35,6015	74,2158	Temperate Coniferous Forest	Western Himalayan temperate forests	Photograph	2012	World Wild Fund
Non-melanistic 317	fusca	Pir Lasora National Park, Pakistan	33,4133	74.0126	Tropical and Subtropical Coniferous Forests	Himalayan subtropical pine forests	Photograph	no data	World Wild Fund
Non-melanistic 318	fusca	Pir Lasora National Park Pakistan	33 3329	74 0563	Tropical and Subtropical Coniferous Forests	Himalayan subtropical pine forests	Photograph	no data	World Wild Fund
Non melanistic 310	orientalis	Avandeki Bussia	13 1387	131 3100	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	no data	World Wild Fund
Non melanistic 319	it-li-	Vedencia Red Reserve Dursia	42,9190	121 5116	Temperate Droadcar and Mixed Forests	Mancharian mixed forests	Dhata araah	no data	Vona Vna Funa
Non-metanistic 520	orientatis	Kedrovaya Pad Reserve, Russia	43,8189	131,3116	Temperate Broadlear and Mixed Porests	Manchurian mixed forests	Photograph	no data	Tury Shiblev
Non-melanistic 321	orientalis	Kedrovaya Pad Reserve, Russia	43,5906	131,5544	Temperate Broadlear and Mixed Forests	Manchurian mixed forests	Photograph	no data	Yury Shibhev
Non-melanistic 322	orientalis	Primorskiy Krai, Nezhino Hunting Lease, Russia	43,7012	131,7596	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	no data	Ekaterina Nicolaeva/Dale Miquelle
Non-melanistic 323	orientalis	Primorskiy Krai, Nezhino Hunting Lease, Russia	43,7012	131,7596	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	no data	Ekaterina Nicolaeva/Dale Miquelle
Non-melanistic 324	orientalis	Primorskiy Krai, Nezhino Hunting Lease, Russia	43,7012	131,7596	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	no data	Ekaterina Nicolaeva/Dale Miquelle
Non-melanistic 325	orientalis	Primorskiy Krai, Nezhino Hunting Lease, Russia	43,7012	131,7596	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	no data	Ekaterina Nicolaeva/Dale Miquelle
Non-melanistic 326	orientalis	Primorskiy Krai, Nezhino Hunting Lease, Russia	43,3135	131,2976	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	no data	Ekaterina Nicolaeva/Dale Miquelle
Non-melanistic 327	orientalis	Primorskiy Krai, Nezhino Hunting Lease, Russia	43,3135	131,2976	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	no data	Ekaterina Nicolaeva/Dale Miquelle
Non-melanistic 328	orientalis	Primorskiv Krai, Nezhino Hunting Lease, Russia	43,3135	131,2976	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	no data	Ekaterina Nicolaeva/Dale Miquelle
Non-melanistic 329	orientalis	Primorskiv Krai Nezhino Hunting Lease Russia	43 3135	131 2976	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	no data	Ekaterina Nicolaeva/Dale Miquelle
Non melanistic 330	orientalis	Primorskiy Krai Nezhino Hunting Lease, Pussia	43 3135	131 2076	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	no data	Ekaterina Nicolaeva/Dale Miquelle
Non-melanistic 330	orientalis	Primorskiy Krai, Nezhino Hunting Lease, Russia	43,3133	121 1564	Temperate Broadland and Mixed Polests	Manchurian mixed forests	Photograph Dhataanaah	no data	Ekaterina Nicolaeva/Dale Miquelle
Non-metanistic 551	orientatis	Primorskiy Krai, Nezhino Hunting Lease, Russia	43,0242	131,1364	Temperate Broadlear and Mixed Porests	Manchurian mixed forests	Photograph	no data	Ekaterina Nicolaeva/Dale Miquelle
Non-melanistic 332	orientalis	Primorskiy Krai, Neznino Hunting Lease, Russia	43,0242	131,1564	Temperate Broadlear and Mixed Forests	Manchurian mixed forests	Photograph	no data	Ekaterina Nicolaeva/Dale Miquelle
Non-melanistic 333	orientalis	Primorskiy Krai, Nezhino Hunting Lease, Russia	43,0242	131,1564	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	no data	Ekaterina Nicolaeva/Dale Miquelle
Non-melanistic 334	orientalis	Primorskiy Krai, Nezhino Hunting Lease, Russia	43,0242	131,1564	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	no data	Ekaterina Nicolaeva/Dale Miquelle
Non-melanistic 335	orientalis	Primorskiy Krai, Nezhino Hunting Lease, Russia	43,0242	131,1564	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	no data	Ekaterina Nicolaeva/Dale Miquelle
Non-melanistic 336	orientalis	Primorskiy Krai, Nezhino Hunting Lease, Russia	42,8721	131,1602	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	no data	Ekaterina Nicolaeva/Dale Miquelle
Non-melanistic 337	orientalis	Primorskiy Krai, Nezhino Hunting Lease, Russia	42,8721	131,1602	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	no data	Ekaterina Nicolaeva/Dale Miquelle
Non-melanistic 338	orientalis	Primorskiy Krai, Nezhino Hunting Lease, Russia	42,8721	131,1602	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	no data	Ekaterina Nicolaeva/Dale Miquelle
Non-melanistic 339	orientalis	Primorskiy Krai, Nezhino Hunting Lease, Russia	42,8721	131,1602	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	no data	Ekaterina Nicolaeva/Dale Miquelle
Non-melanistic 340	orientalis	Primorskiv Krai Nezhino Hunting Lease Russia	42 8721	131 1602	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	no data	Ekaterina Nicolaeva/Dale Miquelle
Non-melanistic 341	orientalis	Primorskiv Krai Nezhino Hunting Lease, Russia	42 8721	131 1602	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	no data	Ekaterina Nicolaeva/Dale Miquelle
Non-inclanistic 341	orientalis	Drimonskiy Krai, Northing Hunting Lease, Russia	42,0721	121,1602	Temperate Droadcar and Mixed Forests	Manchurian mixed forests	Thotograph Dhataanaah	no data	Electrina Nicolacya/Dale Miquelle
Non-metanistic 542	orientatis	Primorskiy Krai, Nezhino Hunting Lease, Russia	42,8721	131,1602	Temperate Broadlear and Mixed Porests	Manchurian mixed forests	Photograph	no data	Ekaterina Nicolaeva/Dale Miquelle
Non-melanistic 343	orientalis	Primorskiy Krai, Nezhino Hunting Lease, Russia	42,8094	130,7478	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	no data	Ekaterina Nicolaeva/Dale Miquelle
Non-melanistic 344	orientalis	Primorskiy Krai, Nezhino Hunting Lease, Russia	42,8094	130,7478	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	no data	Ekaterina Nicolaeva/Dale Miquelle
Non-melanistic 345	orientalis	Primorskiy Krai, Nezhino Hunting Lease, Russia	42,8094	130,7478	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	no data	Ekaterina Nicolaeva/Dale Miquelle
Non-melanistic 346	orientalis	Primorskiy Krai, Nezhino Hunting Lease, Russia	42,8094	130,7478	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	no data	Ekaterina Nicolaeva/Dale Miquelle
Non-melanistic 347	orientalis	Southwest Primorye, Russia	43,5209	131,7363	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2004	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 348	orientalis	Southwest Primorye, Russia	43,4308	131,5017	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2007	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 349	orientalis	Southwest Primorye, Russia	43,4968	131.6842	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2003	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 350	orientalis	Southwest Primorve. Russia	43,4772	131,6761	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	no data	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 351	orientalis	Southwest Primorye, Russia	43 4405	131 4546	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2004	Wildlife Conservation Society - Alexander Peebin
Non malanistic 252	orientalia	Southwest Primorye, Russia	43,4405	131,4040	Temperate Broadlaaf and Mixed Forests	Manchurian mixed forests	Photograph	2004	Wildlife Conservation Society - Alexander Be-Li-
Non-incialistic 552	orientatis	Southwest Finhorye, Russia	43,3997	131,0481	The second secon	Wanchuhan IIIXed IOrests	rnotograph	2004	When Conservation Society - Alexander Reedin
Non-melanistic 353	orientalis	Southwest Primorye, Russia	43,3997	131,6481	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2004	windine Conservation Society - Alexander Reebin
Non-melanistic 354	orientalis	Southwest Primorye, Russia	43,3997	131,6481	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2004	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 355	orientalis	Southwest Primorye, Russia	43,3997	131,6481	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2004	Wildlife Conservation Society - Alexander Reebin

Ĭd	Subspecies	Location	Deg WGS		Biome	Ecorregion	Sample	Year	Source
	F		Latitude	Longitude			F		
Non-melanistic 356	orientalis	Southwest Primorye, Russia	43,5018	131,5278	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2004	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 357	orientalis	Southwest Primorye, Russia	43,4375	131,7086	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2001	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 358	orientalis	Southwest Primorye, Russia	43,4375	131,7086	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2004	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 359	orientalis	Southwest Primorye, Russia	43,4765	131,6034	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2004	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 360	orientalis	Southwest Primorye, Russia	43,4765	131,6034	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2007	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 361	orientalis	Southwest Primorye, Russia	43,5164	131,6544	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2005	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 362	orientalis	Southwest Primorye, Russia	43,4693	131,5529	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2005	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 363	orientalis	Southwest Primorye, Russia	43,4821	131,5401	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2005	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 364	orientalis	Southwest Primorye, Russia	43,4511	131,5435	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2011	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 365	orientalis	Southwest Primorye, Russia	43,4189	131,5842	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2007	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 366	orientalis	Southwest Primorye, Russia	43,4096	131,4165	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2011	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 367	orientalis	Southwest Primorye, Russia	43,4096	131,4165	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2007	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 368	orientalis	Southwest Primorye, Russia	43,4096	131,4165	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2011	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 369	orientalis	Southwest Primorye, Russia	43,3791	131,5503	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2007	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 370	orientalis	Southwest Primorve, Russia	43,5060	131.6388	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2007	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 371	orientalis	Southwest Primorve, Russia	43,5333	131.7144	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2007	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 372	orientalis	Southwest Primorye, Russia	43,5333	131.7144	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2007	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 373	orientalis	Southwest Primorye, Russia	43,5333	131.7144	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2008	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 374	orientalis	Southwest Primorye, Russia	43 5333	131 7144	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2008	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 375	orientalis	Southwest Primorye, Russia	43,3238	131.5431	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2008	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 376	orientalis	Southwest Primorye, Russia	43 3506	131,4963	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2009	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 377	orientalis	Southwest Primorye, Russia	43,3506	131,4963	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2005	Wildlife Conservation Society - Alexander Reebin
Non melanistic 378	orientalis	Southwest Primorye, Russia	43,3506	131,4963	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2011	Wildlife Conservation Society Alexander Reebin
Non-melanistic 370	orientalis	Southwest Primorye, Russia	43,3506	131,4903	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2010	Wildlife Conservation Society Alexander Recom
Non-melanistic 379	orientalis	Southwest Primorye, Russia	43,3506	121 4062	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2010	Wildlife Conservation Society - Alexander Recom
Non-melanistic 380	orientalis	Southwest Primorye, Russia	43,3500	121 4062	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2010	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 381	orientalis	Southwest Primorye, Russia	43,3506	121 4062	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2011	Wildlife Conservation Society - Alexander Recom
Non-melanistic 382	orientalis	Southwest Primorye, Russia	43,3500	121 4062	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph	2010	Wildlife Conservation Society - Alexander Reebin
Non-metanistic 383	orientalis	Southwest Primorye, Russia	43,3500	121 4062	Temperate Broadlast and Mixed Forests	Manchurian mixed forests	Photograph Dhataanah	2011	Wildlife Conservation Society - Alexander Recom
Non-melanistic 384	orientalis	Southwest Primorye, Russia	43,3306	131,4905	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph Dhata maab	2011	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 385	orientalis	Southwest Printorye, Russia	45,5506	131,4905	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph Dhata arrash	2011	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 380	orientalis	Southwest Primorye, Russia	45,4459	131,3999	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph Dhata maab	2011	Wildlife Conservation Society - Alexander Reebin
Non-melanistic 388	orientalis	Jesuri Nicolek Pussia	45,4459	131,3999	Tundra	Suinhun Khanka meadows and forest meadows	Photograph	1030	American Museum of Natural History USA
Non-melanistic 389	orientalis	Ussuri Okransk Russia	43,8283	131 8699	Tundra	Suphun-Khanka meadows and forest meadows	Photograph	1930	American Museum of Natural History USA
Non-melanistic 390	pardus	Kigali, Rwanda	-1.9764	30.0001	Tropical and Subtropical Grasslands, Sayannas and Shrublands	Victoria Basin forest-savanna mosaic	Photograph	no data	Smithsonian Institution
Non-melanistic 391	pardus	Agulhas Plain Great Hermanus Area South Africa	-34 6572	19 7481	Mediterranean Forests Woodlands and Scrub	I owland fynbos and renosterveld	Photograph	2012	Landmark Foundation
Non-melanistic 392	pardus	Agulhas Plain Great Hermanus Area, South Africa	-34 6418	19 7119	Mediterranean Forests, Woodlands, and Scrub	Lowland fynbos and renosterveld	Photograph	2012	Landmark Foundation
Non-melanistic 393	pardus	Cederberg Mountains Western Cape South Africa	-32 2916	19,4120	Deserts and Xeric Shrublands	Namib-Karoo-Kaokoveld Deserts and Shrublands	Photograph	2012	Guy Balme
Non-melanistic 394	pardus	Cederberg Mountains, Western Cape, South Africa	-32 3383	19 1853	Mediterranean Forests Woodlands and Scrub	Montane fynhos and renosterveld	Photograph	no data	Guy Balme
Non melanistic 395	pardus	Franschhoek I a Motte Hiking Trail South Africa	33 9428	10 1025	Mediterranean Forests, Woodlands, and Scrub	Montane fynbos and renosterveid	Photograph	2011	Cape Leopard Trust
Non-melanistic 395	pardus	Franschhoek La Motte Hiking Trail, South Africa	33 9687	19,1925	Mediterranean Forests, Woodlands, and Scrub	Montane fynbos and renosterveld	Photograph	2011	Cape Leopard Trust
Non-melanistic 300	pardus	Hoodenmit Come Pasaria, South Africa	-33,9087	21 1040	Tropical and Subtropical Grasslands, Savannas and Shrublands	Zembazien and Monane woodlands	Photograph	2011	Cur Palma
Non-melanistic 397	pardus	Karatara South Africa	33 9502	22 3380	Mediterranean Forests Woodlands and Scrub	Evabor	Photograph	2013	Braczkowski & Watson 2013
Non-melanistic 398	pardus	Karatara, South Africa	22 8570	22,3380	Mediterranean Forests, Woodlands, and Serub	Fynbos	Photograph	2013	Braczkowski & Watson 2013
Non-melanistic 399	paraus	Karanana, South Africa	-33,8370	22,2120	Montono Grosslands and Shrublands	Pyiloos Drakansbarg Montana Woodlands and Grasslands	Photograph	2015	Androw Stain
Non-melanistic 400	pardus	Katongwe Reserve, South Africa	-24,5092	21 2227	Tropical and Subtropical Grasslands, Savannas and Shrublands	Zambazian and Monana woodlands	Photograph	2012	Eduarda Eizirik
Non-melanistic 401	paraus	Kruger National Park, South Africa	-24,5210	20,6062	Tropical and Subtropical Grasslands, Savannas and Shrublands	Zambezian and Mopane woodlands	Photograph	2013	Daviel Boshe
Non-metanistic 402	paraus	Kruger National Park, South Africa	-25,0551	30,0962	Tropical and Subtropical Grassiands, Savannas and Shrublands		Photograph	2012	Damer Rocha
Non-melanistic 405	paraus	Kruger National Park, South Africa	-22,0047	20 5082	Mantana Crassiands, Savannas and Shrublands	Zambezian and Mopane woodlands	Photograph Dhata maab	no data	Guy Ballite
Non-metanistic 404	paraus	Kudu Game Ranch, South Africa	-24,7935	30,3083	Montane Grassiands and Shrublands	Drakensberg Montane woodlands and Grasslands	Photograph	no data	
Non-melanistic 405	paraus	Kwazulu-Natal, South Africa	-28,4606	30,6808	Montane Grassiands and Shrubiands	Drakensberg Montane woodlands and Grasslands	Photograph	no data	Andrew Stein
Non-melanistic 406	paraus	KwaZulu-Natal, South Africa	-28,4766	30,7523	Montane Grassiands and Shrubiands	Drakensberg Montane woodlands and Grasslands	Photograph	no data	Andrew Stein
Non-melanistic 407	pardus	Leap Vineyards, South Africa	-33,918/	19,6263	Deserts and Xeric Shrublands	Namib-Karoo-Kaokoveld Deserts and Shrublands	Photograph	2013	Cape Leopard Trust
Non-meianistic 408	paraus	Leap vineyards, South Africa	-33,9525	19,04/8	Deserts and Xeric Shrublands	Namid-Karoo-Kaokoveid Deserts and Shrublands	Photograph	2010	Cape Leopard Trust
Non-melanistic 409	pardus	Letaba, South Africa	-23,6260	31,5994	Tropical and Subtropical Grasslands, Savannas and Shrublands	Zambezian and Mopane woodlands	Photograph	2010	Michelle Altenkirk
Non-melanistic 410	pardus	Limpopo, South Africa	-22,5536	30,9343	Tropical and Subtropical Grasslands, Savannas and Shrublands	Southern Africa bushveld	Photograph	2004	Conservation International
Non-melanistic 411	pardus	Limpopo Waterberg Area, South Africa	-22,1575	29,6163	Tropical and Subtropical Grasslands, Savannas and Shrublands	Zambezian and Mopane woodlands	Photograph	no data	Andrew Stein
Non-melanistic 412	pardus	Loskop Dam Protected Area, South Africa	-25,4369	29,2630	Tropical and Subtropical Grasslands, Savannas and Shrublands	Southern Africa bushveld	Photograph	2004	Guy Balme
Non-melanistic 413	pardus	Lydenburg, South Africa	-24,8234	30,8106	Montane Grasslands and Shrublands	Drakensberg Montane Woodlands and Grasslands	Photograph	no data	Guy Balme
Non-melanistic 414	pardus	Lydenburg, South Africa	-24,6917	30,7609	Montane Grasslands and Shrublands	Drakensberg Montane Woodlands and Grasslands	Photograph	2011	Guy Balme
Non-melanistic 415	pardus	Lydenburg, South Africa	-24,8012	30,7291	Montane Grasslands and Shrublands	Drakensberg Montane Woodlands and Grasslands	Photograph	2010	Andrew Stein
Non-melanistic 416	pardus	Lydenburg, South Africa	-24,8079	30,6673	Montane Grasslands and Shrublands	Drakensberg Montane Woodlands and Grasslands	Photograph	2010	Andrew Stein
ы	Subspagios	Location	Deg WGS84		Diama	Ecorregion	Sample	Vear	Source
---------------------	------------------	---	-----------	--------------------	---	--	----------------------------	---------	--
Iu	Subspecies	Location	Latitude	Longitude	Diolite	Ecorregion	Sample	Itai	source
Non-melanistic 417	pardus	Lydenburg, South Africa	-24,6807	30,8312	Montane Grasslands and Shrublands	Drakensberg Montane Woodlands and Grasslands	Photograph	2011	Andrew Stein
Non-melanistic 418	pardus	Lydenburg Leonard Camp, South Africa	-24.9668	30,3398	Montane Grasslands and Shrublands	Drakensberg Montane Woodlands and Grasslands	Photograph	2011	Daniel Rocha
Non-melanistic 419	pardus	Lydenburg Leonard Camp, South Africa	-25.0000	30,7428	Montane Grasslands and Shrublands	Drakensberg Montane Woodlands and Grasslands	Photograph	no data	Andrew Stein
Non-melanistic 420	pardus	Mkhuze Game Reserve, South Africa	-27 8100	32,0030	Montane Grasslands and Shrublands	Drakensberg Montane Woodlands and Grasslands	Photograph	no data	Guy Balme
Non melanistic 421	pardus	Mkhuze Game Reserve, South Africa	27,0100	31,8152	Montane Grasslands and Shrublands	Drakensberg Montane Woodlands and Grasslands	Photograph	2008	Smithsonian Institution
Non-melanistic 422	pardus	Moumalanga South Africa	25 7211	31,6152	Tropical and Subtropical Grasslands, Savannas, and Shrublands	Zamberian and Monane woodlands	Photograph	2003	Michelle Altenkirk
Non-inclanistic 422	paraus	Mummunan Leanned Designt South Africa	-25,7211	22,0600	Mantana Creasiands, Savanias and Sinublands	Deslanderer Mantana Waadlands and Creationds	Dhata manh	2011	Cuu Balma
Non-melanistic 423	paraus	Dhinda Driveta Carra Dagarda South Africa	-21,1829	32,0600	Montane Grasslands and Shrublands	Drakensberg Montane Woodlands and Grasslands	Photograph Dhata areach	no data	Burtham
Non-metamstic 424	paraus	Philida Private Game Reserve, South Africa	-27,8840	31,9657	Montane Grassiands and Shrublands	Drakensberg Montane woodiands and Grassiands	Photograph	no data	Paninera
Non-melanistic 425	pardus	Riversdale, Western Cape, South Africa	-34,2139	21,1682	Mediterranean Forests, Woodlands, and Scrub	Fynbos	Photograph	2011	Landmark Foundation
Non-melanistic 426	pardus	Skukuza Road, South Africa	-24,9919	31,6263	Tropical and Subtropical Grasslands, Savannas and Shrublands	Zambezian and Mopane woodlands	Photograph	no data	Guy Balme
Non-melanistic 427	pardus	Somkhanda Game Reserve, South Africa	-27,7108	31,9462	Montane Grasslands and Shrublands	Drakensberg Montane Woodlands and Grasslands	Photograph	no data	Panthera
Non-melanistic 428	pardus	Somkhanda Game Reserve, South Africa	-27,7063	31,9791	Montane Grasslands and Shrublands	Drakensberg Montane Woodlands and Grasslands	Photograph	no data	Panthera
Non-melanistic 429	pardus	Somkhanda Game Reserve, South Africa	-27,7361	31,9650	Montane Grasslands and Shrublands	Drakensberg Montane Woodlands and Grasslands	Photograph	no data	Panthera
Non-melanistic 430	pardus	Somkhanda Game Reserve, South Africa	-27,8122	31,9274	Montane Grasslands and Shrublands	Drakensberg Montane Woodlands and Grasslands	Photograph	no data	Panthera
Non-melanistic 431	pardus	Steenkampsberg Mountains, Lydenburg, South Africa	-25,2164	30,5472	Montane Grasslands and Shrublands	Drakensberg Montane Woodlands and Grasslands	Photograph	2010	Panthera
Non-melanistic 432	pardus	Swartberg Area, South Africa	-30,1610	29,2539	Montane Grasslands and Shrublands	Drakensberg Montane Woodlands and Grasslands	Photograph	no data	Wildlife Conservation Society
Non-melanistic 433	pardus	Thaba Tholo Wilderness Reserve, South Africa	-24,9169	30,4675	Montane Grasslands and Shrublands	Drakensberg Montane Woodlands and Grasslands	Photograph	no data	TTWR
Non-melanistic 434	pardus	Thaba Tholo Wilderness Reserve, South Africa	-24,8565	30,5184	Montane Grasslands and Shrublands	Drakensberg Montane Woodlands and Grasslands	Photograph	2012	TTWR
Non-melanistic 435	pardus	Thaba Tholo Wilderness Reserve, South Africa	-24,8855	30,5195	Montane Grasslands and Shrublands	Drakensberg Montane Woodlands and Grasslands	Photograph	2012	TTWR
Non-melanistic 436	pardus	Thaba Tholo Wilderness Reserve, South Africa	-24,8700	30,4386	Montane Grasslands and Shrublands	Drakensberg Montane Woodlands and Grasslands	Photograph	no data	TTWR
Non-melanistic 437	pardus	Thaba Tholo Wilderness Reserve, South Africa	-24.6122	30,4586	Montane Grasslands and Shrublands	Drakensberg Montane Woodlands and Grasslands	Photograph	2011	TTWR
Non-melanistic 438	pardus	Thaba Tholo Wilderness Reserve, South Africa	-24.6237	30.3404	Tropical and Subtropical Grasslands, Savannas and Shrublands	Southern Africa bushveld	Photograph	2012	TTWR
Non-melanistic 439	nardus	Thaba Game Reserve South Africa	-28 4257	30,6239	Montane Grasslands and Shruhlands	Drakensberg Montane Woodlands and Grasslands	Photograph	no data	Panthera
Non-melanistic 440	pardus	Wemmershoek South Africa	-33 7523	19 2081	Mediterranean Forests Woodlands and Scrub	Fynhos	Photograph	2011	Cape Leonard Trust
Non melanistic 441	pardus	Wemmershoek, South Africa	33,7523	19,2001	Mediterranean Forests, Woodlands, and Scrub	Fynbos	Photograph	2011	Cape Leopard Trust
Non-melanistic 441	pardus	Wenniershoek, South Africa	22 7527	10,2002	Mediterranean Forests, Woodlands, and Scrub	Fundos	Photograph	2010	Cape Leopard Trust
Non-melanistic 442	paraus	Wennersheel, South Africa	-33,7337	19,2903	Mediterranean Forests, Woodlands, and Scrub	Fyilos	Photograph	2011	Cape Leopard Trust
Non-melanistic 443	paraus	wemmersnoek, South Africa	-33,/895	19,2485	Mediterranean Forests, woodlands, and Scrub	Fyndos	Photograph	2011	Cape Leopard Trust
Non-melanistic 444	paraus	wemmersnoek Mountains, South Africa	-33,/281	19,3585	Mediterranean Forests, woodlands, and Scrub	Fyndos	Photograph	2010	Cape Leopard Trust
Non-melanistic 445	kotiya	Agrapatana, Sri Lanka	6,8015	80,6216	Tropical and Subtropical Moist Broadleaf Forests	Sri Lankan moist forest	Photograph	no data	Andrew Kittle
Non-melanistic 446	kotiya	Colombo, Western Province, Sri Lanka	6,9373	79,8917	Tropical and Subtropical Moist Broadleaf Forests	Sri Lankan moist forest	Photograph	1908	National Museum of Natural History USA
Non-melanistic 447	kotiya	Vavuniya Forest, Sri Lanka	8,8836	80,3568	Tropical and Subtropical Dry Broadleaf Forests	Sri Lanka dry-zone dry evergreen forests	Photograph	2004	Watson & Kittle 2004
Non-melanistic 448	kotiya	Dunumadalawa Forest, Sri Lanka	7,2034	80,6151	Tropical and Subtropical Moist Broadleaf Forests	Sri Lankan moist forest	Photograph	no data	Andrew Kittle
Non-melanistic 449	kotiya	Hantane, Kandy District, Sri Lanka	7,2709	80,6422	Tropical and Subtropical Moist Broadleaf Forests	Sri Lankan moist forest	Photograph	no data	Andrew Kittle
Non-melanistic 450	kotiya	Hantane, Kandy District, Sri Lanka	7,2553	80,6325	Tropical and Subtropical Moist Broadleaf Forests	Sri Lankan moist forest	Photograph	no data	Andrew Kittle
Non-melanistic 451	kotiya	Kantalai, Sri Lanka	8,3076	80,8441	Tropical and Subtropical Dry Broadleaf Forests	Sri Lanka dry-zone dry evergreen forests	Photograph	no data	Watson & Kittle 2004
Non-melanistic 452	kotiya	Nuwara Eliya, Sri Lanka	7,0260	80,7864	Tropical and Subtropical Moist Broadleaf Forests	Sri Lankan moist forest	Photograph	2013	Smithsonian Institution
Non-melanistic 453	kotiya	Wasgamuwa National Park, Sri Lanka	7,6389	80,9393	Tropical and Subtropical Dry Broadleaf Forests	Sri Lanka dry-zone dry evergreen forests	Photograph	no data	Andrew Kittle
Non-melanistic 454	kotiya	Yala National Park, Sri Lanka	6,4632	81,3839	Tropical and Subtropical Dry Broadleaf Forests	Sri Lanka dry-zone dry evergreen forests	Photograph	no data	Andrew Kittle
Non-melanistic 455	kotiya	Yala National Park, Sri Lanka	6,4632	81,3839	Tropical and Subtropical Dry Broadleaf Forests	Sri Lanka dry-zone dry evergreen forests	Photograph	no data	Andrew Kittle
Non-melanistic 456	kotiya	Yala National Park, Sri Lanka	6,4644	81,3266	Tropical and Subtropical Dry Broadleaf Forests	Sri Lanka dry-zone dry evergreen forests	Photograph	no data	Andrew Kittle
Non-melanistic 457	kotiya	Yala National Park, Sri Lanka	6,5198	81,4115	Tropical and Subtropical Dry Broadleaf Forests	Sri Lanka dry-zone dry evergreen forests	Photograph	no data	Andrew Kittle
Non-melanistic 458	kotiva	Yala National Park, Sri Lanka	6,5303	81,4220	Tropical and Subtropical Dry Broadleaf Forests	Sri Lanka dry-zone dry evergreen forests	Photograph	no data	Andrew Kittle
Non-melanistic 459	kotiya	Yala National Park. Sri Lanka	6,5079	81,4753	Tropical and Subtropical Dry Broadleaf Forests	Sri Lanka dry-zone dry evergreen forests	Photograph	no data	Andrew Kittle
Non-melanistic 460	kotiva	Yala National Park, Sri Lanka	6,4714	81,4582	Tropical and Subtropical Dry Broadleaf Forests	Sri Lanka dry-zone dry evergreen forests	Photograph	no data	Andrew Kittle
Non-melanistic 461	kotiva	Yala National Park, Sri Lanka	6.4813	81.5338	Tropical and Subtropical Dry Broadleaf Forests	Sri Lanka dry-zone dry evergreen forests	Photograph	no data	Andrew Kittle
Non-melanistic 46?	kotiva	Yala National Park Sri Lanka	6 4686	81 5292	Tropical and Subtropical Dry Broadleaf Forests	Sri Lanka dry-zone dry evergreen forests	Photograph	no data	Andrew Kittle
Non-melanistic 462	kotiva	Yala National Park Sri Lanka	6.4785	81 5206	Tropical and Subtropical Dry Broadleaf Forests	Sri Lanka dry-zone dry evergreen forests	Photograph	no data	Andrew Kittle
Non-melanistic 464	kotiya	Vala National Park, Sri Lanka	6 4112	81,5200	Tropical and Subtropical Dry Broadloaf Forests	Sri Lanka dry zone dry evergreen forests	Photograph	no data	Andrew Kittle
Non melanistic 464	kotiva	Vala National Park Sri Lanka	6 4077	Q1 /010	Tropical and Subtropical Dry Broadloof Forests	Sri Lanka dry zone dry evergreen forests	Photograph	no data	Andraw Kittle
Non-metallistic 405	konya	Y I N C I D I G I I I	6,4077	01,4010	Topical and Subtropical Dry Broadlear Forests	Sil Laika diy-zone diy evergreen forests	Filotograph	no uata	Andrew Kittle
Non melanistic 466	kotiya kotiya	Yala National Park, Sri Lanka	6,4231	61,4823 81 4813	Tropical and Subtropical Dry Broadleaf Forests	Sri Lanka dry-zone dry evergreen forests	Photograph Photograph	no data	Andrew Kittle
Non-melanistic 467	konya h-stir	I ala National Park, Sri Lanka	6,4239	01,4012	Transient and Subtraniant D. D. 11 of F.	Si Lanka dry-zone dry evergreen forests	Photograph	no data	Andrew Kittle
inon-meianistic 468	копуа	r ala National Park, Sri Lanka	0,4364	81,5556	Tropical and Subtropical Dry Broadleaf Forests	Sri Lanka dry-zone dry evergreen forests	Photograph	no data	Andrew Kittle
Non-melanistic 469	kotiya	Y ala National Park, Sri Lanka	6,4077	81,5530	Tropical and Subtropical Dry Broadleat Forests	Sri Lanka dry-zone dry evergreen forests	Photograph Db at a mail	no data	Andrew Kittle
Non-melanistic 470	paraus	El Dueim, Asn Snamaliyah, Sudan	14,0298	32,2018	Tropical and Subtropical Grasslands, Savannas and Shrublands	Saneilan Acacia sayanna	Photograph	1910	American Museum of Natural History USA
Non-melanistic 477	paraus	Serengeti Plains, Tanzania	-2 1623	34 4294	Tropical and Subtropical Grasslands, Savannas and Shrublands	East Sudanian Savannas East African Acacia Savannas	Photograph	no data	American Museum of Natural History USA
Non-melanistic 473	pardus	Tanganyika, Rungwe, Tanzania	-5.4804	29.9287	Tropical and Subtropical Grasslands, Savannas and Shrublands	Central Zambezian Miombo woodlands	Photograph	1929	American Museum of Natural History USA
Non-melanistic 474	pardus	Tanganyika, Rungwe, Tanzania	-5,7615	30,3734	Tropical and Subtropical Grasslands, Savannas and Shrublands	Central Zambezian Miombo woodlands	Photograph	1929	American Museum of Natural History USA
Non-melanistic 475	pardus	Tanganyika, Rungwe, Tanzania	-6,1077	30,4335	Tropical and Subtropical Grasslands. Savannas and Shrublands	Central Zambezian Miombo woodlands	Photograph	1929	American Museum of Natural History USA
Non-melanistic 476	pardus	Serengeti National Park, Tanzania	-2,5763	34,3123	Tropical and Subtropical Grasslands, Savannas and Shrublands	East African Acacia Savannas	Photograph	no data	Andrew Stein
Non-melanistic 477	pardus	Serengeti National Park, Tanzania	-2,4335	34,5247	Tropical and Subtropical Grasslands, Savannas and Shrublands	East African Acacia Savannas	Photograph	no data	Andrew Stein

Id	Subspecies	Location	Deg WGS84		Biome	Ecorregion	Sample	Year	Source
	F		Latitude	Longitude			~ p		
Non-melanistic 478	pardus	Udzungwa Benjamin Drummond Mountains, Tanzania	-7,7762	36,6822	Tropical and Subtropical Moist Broadleaf Forests	Eastern Arc Montane Forests	Photograph	2011	Wildlife Conservation Society
Non-melanistic 479	pardus	Zanzibar, Tanzania	-6,0133	39,2655	Tropical and Subtropical Moist Broadleaf Forests	Northern Zanzibar-Inhambane coastal forest mosaic	Photograph	no data	Zanzibar Museum
Non-melanistic 480	pardus	Zanzibar, Tanzania	-5,9007	39,3223	Tropical and Subtropical Moist Broadleaf Forests	Northern Zanzibar-Inhambane coastal forest mosaic	Photograph	no data	Zanzibar Museum
Non-melanistic 481	pardus	Zanzibar, Tanzania	-5,9603	39,3396	Tropical and Subtropical Moist Broadleaf Forests	Northern Zanzibar-Inhambane coastal forest mosaic	Photograph	no data	Zanzibar Museum
Non-melanistic 482	delacouri	Huai Kha Khaeng Wildlife Sanctuary, Thailand	15,8022	99,7023	Tropical and Subtropical Dry Broadleaf Forests	Indochina dry forests	Photograph	2009	Kae Kawanishi
Non-melanistic 483	delacouri	Huai Kha Khaeng Wildlife Sanctuary, Thailand	15,4968	99,6261	Tropical and Subtropical Dry Broadleaf Forests	Indochina dry forests	Photograph	2009	Kae Kawanishi
Non-melanistic 484	delacouri	Huai Kha Khaeng Wildlife Sanctuary, Thailand	15,2545	98,7483	Tropical and Subtropical Moist Broadleaf Forests	Kayah-Karen/Tenasserim moist forests	Photograph	2012	Bruce Kekule
Non-melanistic 485	delacouri	Huai Kha Khaeng Wildlife Sanctuary Thailand	14 7850	99 2517	Tropical and Subtropical Moist Broadleaf Forests	Kavah-Karen/Tenasserim moist forests	Photograph	2012	Bruce Kekule
Non-melanistic 486	delacouri	Huai Kha Khaeng Wildlife Sanctuary, Thailand	14 7850	99.2517	Tropical and Subtropical Moist Broadleaf Forests	Kayah-Karen/Tenasserim moist forests	Photograph	no data	Bruce Kekule
Non melanistic 400	Jalaaani	Huai Kha Khaong Wildlife Senetuary, Thailand	15,7050	00.1422	Tropical and Subtropical Moist Droadleaf Forests	Kayah Karen /Tenesserim moist forests	Dhataman	2012	Bruce Kelude
Non-metamstic 487	aeiacouri	Huai Kha Khaeng whome Sanctuary, Thanand	15,5570	99,1422	Tropical and Subtropical Moist Broadlear Forests	Kayan-Karen/Tenasserini moist forests	Photograph	2015	D K 1 1
Non-melanistic 488	delacouri	Huai Kha Khaeng Wildlife Sanctuary, Thailand	16,0221	98,6581	Tropical and Subtropical Moist Broadleaf Forests	Kayah-Karen/Tenasserim moist forests	Photograph	2013	Bruce Kekule
Non-melanistic 489	delacouri	Huai Kha Khaeng Wildlife Sanctuary, Thailand	15,5751	99,1429	Tropical and Subtropical Moist Broadleaf Forests	Kayah-Karen/Tenasserim moist forests	Photograph	2012	Wildlife Conservation Society
Non-melanistic 490	delacouri	Huai Kha Khaeng Wildlife Sanctuary, Thailand	15,0925	98,9792	Tropical and Subtropical Moist Broadleaf Forests	Kayah-Karen/Tenasserim moist forests	Photograph	2012	Wildlife Conservation Society
Non-melanistic 491	delacouri	Huai Kha Khaeng Wildlife Sanctuary, Thailand	14,7990	98,9247	Tropical and Subtropical Moist Broadleaf Forests	Kayah-Karen/Tenasserim moist forests	Photograph	2012	Wildlife Conservation Society
Non-melanistic 492	delacouri	Huai Kha Khaeng Wildlife Sanctuary, Thailand	14,8046	98,5320	Tropical and Subtropical Moist Broadleaf Forests	Kayah-Karen/Tenasserim moist forests	Photograph	2013	Wildlife Conservation Society
Non-melanistic 493	delacouri	Huai Kha Khaeng Wildlife Sanctuary, Thailand	14,3872	99,2542	Tropical and Subtropical Moist Broadleaf Forests	Kayah-Karen/Tenasserim moist forests	Photograph	2013	Wildlife Conservation Society
Non-melanistic 494	delacouri	Kaeng Krachan National Park, Thailand	12.8847	99,6302	Tropical and Subtropical Moist Broadleaf Forests	Kavah-Karen/Tenasserim moist forests	Photograph	no data	Bruce Kekule
Non-melanistic 495	delacouri	Kaeng Krachan National Park Thailand	12 0023	99 6938	Tropical and Subtropical Moist Broadleaf Forests	Kavah-Karen/Tenasserim moist forests	Photograph	no data	Bruce Kekule
Non-melanistic 496	delacouri	Kaeng Krachan National Park Thailand	12,0020	99 2334	Tropical and Subtropical Moist Broadleaf Forests	Kayah-Karen/Tenasserim moist forests	Photograph	no data	Bruce Kekule
Non melanistic 490	Jalaaani	Kacing Krachan National Park, Thailand	12,9500	00 2224	Tropical and Subtropical Moist Droadleaf Forests	Kayah Karen /Tenesserim moist forests	Dhataman	2000	Bruce Kelude
Non-metamistic 497	aeiacouri	Kaeng Krachan National Park, Thahand	12,9300	99,2334	Tropical and Subtropical Moist Broadlear Forests	Kayan-Karen/Tenasserini moist forests	Photograph	2009	D K 1 1
Non-melanistic 498	aelacouri	Kaeng Krachan National Park, Thailand	13,0527	99,1907	Tropical and Subtropical Moist Broadlear Forests	Kayan-Karen/Tenasserim moist forests	Photograph	2009	Bruce Kekule
Non-melanistic 499	delacouri	Kaeng Krachan National Park, Thailand	12,9500	99,2334	Tropical and Subtropical Moist Broadleaf Forests	Kayah-Karen/Tenasserim moist forests	Photograph	no data	Bruce Kekule
Non-melanistic 500	delacouri	Kaeng Krachan National Park, Thailand	13,3983	99,5686	Tropical and Subtropical Moist Broadleaf Forests	Kayah-Karen/Tenasserim moist forests	Photograph	2012	Bruce Kekule
Non-melanistic 501	delacouri	Kanchanaburi, Thailand	14,0507	99,5436	Tropical and Subtropical Moist Broadleaf Forests	Kayah-Karen/Tenasserim moist forests	Photograph	no data	Allwen Jesudasan
Non-melanistic 502	delacouri	Malay Peninsula, Thailand	13,1955	99,2677	Tropical and Subtropical Moist Broadleaf Forests	Kayah-Karen/Tenasserim moist forests	Photograph	2009	Kae Kawanishi
Non-melanistic 503	delacouri	Malay Peninsula, Thailand	12,9322	99,3147	Tropical and Subtropical Moist Broadleaf Forests	Kayah-Karen/Tenasserim moist forests	Photograph	2009	Kae Kawanishi
Non-melanistic 504	saxicolor	Sukavuşumu, Yusufeli County, Turkey	41,3611	42,1203	Temperate Broadleaf and Mixed Forests	Caucasus mixed forests	Photograph	1999	Igor Khorozian
Non-melanistic 505	pardus	Masindi, Uganda	1,7148	31,6919	Tropical and Subtropical Grasslands, Savannas and Shrublands	Victoria Basin forest-savanna mosaic	Photograph	1920	National Museum of Natural History USA
Non-melanistic 506	pardus	Murchison Falls National Park, Uganda	2,1606	31,5837	Tropical and Subtropical Grasslands, Savannas and Shrublands	Victoria Basin forest-savanna mosaic	Photograph	no data	Smithsonian Institution
Non-melanistic 507	pardus	Queen Elizabeth National Park, Uganda	-0,2880	29,9489	Tropical and Subtropical Grasslands, Savannas and Shrublands	Victoria Basin forest-savanna mosaic	Photograph	no data	Smithsonian Institution
Non-melanistic 508	delacouri	Plateau Du Kontum, Gia Lai-Kon Tum, Vietnam	13,9174	108,1171	Tropical and Subtropical Dry Broadleaf Forests	Indochina dry forests	Photograph	1963	National Museum of Natural History USA
Non-melanistic 509	nimr	Hawf Protected Area, Yemen	16,6663	44,4431	Deserts and Xeric Shrublands	Arabian Highlands woodlands and shrublands	Photograph	no data	David Stanton
Non-melanistic 510	nimr	Hawf Protected Area, Yemen	16,2698	43,2391	Deserts and Xeric Shrublands	Arabian Highlands woodlands and shrublands	Photograph	2011	David Stanton
Non-melanistic 511	nimr	Hawf Protected Area, Yemen	16,7597	44,1937	Deserts and Xeric Shrublands	Arabian Highlands woodlands and shrublands	Photograph	2011	David Stanton
Non-melanistic 512	nimr	Wada'i, Yemen	16,0167	43,8932	Deserts and Xeric Shrublands	Arabian Highlands woodlands and shrublands	Photograph	no data	Jane Budd
Non-melanistic 513	nimr	Wada'i Boundaries, Yemen	15,8774	43,6560	Deserts and Xeric Shrublands	Arabian Highlands woodlands and shrublands	Photograph	2002	Jane Budd
Non-melanistic 514	pardus	Akenge, Congo	-4,8484	21,9107	Tropical and Subtropical Grasslands, Savannas and Shrublands	Southern Congolian forest-savanna mosaic	Photograph	1913	American Museum of Natural History USA
Non-melanistic 515	pardus	Akenge, Congo	-4,6869	21,9299	Tropical and Subtropical Grasslands, Savannas and Shrublands	Southern Congolian forest-savanna mosaic	Photograph	1913	American Museum of Natural History USA
Non-melanistic 516	pardus	Bafuka, Haut, Congo	3,7467	28,6836	Tropical and Subtropical Grasslands, Savannas and Shrublands	Northern Congolian forest-savanna mosaic	Photograph	1911	American Museum of Natural History USA
Non-melanistic 517	pardus	Faradje, Haut, Congo	3,7022	29,7332	Tropical and Subtropical Grasslands, Savannas and Shrublands	Northern Congolian forest-savanna mosaic	Photograph	1911	American Museum of Natural History USA
Non-melanistic 518	pardus	Faradje, Haut, Congo	3,7022	29,7332	Tropical and Subtropical Grasslands, Savannas and Shrublands	Northern Congolian forest-savanna mosaic	Photograph	1911	American Museum of Natural History USA
Non-melanistic 519	pardus	Faradje, Haut, Congo	3,9682	29,6295	Tropical and Subtropical Grasslands, Savannas and Shrublands	Northern Congolian forest-savanna mosaic	Photograph	1911	American Museum of Natural History USA
Non-melanistic 520	pardus	Faradje, Haut, Congo	3,8220	29,5090	Tropical and Subtropical Grasslands, Savannas and Shrublands	Northern Congolian forest-savanna mosaic	Photograph	1911	American Museum of Natural History USA
Non-melanistic 521	pardus	Faradje, Haut, Congo	3,8220	29,5090	Tropical and Subtropical Grasslands, Savannas and Shrublands	Northern Congolian forest-savanna mosaic	Photograph	1911	American Museum of Natural History USA
Non-melanistic 522	pardus	Faradje, Haut, Congo	3,8220	29,5090	Tropical and Subtropical Grasslands, Savannas and Shrublands	Northern Congolian forest-savanna mosaic	Photograph	1911	American Museum of Natural History USA
Non-melanistic 523	paraus	Faradje, Haut, Congo	3,8032	29,9086	Tropical and Subtropical Grasslands, Savannas and Shrublands	Northern Congolian forest-savanna mosaic	Photograph	1911	American Museum of Natural History USA
Non-melanistic 524	paraus	Faradje, Haut, Congo	3,7023	29,9330	Tropical and Subtropical Grasslands, Savannas and Shrublands	Northern Congolian forest-savanna mosaic	Photograph	1911	American Museum of Natural History USA
Non-melanistic 525	paraus	Faradie, Haut, Congo	3,0323	29,0320	Tropical and Subtropical Grasslands, Savannas and Shrublands	Northern Congolian forest-savanna mosaic	Photograph	1911	American Museum of Natural History USA
Non-melanistic 527	pardus	Faradie Haut Congo	3,8000	29,6526	Tropical and Subtropical Grasslands, Savannas and Shrublands	Northern Congolian forest-savanna mosaic	Photograph	1911	American Museum of Natural History USA
Non-melanistic 528	nardus	Faradie Haut Congo	3,6790	29,6251	Tropical and Subtropical Grasslands, Savannas and Shrublands	Northern Congolian forest-savanna mosaic	Photograph	1911	American Museum of Natural History USA
Non-melanistic 529	nardus	Faradie Haut Congo	3,6790	29,6251	Tropical and Subtropical Grasslands, Savannas and Shrublands	Northern Congolian forest-savanna mosaic	Photograph	1911	American Museum of Natural History USA
Non-melanistic 530	nardus	Faradie Haut Congo	3 6271	29,6647	Tropical and Subtropical Grasslands, Savannas and Shrublands	Northern Congolian forest-savanna mosaic	Photograph	1911	American Museum of Natural History USA
Non-melanistic 531	pardus	Faradie, Haut, Congo	3.6271	29,6647	Tropical and Subtropical Grasslands, Savannas and Shrublands	Northern Congolian forest-savanna mosaic	Photograph	1911	American Museum of Natural History USA
Non-melanistic 532	pardus	Faradie, Haut, Congo	3.6271	29.6647	Tropical and Subtropical Grasslands, Savannas and Shrublands	Northern Congolian forest-sayanna mosaic	Photograph	1911	American Museum of Natural History USA
Non-melanistic 533	pardus	Gamangui, Congo	3,6631	27,3678	Tropical and Subtropical Grasslands, Savannas and Shrublands	Northern Congolian forest-savanna mosaic	Photograph	1913	American Museum of Natural History USA
Non-melanistic 534	pardus	Madge, Congo	3,5396	27,0286	Tropical and Subtropical Grasslands, Savannas and Shrublands	Northern Congolian forest-savanna mosaic	Photograph	1914	American Museum of Natural History USA
Non-melanistic 535	pardus	Niapu, Congo	2,4361	26,4438	Tropical and Subtropical Moist Broadleaf Forests	Northeastern Congo Basin moist forests	Photograph	1913	American Museum of Natural History USA
Non-melanistic 536	pardus	Niapu, Congo	2,3027	26,4826	Tropical and Subtropical Moist Broadleaf Forests	Northeastern Congo Basin moist forests	Photograph	1913	American Museum of Natural History USA
Non-melanistic 537	pardus	Niapu, Congo	2,3001	26,2433	Tropical and Subtropical Moist Broadleaf Forests	Northeastern Congo Basin moist forests	Photograph	1913	American Museum of Natural History USA
Non-melanistic 538	pardus	Niapu, Congo	2,4914	26,3490	Tropical and Subtropical Moist Broadleaf Forests	Northeastern Congo Basin moist forests	Photograph	1913	American Museum of Natural History USA
Non-melanistic 539	pardus	Poko, Garamba, Congo	3,1303	26,9121	Tropical and Subtropical Grasslands, Savannas and Shrublands	Northern Congolian forest-savanna mosaic	Photograph	1913	American Museum of Natural History USA
Non-melanistic 540	pardus	Vankerckhovenville, Haut, Congo	3,0746	30,3358	Tropical and Subtropical Grasslands, Savannas and Shrublands	Northern Congolian forest-savanna mosaic	Photograph	1911	American Museum of Natural History USA
Non-melanistic 541	pardus	Chobe National Park, Zambia	-17,6599	25,2459	Tropical and Subtropical Grasslands, Savannas and Shrublands	Southern Miombo woodlands	Photograph	no data	Andrew Stein
Non-melanistic 542	pardus	Luangwa, Zambia	-15,6191	30,2616	Tropical and Subtropical Grasslands, Savannas and Shrublands	Zambezian and Mopane woodlands	Photograph	no data	Andrew Stein

Id	Subspecies	Location	Deg WGS84		Biana	Feenerien	Sample Veer	
			Latitude	Longitude	Diointe	Ecorregion	Sample Tear	Sour ce
Non-melanistic 543	pardus	Luangwa, Zambia	-15,5797	30,3073	Tropical and Subtropical Grasslands, Savannas and Shrublands	Zambezian and Mopane woodlands	Photograph no data	Andrew Stein
Non-melanistic 544	pardus	Luangwa, Zambia	-15,4602	30,2923	Tropical and Subtropical Grasslands, Savannas and Shrublands	Zambezian and Mopane woodlands	Photograph no data	Andrew Stein
Non-melanistic 545	pardus	Luangwa, Zambia	-15,4425	30,1700	Tropical and Subtropical Grasslands, Savannas and Shrublands	Zambezian and Mopane woodlands	Photograph no data	Andrew Stein
Non-melanistic 546	pardus	South Luangwa National Park, Zambia	-12,5524	31,7476	Tropical and Subtropical Grasslands, Savannas and Shrublands	Zambezian and Mopane woodlands	Photograph no data	Bushcamp Project
Non-melanistic 547	pardus	South Luangwa National Park, Zambia	-12,6344	31,7317	Tropical and Subtropical Grasslands, Savannas and Shrublands	Zambezian and Mopane woodlands	Photograph no data	Andrew Stein
Non-melanistic 548	pardus	Mashonaland, Zimbabwe	-16,5912	31,0548	Tropical and Subtropical Grasslands, Savannas and Shrublands	Southern Miombo woodlands	Photograph 1892	National Museum of Natural History USA
Non-melanistic 549	pardus	Ruaha National Park, Tanzania	-7,5826	34,3244	Tropical and Subtropical Grasslands, Savannas and Shrublands	Central Zambezian Miombo woodlands	Photograph 2012	WildCru
Non-melanistic 550	pardus	Welgevonden Game Reserve, South Africa	-24,3418	28,0210	Tropical and Subtropical Grasslands, Savannas and Shrublands	Southern Africa bushveld	Photograph 2011	Panthera
Non-melanistic 551	pardus	Welgevonden Game Reserve, South Africa	-24,3418	28,0210	Tropical and Subtropical Grasslands, Savannas and Shrublands	Southern Africa bushveld	Photograph 2011	Panthera
Non-melanistic 552	orientalis	Wangqing, China	43,0140	130,3603	Temperate Broadleaf and Mixed Forests	Manchurian mixed forests	Photograph 2010	World Wild Fund