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VIRTUALIZAÇÃO EM SISTEMAS EMBARCADOS
MULTIPROCESSADOS

RESUMO

Virtualização surgiu como novidade em sistemas embarcados tanto no meio acadêmico
quanto para o desenvolvimento na indústria. Entre suas principais vantagens, pode-se destacar
aumento: (i) na qualidade de projeto de software; (ii) nos níveis de segurança do sistema; (iii) nos
índices de reuso de software, e; (iv) na utilização de hardware. No entanto, ainda existem problemas
que diminuíram o entusiasmo com relação ao seu uso, já que existe um overhead implícito que pode
impossibilitar seu uso. Assim, este trabalho discute as questões relacionadas ao uso de virtualização
em sistemas embarcados e apresenta estudos voltados para que arquiteturas MIPS multiprocessadas
tenham suporte à virtualização.

Palavras-Chave: máquinas virtuais, hypervisores, virtualização, MPSoC.





ON THE VIRTUALIZATION OF MULTIPROCESSED EMBEDDED
SYSTEMS

ABSTRACT

Virtualization has become a hot topic in embedded systems for both academia and in-
dustry development. Among its main advantages, we can highlight (i) software design quality; (ii)
security levels of the system; (iii) software reuse, and; (iv) hardware utilization. However, it still
presents constraints that have lessened the excitement towards itself, since the greater concerns are
its implicit overhead and whether it is worthy or not. Thus, we discuss matters related to virtual-
ization in embedded systems and study alternatives to multiprocessed MIPS architecture to support
virtualization.

Keywords: Virtual machines, hypervisors, virtualization, MPSoC.
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1. INTRODUCTION

Multi-purpose Embedded Systems (ES) are now considered as a solid reality in everyday’s
lives since each more new and exciting features and devices are available to customers. However, such
a wide range of applications impacts directly on their design, constraints and goals. Also, embedded
systems are increasingly counting on typical general-purpose computers’ characteristics, such as the
possibility for the final user to develop and download new applications onto the device throughout
its lifetime [ZM00]. Within this context, embedded software itself has become a subjacent layer in
the design flow unlike older approaches where hardware itself, or custom firmware used to be more
prominent.

Despite this shift in perception, some traditional differences between general-purpose and
embedded systems still remain [LP05]. Usually timing constraints are present along with a lim-
ited energy consumption budget and limitations regarding memory size. Still, the wide variety of
predominant architectures present in ESs also contributes to increasing the difficulty in their design.

A relevant characteristic of embedded systems is the broad use of multiprocessed solutions,
notably in the last decade [JTW05]. Combined with the aforementioned particularities, the use of
multicore hardware requires a true change in the way embedded developers design their systems.

Therefore, virtualization, rather a successful technique exclusively applied on general-
purpose computers, arises as a possible solution to many of these problems, as it can increase
ESs’ performance, software design quality and security levels while reducing their manufacturing
costs [Hei11]. However, due to the typical embedded constraints mentioned earlier, a lot of effort
has been spent in order to demonstrate that virtualization can indeed improve the overall system
quality at a reasonable cost [IO07], [BDB+08], [SCH+09], [CR10], [AFNK11].

Among all these efforts to apply virtualization on embedded systems, the main problems
concern some of these systems’ characteristics and the functionalities required by a virtualized
platform, which can be conflicting most of the time. For example, Heiser [Hei08] highlights the
need to run unmodified guest OS and applications besides providing strong spatial isolation to
improve security. In [AG09], the need for low overhead components are said to be fundamental.
The main problem, however, is that it is very difficult to target all such constraints at once.

Another challenge is that these conflicting needs have a strong relationship with the hyper-
visor’s implementation as it depends completely on the underlying hardware. Thus, the architecture
itself (and the characteristics of its Instruction-Set Architecture - ISA) can make the use of embedded
virtualization feasible.
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1.1 Motivational Examples for Embedded Virtualization

The first case for virtualization on embedded systems consists of allowing several operating
systems to be executed concurrently. Here, the use of different operating systems can be specially
classified in two different scenarios:

1. when legacy software must co-exist with current and incompatible applications; and

2. when it is desired to separate real-time software from user interface applications, by using
either different or separated Operating Systems (OSs).

In this first case, software development quality can be increased, since the designer can
choose, among several OSs, the one most suitable for the application or even the one with the best
cost/performance ratio. Moreover, the time required to develop an application can be reduced, since
in the case it is offered the support to a given OS, any former application can be reused without the
onus of rewriting it [Sub09]. Figure 1.1 shows the basic use of virtualization, with the consolidation
of several OSs in the same hardware platform.

Figure 1.1 – Consolidation of several OSs using virtualization

Furthermore, this approach offers advantages in achieving a unified software architecture
that can be executed on multiple hardware platforms. In this case, a current issue in embedded
systems - software portability - could be widely affected and developers would be able to satisfy the
increasingly restricted time-to-market. The combination of real-time, legacy and general-purpose
operating systems in the same device can be easily achieved with virtualization, as Figure 1.2 shows.

Besides, security is another important issue to be managed by virtualization, since it
provides an environment that protects and encapsulates embedded operating systems and other
software components. Initially, the idea of using an application-specific operating system apart from
the Real-Time OS (RTOS) is encouraged as user attacks would only be able to cause damages at
the user OS, thus keeping the RTOS and specific system components safe.
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Figure 1.2 – Legacy software coexist with newer applications

This approach is depicted in Figure 1.3, where the scenario containing separate OSs and
an ongoing user attack is shown. Nevertheless, in order to actually guarantee that virtualization
will improve security, the underlying virtualization layer has to be significantly more secure than the
guest OS.

Figure 1.3 – User attack blocked by virtualization’s inherent isolation

In multi-core architectures, there are different ways of utilizing the many system pro-
cessors. A very common arrangement consists of running a single OS onto the processors, thus
creating a symmetric multiprocessing (SMP) configuration. This approach brings the main advan-
tage of making load balancing across the processors straightforward. When virtualization is adopted
in multiprocessed architectures, there is the possibility of reducing the total number of physical
processors. Figure 1.4 illustrates a configuration in which this is possible.

However, using different and multiple OSs in the same MPSoC can be an attractive option.
Virtualization allows different virtual machines to provide services independently, which is a safer
approach. A single software in control represents a single failure point and whenever the system
crashes all the cores must be restarted. Although the hypervisor may represent a single point of
failure it can be a safer approach provided it is implemented carefully.

In this case, an asymmetric multiprocessing (AMP) configuration is used, where each
processor has its own separate OS, responsible for scheduling its own tasks. AMP is a configuration
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Figure 1.4 – Different processor configurations: a) single physical core; b) multicore

that takes advantages of virtualization since it provides the arbitration of resources’ usage between
the virtual machines, avoiding the user OS to cause unexpected behavior on the RTOS [Her09]. If
no virtualization is used, the only way to achieve such separation is by doing it manually, which is
complex and more suitable to errors. Still, the virtualization layer can be responsible for mapping
every virtual machine on each core of the multi-core processor or even map a single OS onto multiple
cores, creating an SMP subset of cores [SLB07].

Thus, the reliability of AMP systems can be increased by guaranteeing resources (mem-
ory, devices) separation and the ability to, independently, restart virtual machines, as depicted in
Figure 1.5. It is important to notice that this can also be used when an AMP subset of processors
is present in the MPSoC.

Figure 1.5 – Improved reliability for AMP architectures

When working with SMP configurations, where several equal OSs are executing in different
virtual machines, workload balancing can be improved, by migrating application between machines.
It is then possible to exchange functionality between virtual machines, providing the opportunity
for reuse and innovation. This is showed in Figure 1.6. The advantages of migration in embedded
systems has been widely proved throughout the years [SP09], [BABP06], [NAMV05].
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Figure 1.6 – Migration between virtual machines using the same OS on the same ISA

All these scenarios are suitable enough to be used in non-critical embedded systems, as
multimedia mobile devices [ABK09], [YKY10]. Specially, as consumer demands continues to grow,
stricter time-to-market tends to be more present and virtualization can enable their achievement.

Despite of typically being a very resource consuming technique, virtualization has been
considered for some researchers to be used in critical embedded systems, such as in avionics [KW08].
Usually, security sensitive or mission critical systems need a protected environment [For10]. Then,
these sensitive parts have their own OS and the virtualization layer separates them from non-trusted
OSs and applications.

The separation provided by virtualization allows other scenarios. For example, when some
parts of the system are required to boot up faster than others. For instance, a car or a camera must
have some of their functions available at a really fast pace (tens of milliseconds after power on). A
general-purpose OS will take much longer, therefore, virtualization can separate the functions to be
run in exclusive virtual machines, boosting their boot time.

Separation also allows license protection to be achieved because proprietary application can
be completely isolated from GPL OS. Intellectual Property (IP) protection can rely on virtualization’s
inherit separation, since private modules are safe from user’s inappropriate handling. Firmware over
the air (FOTA) upgrades could also be easier to be made with virtualization besides allowing that
only a given part of the system reboots after the upgrade. Easier migration would allow extensive use
cases for pervasive computers, as virtual machines could migrate among different devices, leading
to a whole new level of remote device usage [Rud09].
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1.2 Research goal and questions

Research goal: The goal of this research consists in studying the virtualization technique
to the point of proposing a suitable way for it to be adopted in multiprocessed embedded systems.

For this research goal to be achieved, two main research questions had to be made along
the way.

1. What is the impact of the architecture diversity typically found in ESs in employing the
virtualization technique?

2. Considering the existing virtualization implementation approaches in general-purpose comput-
ers, which one is more suitable for a given embedded environment?

Research question 1: There are some characteristics desirable in an ISA that ease the
implementation of virtualization in it. Classic studies of Popek and Goldberg [PG74] introduce a
classification of the instructions of an ISA (Instruction Set Architecture) into three different groups,
in order to derive the virtualization requirements:

1. Privileged instructions: those that trap when used in user mode and do not trap if used in
kernel mode1;

2. Control sensitive instructions : those that attempt to change the configuration of resources in
the system, and;

3. Behavior sensitive instructions: those whose behavior or result depends on the configuration
of resources

Those works first stated that, in order to virtualize a given machine, sensitive (control and behavior)
instructions must be a subset of privileged instructions.However, even if that is not the case of
a given ISA, virtualization can still be achieved. For instance, the Intel’s x86 family counts on
hardware support to overcome the fact that not all of its sensitive instructions are a subset of
privileged instructions.

In embedded systems, since there is more than one predominant architecture, each case
should be analyzed individually. In this research we chose to study virtualization impacts on a MIPS-
based platform, since this architecture is widely adopted, being present in video-games, e-readers,
routers, DVD recorders, set-top boxes, etc. Moreover, this research is placed in the context of
the Embedded Systems Group (in Portuguese, Grupo de Sistemas Embarcados) at PUCRS, and
there were previous researches that employed the same architecture, thus reusing and expanding the
group’s knowledge in this matter. Still, MIPS is compliant with Popek and Goldberg virtualization
requirements, easing its implementation.

1User and Kernel mode are operation modes provided by the architecture that allows safer execution of applications
dividing what is privileged and what is not.
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Unfortunately, the diversity of architectures used in embedded systems impacts on the fact
that it is not possible to use a common virtualization solution to all of them. Since virtualization is
also about improving the utilization of the underlying hardware, each platform should be carefully
studied so a suitable proposal can be issued.

Research question 2: Mainly, the virtualization layer is responsible for providing several
virtual machines and enabling them to execute their OSs individually, without one interfering in
another. There are several ways of doing so, and the main techniques are:

• Trap and emulate, where each privileged instruction that is executed by the virtual machine
is emulated by the virtualization layer, with large performance penalties;

• Paravirtualization, where each privileged instruction that would be executed by the virtual
machine’s OS is replaced by a proper and acknowledged system call, provided by the virtual-
ization layer, so that no emulation is required. This approach requires access to the virtual
machine OS source code and some extensive changes might be necessary;

• Hardware support, where the processor is aware that virtualization is a possibility and some
level of support is added. In this case, the processor needs to offer support and virtual machine
OSs can run without source code modification as long as they are ported to that architecture.

In many cases, paravirtualization offers the possibility of reducing virtualization overheads
at the cost of needing to change the OS source code. However, we always believed this was
not the best solution for embedded systems, since software complexity has already been increased
due to the numerous features desired each more by users. So, using virtualization - which can
improve design quality - at the cost of complex and numerous OS change is conflicting. Still, once
the market started to see the virtualization potential, it was only a matter of time before leading
market architectures such as ARM and PowerPC provided their own virtualization support. Finally,
considering the timeframe in which this research has been developed, we propose some hardware
modification so that a given MIPS platform counts on native virtualization support.

1.3 Contributions and original aspects

Historically, embedded systems have been inspired by many techniques previously deployed
in general-purpose computers that presented specific challenges when thought for embedded environ-
ments. Virtualization fits in that category. However, its implicit processing overhead and expressive
need for memory can be considered the main challenges when bringing it to embedded platforms.

By answering the proposed research questions, this research contributes by investigating
suitable ways of using virtualization in multiprocessed embedded systems providing an architecture
that offers hardware support. Still, a virtualization model was conceived to offer different mapping
strategies, that can be extended in the future. Some initial investigation regarding real-time achieve-
ment in virtualized multiprocessed embedded environments was also performed. And last, but not
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least, from that model two different implementations were made in MPSoCs, as a proof-of-concept.
Our implementation modified MIPS-based processors and it is important to highlight that, by the
time this dissertation was developed, there was no official MIPS support to virtualization, so that the
modifications suggested in the architecture - aiming multiprocessed platform - are the main original
aspects of the research.

1.4 Structure of this Dissertation

The remainder of this dissertation is organized as follows.
Chapter 2 - Background Concepts . This chapter presents background concepts especially

focused on virtualization terms and known strategies that serve as basis to the entire research. This
chapter is important considering this research context as it is placed in the embedded systems’ field
and virtualization concepts are not so widely known among researchers.

Chapter 3 - Literature Review. This chapter presents literature on embedded virtualization,
showing that many researches prefer the use of paravirtualization. Also, since virtualization is also
used by non-academic entities, commercial solutions are presented.

Chapter 4 - Virtualization Model Attemps. This chapter presents three different attempts
to virtualization model in MPSoCs. First attempt considers using paravirtualization techniques while
the following attempts propose hardware modification to MIPS-based processors.

Chapter 5 - This chapter presents the research validation process adopted throughout the
research, discusses the contributions of this research, and disclose the threats to the validity of the
contributions. The chapter concludes this dissertation with suggestions for future work.
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2. BACKGROUND CONCEPTS

2.1 Embedded Systems

This section presents basic concepts regarding current embedded systems. The reader who
is familiar with those concepts may skip to the next section.

A very common definition for embedded systems regards its strictness to a given applica-
tion. Opposed to general-purpose systems, embedded systems used to be relatively simple devices,
with limited and fixed number of software tasks. Embedded systems are present in a very wide range
of applications, from consumer electronics to industrial automation among many others [Noe05], as
shown in Table 2.1.

Table 2.1 – Embedded applications’ examples
Source: Adapted from [Noe05]

Field Embedded device

Consumer electronics
Digital and analog TV

Games toys
Home appliances

Internet appliances

Medical
Dialysis machines
Infusion pumps

Cardiac monitors
Prosthetics

Industrial Automation and Control
Smart sensors, motion controllers
Man/machine interface devices

Industrial switches

Networking and communications
Cell phones

Pagers
Video phones

ATM Machines

Automotive

Entertainment centers
Engine controls

Security
Antilock break control

Instrumentation

Aerospace and Defense
Flight management

Smart weaponry
Jet engine control

Commercial Office/Home Office Automation
Printers
Scanners
Monitors

Fax machines
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Such a wide range of applications and devices, and their increasing amount of features has
severely impacted on their design throughout the years. Embedded systems used to be relatively
simple devices with severe hardware constraints, like memory use, processing power and battery life.
Mostly, their functionality was determined by hardware modules with few software usage. In this
case, software layers consisted, basically, of device drivers, task scheduler and some control logic,
resulting in software with low complexity. Besides, these systems used to be closed, which means
that during their lifetime no change in the software was required [HNN05]. This scenario, however,
has already changed. It is very common that general-purpose applications are desired to be executed
on embedded systems. Also, applications written by developers that have little or no knowledge at
all about embedded systems constraints can also be employed [ZM00].

Nevertheless, we notice a rupture in a classical model of embedded systems’ design [Noe05],
as presented in Figure 2.1. Here, software and application layers are considered to be optional while
current trends present the complete opposite. Each more, designers tend to implement system tasks
in software and applications layers, since it allows higher flexibility, easier debug and higher reuse
rates.

Figure 2.1 – Former Typical Embedded System Model
Source: Adapted from [Noe05]

Still, some of the traditional differences between general-purpose computers and embedded
systems remain [LP05]. For example, even on high-end multimedia entertainment-driven embedded
systems, some real-time constraints are present and the energy consumption is often a matter of
concern. Since these devices are supposed to operate through several hours (up to days) without
any battery recharge the processor frequency choice is impacted and usually lower frequency rates1

are compatible with the energy consumption goals.
Another common restriction is memory usage. Modern embedded devices are designed to

be cost effective and excessive memory opposes to that. Memories are a high energy consuming
resource, and frequently represent a cost factor issue [HPHS04].

Embedded systems present a varied set o constraints that directly impact on their designs.
While some ESs are more concerned in area and energy consumption reduction, such as cell phones,

1Valid when compared to higher processor frequencies used in no-battery dependent devices, such as desktop
computers.
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others need the most predictable and deterministic behavior in spite of pure performance levels, such
as some avionic systems. Such constraints impact on the processor choice so that there are several
predominant architectures in ESs, such as ARM, MIPS, PowerPC and even some Intel Atom versions.
On the other hand, general-purpose systems are mainly implemented onto the x86 architecture.

Finally, embedded systems are becoming more and more part of everyday life, being in-
creasingly used in mission and life-critical scenarios as well as entertainment gadgets [Wol03]. Such
a wide range of applications enables new techniques to be deployed and virtualization can bring
many advantages in this scenario.

2.2 Classical virtualization

This section presents classical virtualization concepts and the reader who is familiar with
those concepts may skip to the next section.

Computer virtualization is an old technique invented by IBM in the early 1960’s aiming
to improve hardware utilization. Also, software compatibility was another requirement as software
needed to be compiled to each specific hardware and could not be reused among other systems. They
caused a revolution in terms of commercial success - the hardware could evolve and the software
could remain the same.

In the early times mainframes were a common technology and IBM’s virtualization was
responsible for partitioning a single hardware into several virtual platforms. Each virtual platform
was able to execute its own applications, including older versions of OSs. After a while, mainframes
started being replaced by workstations and the need for this type of virtualization ended naturally
throughout the years.

Later, in 1999 VMware released the VMware Workstation, a product tailored to the x86
architecture that allowed the user to run multiple operating systems on a single desktop computer.
By that time, it already was well established that the x86 architecture was the leader in terms of
standards and also, the architecture itself was mature enough to hold the overhead of a virtualized
system.

Still, enterprise market took a lot of advantage in using virtualization techniques, since the
same workload could be consolidated on fewer physical machines, which represented a huge cost
reduction factor. Security is also improved, since a failure within a given virtual machine does not
spread throughout the system [Hei08].

Nevertheless, although it causes a single hardware point of failure, virtualization still is
considered a safer approach when comparing to non-virtualized systems. Usually, service interrupts
are not caused by hardware failures. Instead, the main problem usually is the use of non-reliable
software. In that case, failures can be often related to the software size, for example, operating
systems, which are usually big, tend to have many flaws. Therefore, if the virtualization layer is
small (when comparing to a classical OS) virtualization can be considered a safer approach.
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2.2.1 Virtualization layer - the hypervisor

In virtualization, the leading role is played by a software known as the hypervisor, Virtual
Machine Monitor - VMM, or Virtualization Layer. The hypervisor allows the creation and main-
tenance of multiple virtual machines, being responsible for their isolation by providing an abstract
hardware layer. One of the most important roles played by the hypervisor is to arbitrate the access
to the underlying hardware, so that guest OSs (OSs executing on each virtual machine) can share
the physical resources. It is possible to say that the hypervisor manages virtual machines, composed
by their OS and applications, in a similar way that a native OS manages its processes and threads.
Figure 2.2 shows a generic idea of hypervisor, since it controls the hardware and provides the desired
abstraction to the virtual machines.

Figure 2.2 – Generic Hypervisor Model

Since this similarity exists, it is not surprising that details regarding the implementation of
a hypervisor are also present in modern operating systems’ implementation. Therefore, in order to
understand how a hypervisor works, some OSs concepts are important, such as the privilege scheme.
Most modern operating systems work within two modes:

1. kernel or supervisor mode, in which almost any CPU instructions are allowed to be executed,
including privileged instructions - those that deal with interrupts, memory management, among
others. Operating systems are executed in kernel mode, and;

2. user mode, that basically allows the execution of instructions needed to calculate and process
data. User applications run in this mode, and can only access the hardware by asking the
kernel through system calls.

Originally, the user/kernel mode scheme was adopted due to RAM’s division into pages.
Before executing a given privileged instruction, the CPU must check a right 2-bit code associated
with that instruction. Privileged instructions require a 00 code whereas the least privilege is conceded
with a 11 code2.

2as a 4-bit code, four levels of privilege are allowed, with 00 being the highest and 11 the lowest
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This scheme is often referred to as protection rings where rings are arranged in a hierarchy
from the most to the least privileged. Therefore, in most operating systems, Ring 0 (00 2-bit code)
is the most privileged level and is able to interact directly with the physical hardware. Figure 2.3
depicts a common representation of the privilege rings scheme.

Figure 2.3 – Typical Privilege Rings of Modern CPUs

In a virtualized architecture, the hypervisor is the only software executed in the Ring 0
privilege level. This has a severe consequence for guest OSs: they no longer run in Ring 0, instead,
they run in Ring 1, with fewer privileges. This is known as ring de-privileging and allows the
hypervisor to control guest OS accesses to resources, avoiding, for instance, one guest OS either to
interfere in a neighbor’s memory or to control hardware resources improperly. Ring de-privileging
technique is exposed in Figure 2.4.

Figure 2.4 – Ring de-privileging caused by the hypervisor

Hypervisor Typology. According to [Ros04], there are two main approaches to implement
the virtualization technique, by using either hypervisor of type 1 (depicted in Figure 2.5) or type 2
(depicted in Figure 2.6).

In hypervisor type 1, also known as hardware-level virtualization, the hypervisor itself can
be considered as an operating system, since it is the only piece of software that works in kernel
mode, like depicted in Figure 2.5. Its main task is to manage multiple copies of the real hardware
just like an OS manages multitasking.
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Figure 2.5 – Hypervisor Type 1

In type 2 hypervisors, also known as operating system-level virtualization, depicted in
Figure 2.6, the hypervisor itself can be compared to another user application that simply “interprets”
the guest machine’s instructions.

Figure 2.6 – Hypervisor Type 2

Requirements. The most common requirements and the goals to be achieved by a hyper-
visor are [Ros04]:

• compatibility, since the hypervisor needs to provide the execution of legacy software;

• performance, a measure of the virtualization overhead, where the ideal is to run the virtual
machine at the same speed as the software would run on the real machine; and

• simplicity, since a hypervisor failure leads every virtual machine running on the computer to
fail. Also, to provide secure isolation among virtual machines requires a free of bugs’ hypervisor
so that attackers could not use it against the system.
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Virtualization Challenges

In its first years, virtualization provided by IBM implemented a hypervisor that allowed
virtual machines to be executed, as expected. The main problem, is that it was an extremely robust
approach in which every privileged instruction executed by a virtual machine caused a trap, since
it was running in a less privileged ring. Virtualization must be as transparent as possible and the
hypervisor is responsible for it.

One of the main problems faced by designers when virtualization started being noticed
again, back in the 1990’s, was that CPU architectures, like the popular x86, were not designed to be
virtualizable. Certain instructions, when executed in unprivileged mode, are simply ignored instead
of causing the CPU to trap. For instance, instructions like the POPF that disables and enables
interrupts represent trouble for the hypervisor.

Binary Translation. When VMWare launched VMWare Workstation back in 1999, these
aforementioned issues of the x86 architecture hadn’t been solved yet. So, VMWare used a technique
known as binary translation, used also in Intel Itanium processor. Nevertheless, VMWare version
was a lot lighter than Itanium’s, which had to translate from x86 Instruction Set Architecture to
IA64 ISA while VMWare’s binary translation was based on an x86 to x86 translator, which, in many
cases, just had to copy the exact same instruction.

At run time, VMware translated the binary code coming from a guest OS and stored the
adapted code in a memory structure known as Translator Cache (TC). It is important to highlight
that user applications running on the top of guest OSs were not translated, since they continued
to be executed in a non-privileged ring (as they would, if run natively). This scheme is depicted by
Figure 2.7.

Figure 2.7 – Binary Translation for OS - Direct Execution for Applications

Analyzing this scheme, it is possible to see that the kernel code is the one that needs to
be translated. This leads to the conclusion that the guest OS kernel is no longer executed - it is
merely an input for the binary translator, as we can see in Figure 2.8.

The translation, in most cases, only copies the original code. Otherwise, when privileged
instructions are desired or when hardware manipulation is required, the translator has to change the
original code to either safer non-privileged instructions or to instructions with code reference to the
virtual hardware. These manipulations can cause the translated code to be considerably larger than
the original one.
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Figure 2.8 – Guest OS Kernel Code is an input to the Binary Translator

When compared to full virtualization, which causes traps at each privileged instruction,
provided by IBM, the technique of replacing code with safer instructions presents higher performance.
Although, in some cases, the overhead found for this virtualization approach is not negligible. This
occurs in some special cases:

• system calls;

• I/O access, interrupts and DMA;

• memory management; and

• unusual code situations, such as self-modifying and indirect control flows, among others3.

System calls. System calls are performed by user applications whenever they need to
request the use of a privileged instruction. To perform system calls, x86 provides two simple instruc-
tions: SYSENTER (or SYSCALL) and SYSEXIT, that are responsible for beginning and finishing a
system call, respectively.

Otherwise, additional work is needed to use virtualization due to the way virtualization
(especially by binary translation) deals with privileged instructions: it replaces them with a slightly
less privileged instruction that performs the same task. When using system calls, the main problem is
that when SYSENTER is executed, it is sent to a privilege page in memory, where the OS is supposed
to be. Instead, it finds the hypervisor which must emulate every system call, by translating its code
and then coming back to the translated kernel code. It is quite clear that this is responsible for a
big overhead, measured in VMWare [WCC+08], resulting that:

• a native system call takes, in average, 242 cycles, while

• the binary translated system call with a 32-bit guest OS takes, in average, 2308 cycles.
3This situation will not be considered for our analysis, since even in native OS, non-virtualized systems, it causes

trouble for the operating system.
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Memory Management. Another big challenge when implementing virtual machines is how
the hypervisor interacts with the memory. Regular OSs maintain page tables that help during
the translation of virtual memory pages into physical memory addresses. Since this is a much
disseminated concept, modern x86 CPUs already provide support for this memory scheme directly
in hardware. Thus, the translation itself is performed by the Memory Management Unit - MMU.
For instance, in the x86 architecture, the current address is kept in the CR3 register, also known as
the hardware page table pointer, whereas the most used information are cached in the TLBs.

In virtualization, this has to be thought differently, since the guest OS cannot access the
real page tables. Instead, it sees page tables executed on an emulated version of the MMU. This
scheme gives the guest OS the illusion that it can translate the addresses itself, but truly, what
happens is that the hypervisor is the only one to be dealing with it. Therefore, the real page tables
are hidden from the guest OS and managed by the hypervisor, still being run on the real MMU in
an approach named as shadow page tables.

Moreover, to maintain this approach, each time that the guest OS modifies its own page
mapping, the virtual MMU module will trap the modification in order to adjust its shadow page
table. Unfortunately, it causes a severe overhead: depending on the changes in the page table, the
overhead takes from 3 to 400 times more cycles that a native execution [AA06]. Thus, memory
intensive applications may suffer from a very big overhead due to memory management depending
on how it is implemented.

Paravirtualization. When using virtualization at hardware level (type 1 hypervisor of 2.5)
without hardware support, the hypervisor is in charge of translating instructions whenever the virtual
machine tries to execute a privileged instruction (I/O request, memory write etc), which causes a
trap into the hypervisor. This is known as pure virtualization and is often a very expensive way of
dealing with virtual machines [Wal02].

Therefore, another option when dealing with hardware level virtualization is named as
paravirtualization and it can be used to replace sensitive instructions of the original code by explicit
hypervisor calls (known as hypercalls). In reality, the guest OS is acting like a normal user application
running on a regular OS, with the difference that the guest OS is running on the hypervisor. When
paravirtualization is adopted, the hypervisor must define an interface composed by system calls to be
used by the guest OS. Still, it is possible to remove all sensitive instructions of the guest OS, forcing
it to use only hypercalls. Besides working on hardware that is unsuitable for pure virtualization, it
can also bring performance boost.

In that sense, paravirtualization is not so much different from binary translation. While
binary translation changes privileged code instructions into “harmless” code at run time, paravir-
tualization does the same, but in the source code. Both approaches present pros and cons. For
instance, changes made still in the source code are more flexible than those done on the fly, which
must happen quickly. Paravirtualization eliminates many unnecessary traps to the hypervisor when
compared to binary translation. On the other hand, it requires full access to the source code, which
can be faced as a huge disadvantage in some cases.
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In paravirtualization, the hypervisor provides hypercall interfaces for critical kernel op-
erations such as memory management and interrupt handling. Although they exist for various
operations, they will only be accessed when needed. Thus, the same way that VMware became
known when adopting binary translation, Xen’s paravirtualization solution was widely adopted.

One of the best features of the Xen implementation of virtualization is in the way I/O is
handled: Xen proposes a concept of a privileged virtual machine responsible for dealing with those
operations, named as Domain 0. This virtual machine links the simplified interfaces that appear
to the VMs as the real native drivers, by requiring no emulation whatsoever. The concept proved
out to be so good that even VMWare adopted it in newer versions of ESX server, by implementing
paravirtualized network drivers. Figure 2.9 depicts Xen’s scheme of paravirtualization.

Figure 2.9 – Xen’s paravirtualization approach

For comparison purposes, the difference between pure virtualization and paravirtualization
is depicted in Figure 2.10. In part A of the figure, pure virtualization is shown. In this case, whenever
the guest OS calls a sensitive instruction, a trap is caused to the hypervisor, which emulates the
instruction behavior and returns the proper results. In part B, paravirtualization is showed. The
guest OS has been modified in order to make hypercalls instead of containing sensitive instructions.
In this case, the trap is similar to the one that occurs in non-virtualized systems, whenever a user
application makes an OS system call.

Hardware Accelerated Virtualization. Since virtualization reached really noticeable use
within the last years, challenges to achieve a better performance started to be a constant claim by
the enterprise market, since software techniques were not good enough. Then, processor companies,
like AMD and Intel, took advantage and increased their market share by releasing hardware support
for virtualization.

Besides making existing execution modes virtualizable, basically, what Intel and AMD
technologies did was to add a new execution mode to their processors, allowing the hypervisor to
safely and transparently use direct execution when running virtual machines. This new execution
mode increases the performance since the amount of traps needed to implement virtual machines is
drastically reduced.
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Figure 2.10 – Hypervisor control of pure virtualization (part A) and paravirtualization (part B)

However, the first generation of hardware virtualization support did not reduce all overheads
to minimum levels, as it would be expected. This occurred, especially because this first release was
not an improvement of neither binary translation nor paravirtualization. Instead, the first idea was
to eliminate the original reasons that did not allow x86 based machines to be virtualized. Here,
we can highlight the need to allow every privileged instruction to cause a trap, when executed in a
different privilege level. Still, a new execution mode was created, forcing hypervisor to be executed
in the -1 level of the privilege ring (root mode).

The biggest advantage is that the guest OS runs at its intended privilege level (ring 0) and
the hypervisor runs at an even higher privileged ring. Therefore, guest system calls do not require
the hypervisor to interfere: as long as they do not involve critical instructions, the guest OS can
provide kernel services to the user applications as easily as if it was a native execution, as depicted
in Figure 2.11.

Figure 2.11 – Hardware support to virtualization

The problem faced by this implementation is that even though it is done in hardware,
each transition from the virtual machine to the hypervisor (namely, VMexit and VMentry) requires
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a fixed number of CPU cycles, which, depending on the internal CPU architecture can take from a
few hundred cycles up to a few thousand cycles.

Thus, when Intel VT-x or AMD SVM (or AMD-V) has to handle with relatively complex
operations such as system calls (which would be heavy anyway), the impact of the VMexit/VMentry
switching can be considered light. On the other hand, if the actual operation to be emulated is
simple, the overhead is significantly heavier.

Hardware support improvement. Managing the virtual memory of different guest OSs by
translating their virtual pages into physical pages can be extremely CPU intensive. Each update of
the guest OS page tables requires some update in the shadow page table. This is rather bad for the
performance of software-based virtualization solutions but it definitively affects the performance of
the earlier hardware virtualization solutions, since it causes a lot of VMexit and VMentry calls.

Then, with the second generation of hardware virtualization technologies, the AMD’s
nested paging and Intel’s extended page tables (EPT), the problem was partially solved by providing
a TLB that keeps track of both the guest OS and the hypervisor memory management. Figure 2.12
depicts how this approach works. The CPU with hardware support stores the virtual -to-physical
memory mapping of the guest OS and also the physical memory to real physical memory transition
of the guest OS. To do that, the TLB has a new specific tag for each virtual machine, called the
Address Space IDentifier (ASID). It allows the TLB to know which TLB entry belongs to which
virtual machine. Thus, the virtual machine does not flush the TLB: the entries of different virtual
machines coexist in the TLB.

Figure 2.12 – TLB approach with Nested/Extended Page Tables

This approach makes the hypervisor implementation a lot simpler as it prevents the need
to update the shadow page tables constantly. However, it makes the virtual to real physical address
translation to be a lot more complex if the TLB does not have the right entry. In order to compensate
it, larger TLBs are used since TLB misses become extremely costly.



45

3. LITERATURE REVIEW

Virtualization is a consolidated technique which dates back more than 30 years, being
primarily proposed by IBM. Throughout the years, two main approaches have been adopted to
implement it successfully. In full virtualization an almost complete simulation of the actual hardware
is performed, enabling Guest OSes to run unmodified. In paravirtualization Guest OSes need to be
modified to run avoiding the excessive amount of traps that occur when a Guest OS tries to execute
a privileged instruction (when executing outside of its intended privilege ring).

However, full virtualization per se usually suffers from a large overhead from the emulation
of privileged instructions while paravirtualization demands Guest OSes to be modified, which can
increase both engineering cost and system’s time to market. Hence, a viable solution is the use of
hardware support for virtualization. For example, general-purpose processor vendors such as Intel and
AMD have released, respectively, VT (Virtualization Technology) and SVM (Secure Virtual Machine)
virtualization support for the x86 architecture. Next section presents the main architectures with
hardware support to virtualization in the embedded systems’ context.

3.1 Hardware support in embedded architectures

The embedded market has seen hardware-assisted virtualization being introduced in the last
years. Intel itself has introduced the Intel VT technology also for its embedded processors [Int11]. In
this case, many virtualization tasks are performed in hardware, such as memory address translation,
which reduces the overhead and footprint of virtualization software improving its performance. For
instance, switching between two OSes is significantly faster when memory address translation is
performed in hardware compared to software. Still, it has unified the Intel VT-x along with the
Intel AMT (Active Management Technology) technology that provides remote management and
maintenance capabilities, and Intel TXT (Trusted Execution Technology) that protects embedded
devices and virtual environments against rootkit and other system level attacks, to provide the Intel
vPro support aiming to reduce the total cost of ownership (TCO) of embedded systems.

IntelVT-x provides several hypervisor assistance capabilities, including a true hardware
hypervisor mode, enabling unmodified guest OSs to execute with reduced privileges. For example,
Intel VT-x is able to prevent a guest OS from referencing physical memory beyond what has been
allocated to the guest’s virtual machine. In addition, VT-x enables selective exception injection,
so that hypervisor-defined classes of exceptions can be handled directly by the guest OS without
incurring the overhead of hypervisor software interposing. While VT technology became popular in
the server-class Intel chipsets, the same Intel VT-x technology is available in Intel Atom embedded
mobile processors [Moy13].

ARM has also introduced a virtualization support with an extension for its ARM v7-A
architecture [Arc13], ARM VE. Basically, it consists of introducing a new execution mode for the
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hypervisor with higher priority than the supervisor mode. This enables the hypervisor to execute at
a higher privilege level than the Guest OSes, and the Guest OSes to execute with their traditional
operating system privileges, removing the need to employ paravirtualization techniques. Still, im-
provements of mechanisms to aid interrupt handling are available, with native distinction of interrupt
destined to secure monitor, hypervisors, currently active Guest OSes or non-currently-active Guest
OSes. This dramatically reduces the complexity of handling interrupts using software emulation
techniques and shadow structures inside the hypervisor. Finally, the provision of a System MMU
that aids memory management and supports multiple translation contexts and two levels of address
translation and hardware acceleration and abstraction.

ARM still offers the ARM TrustZone technology. It enables a specialized, hardware-based
form of system virtualization. Basically, it provides two different “zones”: normal and trusted.
Using this technology, a multimedia operating system (like the ones seen by the user in some
smartphones) runs in the normal zone, while security-critial software runs in the secure zone. While
secure zone supervisor mode software is able to access the normal zone’s memory, the reverse is not
possible, as shown in Figure 3.1. Thus, the normal zone acts as a virtual machine under control of
a hypervisor running in the trust zone. However, unlike other hardware virtualization technologies,
such as Intel VT-x, the normal-zone guest OS incurs no execution overhead relative to running
without TrustZone. Thus, TrustZone removes the performance barrier to the adoption of system
virtualization in resource-constrained embedded systems. TrustZone is orthogonal to ARM VE: the
hypervisor mode introduced in VE enabled cores only applies to the normal state of the processor,
leaving the secure state to its two-level supervisor/user mode hierarchy. Thus the hypervisor executes
de-privileged relative to the trust zone security kernel. ARM VE also supports the concept of a single
entity that can control both the trust- and the normal- zone hypervisor mode [Moy13].

Figure 3.1 – ARM TrustZone

Power.org (Power Architecture technology), announced virtualization support in the release
of Power Instruction Set Architecture Version 2.06 [Pow12]. The document provides support for
virtualization and hypervisors including a new guest mode and MMU extensions that enable the
efficient implementation of hypervisors on the embedded Power Architecture platform. It allows
a more efficient implementation of virtualization, partitioning of embedded systems, isolation of
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applications, and resource sharing. Freescale was the first to release platforms using processors that
contain this extension.

Finally, in April of 2013 MIPS announced directions for future generations of processors to
count with hardware support for virtualization. By the time this dissertation was written there were
no commercial processors in the market using the technology. The main points concern offering
another execution mode besides duplicating several structures to decrease virtualization overheads.
It is important to notice that, by the time this research was developed, there was no MIPS hardware
support to virtualization and that any similarity is just a mere coincidence.

3.2 Existing Hypervisors

Virtualization is a technique that offers many advantages and it is often found as a com-
mercial solution. Therefore, this section brings some existing commercial and academic hypervisors.

EmbeddedXEN Project. EmbeddedXEN is an academic project of the XEN.org research
group where the main target are embedded real-time applications. In this case, the hypervisor is
executed in ARM cores, since this is one of the most used embedded processors. The EmbeddedXEN
project provides to ARM developers a single multi-kernel binary image which includes XEN, Linux,
miniOS and a XenomaiRT extension adapted to run onto embedded systems. Virtualization and
isolation mechanisms are fully relied on the XEN hypervisor for general purpose computers. The main
goal of this project is to provide viability and performance evaluation of the embedded virtualization.
It is an open-source project and it can be used in any device, although the Server Xen version is not
open-source which can restrict its use.

In terms of architecture, EmbeddedXEN creates a page table for each guest OS when the
guest domain is created, in order to support virtual memory systems. Though some RTOSs do not
use any virtual memory technique, using the physical memory itself, the hypervisor can map the
physical memory allocated by a guest RTOS into the same virtual memory, statically. At run time,
the guest OS is executed as if it was using a physical memory, being isolated one from another by
the page table provided by the hypervisor. This is a very simple approach which enables to use
unmodified OSs with the virtualization solution although it may cause paging failures [Pa09].

To summarize the main characteristics of the EmbeddedXEN approach, we can highlight:
(i) in cases of exception handling, system calls are interpreted by the hypervisor, using software
interrupts; (ii) memory mapping is done by mapping both hypervisor and visitors’ domain (kernel
and user process) at the same memory space, and; (iii) the access control domain is used to prevent
users from accessing a given process in kernel space memory from the user space memory [org12].
Figure 3.2 depicts the internal structure of the hypervisor, based on the general purpose’s version
of Xen.

OKL4. Implemented by OK Labs (Open Kernel Labs), this hypervisor (named microvisor
by the developers), is an Open Kernel system which offers support to the virtualization technique.
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Figure 3.2 – EmbeddedXen Hypervisor Approach
Source: [org12]

Basically, it is an L4 family microkernel commercially distributed hypervisor with low overhead
rates, [Hei09]. It has a high performance IPC (Inter-process communication) message exchange
mechanism, which helps the low overhead virtualization. A system call, that causes a trap triggered
by any virtual machine, calls the microkernel exception manager, converting this event into an IPC
message to the guest OS. The client deals with this process as a normal system call and the answer
is returned through another IPC message [Hei09]. Still, the OKL4 uses IPC to manage guest OS
interrupt calls and to allow the communications of device drivers and the synchronization of system
components including the virtual machine’s. OKL4 uses an efficient resource sharing management,
where memory regions can be shared by different address spaces mapping. In order to prevent
unprivileged access, these memory regions respect system’s permissions [Hei09]. Figure 3.3 depicts
an example of this approach.

Figure 3.3 – OKL4 Hypervisor Approach
Source: Adapted from [Hei09]

Wind River Hypervisor. An integral part of Wind River’s Multicore Software Solution,
Wind River Hypervisor focuses on high performance, small footprint, determinism, low latency and
high reliability [Riv13]. In terms of processor, it supports single and multicore processors based
on Intel and PowerPC architectures and it integrates with VxWorks and Wind River Linux. It also



49

enables devices to be assigned to virtual boards as it provides device and memory protection between
virtual boards.

To ease configuration, it uses XML-based system and changes made in this configuration
scheme do not require rebuilding the guest operating systems or the user applications. As a debug
facility, multiple virtual boards can be checked by a physical Ethernet connection. Regarding core
scheduling, it provides a priority-based scheduler and custom schedulers can be used too.

Communication is achieved by using MIPC (multicore/multi-OS interprocess communica-
tion), a message-passing protocol designed for communication between cores and virtual boards.
It allows virtual board management, by enabling functions as start, stop and reload/restart of the
guest operating systems. Figure 3.4 depicts an example of this approach.

Figure 3.4 – Windriver Hypervisor Approach
Source: Adapted from [Riv13]

VirtualLogix VLX. Product of VirtualLogix, VLX is a virtualization software that decou-
ples hardware management (intended for ARM and Intel architectures) and application environments
(Android, Linux, proprietary, Symbian, Windows), enabling separation of design and functionality
concerns. This allows OS/device independence and fault tolerance with minimal overhead, as well
as improved performance for multimedia and gaming, besides enhanced device security through
isolation [VLX13].

The main characteristics and advantages of VLX are:

• implemented in less than 50,000 lines of code;

• isolation technology makes it easy to implement new policies without changing the software,
thus enabling smartphone OS functionality on a low-cost hardware platform;

• allows trusted and proven software to be supported with minimal work;

• reduces engineering and development effort by 35% to 50%, and;

• includes advanced system level policies for scheduling, memory, power and security manage-
ment.

Figure 3.5 depicts an example of this approach.
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Figure 3.5 – VLX Hypervisor Approach
Source: Adapted from [VLX13]

Trango. This approach provides an efficient thin layer of code that gives system designers
greater flexibility to extend the functionality of an existing system or to use only one CPU to handle
multiple OSs, for example [Tra13].

With the hypervisor product provided by TRANGO, only a single CPU is needed to keep
the OS and multiple environments separated. This means that a system designer working with an
existing system can create trusted areas where secure processes like key management or secure boot
can run without adding another CPU. Still, in systems where there is more than one CPU, the
hypervisor can extend functionality without major hardware changes.

This approach is applicable to a wide range of systems including DVD players, printers,
cable and DSL modems, routers, medical equipment, electronic payment systems, video and data
processing, set-top boxes and digital televisions.

For mobile phone applications, this allows multimedia, real-time and trusted applications
to be easily integrated, reducing production and development costs, and enhancing the security
and integrity of users personal data. In networking equipment, the hypervisor allows the secure
integration of Linux and market standards into existing embedded systems, supporting symmetric
multi-processing operating systems, high-availability and OS redundancy policies. Figure 3.6 shows
an example of this approach.

Figure 3.6 – Trango Hypervisor Approach
Source: Adapted from [Tra13]
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XtratuM. XtratuM is an open source hypervisor specially designed for embedded real-
time systems available for x86, PowerPC, MIPS and recently for LEON2 (SPARC v8) processors. It
provides a framework to run several operating systems in a robust partitioned environment. XtratuM
can be used to build a MILS (Multiple Independent Levels of Security) architecture [CRM10].

It follows several design criteria, which are specific for critical real-time embedded systems,
such as:

• strong temporal isolation, implemented as a fixed cyclic scheduler;

• strong spatial isolation, that is, all partitions are executed in processor user mode and do not
share memory;

• basic resource virtualization, such as clock and timers, interrupts, memory, CPU and special
devices;

• real-time scheduling policy for partition scheduling;

• efficient context switch for partitions;

• deterministic hypercalls (hypervisor system calls);

• health monitoring support;

• robust and efficient inter-partition communication mechanisms (sampling and queuing ports);

• low overhead;

• small size, and;

• system definition (partitions and allocated resources) defined via an XML configuration file.

In the case of embedded systems, particularly avionics systems, the ARINC 653 standard
defines a partitioning scheme. Although this standard was not designed to describe how a hypervisor
must operate, some parts of the model are quite close to the functionality provided by a hypervisor.
Thus the XtratuM API and internal operations resemble the ARINC 653 standard. Figure 3.7 depicts
an example of this approach.

SPUMONE. A virtualization layer that works with paravirtualized systems but claims
to have small engineering cost in terms of needed modifications in the guest OS[KYK+08]. The
solution provides the VCPU and the idea that multiple virtual processors can be associated with
a single application domain. However, SPUMONE provides a virtualization layer that executes in
privileged space as does the guest OS.
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Figure 3.7 – Xtratum Hypervisor Approach
Source: Adapted from [CRM10]

3.3 Academic research

Virtualization interest has grown in the last few years and several research have been
published. This section briefly describes some of them, in chronological order.

Mahmoud [EHMAZAR05] proposes the use of virtual machines to provide more chances
of achieving a given schedule. Basically, the idea is to divide a single processor into several virtual
processors that can be managed individually to improve schedulability. It creates partitions so tasks
WCET (Worst Case Execution Time) can be analyzed independently from each other.

Ito [IO07] brings a lightweight virtualization technique focused on embedded and ubiquitous
devices. It is a paravirtualized approach where the authors claim to need few modifications for the
guest OS. Results were taken comparing a Linux port to this architecture against a XEN-ported
Linux.

Hwang [HbSH+08] focus the research on ARM-based secure mobile phones. It is a paravir-
tualized implementation of Xen architecture that claims to have a moderate overhead comparing to
non-virtualized platforms. The main challenge of the research consists in adapting the Xen platform
to an ARM-based processor.

Brakensiek [BDB+08] shows many aspects of virtualization that are suitable for making
mobile systems safer. The paper highlights some points such as sandboxes, which improve security of
different OSs that coexist in the same platform. Still, it argues about some of the options regarding
virtualization implementation and paravirtualization was used in the case-studies.

Heiser [Hei08] discusses the usage of virtualization in embedded systems, also highlighting
the security as one of the main reasons for that. Some limitations are shown and details of the
OKL4 platform are given.

Kanda [KYK+08] introduces the SPUMONE platform. In this particular paper, they use
a monoprocessed hardware platform where the hypervisor offers an API for the guest OSs in a
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paravirtualized approach. The authors claim that the amount of modification in the guest OSs are
not prohibitive. Results highlight the overhead of the approach and comparisons are made with
native executions. Kanda [KYK+08] also proposes the use of virtualization as a management layer
in MPSoCs systems. To provide better performance, each guest OS is allocated in one core of the
multiprocessed platform.

Inoue [ISE08] propose the use of virtualization to provide dedicated domains for preinstalled
applications and virtualized domains for downloaded native applications. With it, security-oriented
next-generation mobile terminals can provide any number of domains for native applications. This
asymmetric configuration uses processor separation logic between domains and enables low overhead
virtualization, shown in the results.

Yoo [YLH+08] proposes a virtual machine monitor to address three specific issues in mobile
phones: real-time support, resource limitation, and power efficiency. Basically, the applications
running on the top of this platform are categorized and each category runs in different virtual
machines. The approach is based in paravirtualization.

Kleidermacher [KW08] presents a virtualization platform that aims avionic systems. This
approach is based in the Integrated Modular Avionics (IMA) norm, that aims to manage and pro-
tect high value and complex information and applications across the aircraft. A paravirtualization
proposal is discussed and the authors claim to assure the safety and security of critical applications
while incorporating highly functional general purpose virtualized environments.

Cereia [CB09] uses virtualization as a way to separate multiple OSs, with different purposes,
in the same system. It is a paravirtualized approach and aims to keep real-time execution as accurate
as possible. The ARM architecture is used and comparisons are made between a TrustZone-based
and a minimalist-based implementation.

Su [SCH+09] proposes the use of a Type-2 hypervisor basing the implementation on the
use of KVM and QEMU. It works with Intel Atom processors and intends to offer a close to native-
exeuction performance without using paravirtualization. The authors also introduce a mechanism
named DirectShadow, which uses the guest page table directly for Hardware-assisted Vir- tual Ma-
chine (HVM) guest decreasing significantly the VMExit overhead.

Park [Pa09] presents an RTOS used in a virtualized platform based in a paravirtualized
implementation of Xen in an ARM architecture. Some issues regarding the port of an RTOS are
discussed such as memory support and timer management.

Heiser [Hei09] uses the aforementioned OKL4 as a possibility for enabling virtualization
in Consumer Electronics. This paper focused on some aspects that are said to be fundamental in
enterprise embedded hypervisors: low-overhead communication, real-time capability, small memory
footprint, small trusted computing base, and fine-grained control over security. Then, the authors
claim that their solution addresses these aspects satisfactorily.

Moore [MBC+09] presents the use of DBT (Dynamic Binary Translation) on ARM-based
architectures. DBT can suffer from severe overhead penalties, so the authors propose some cache
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and TLB changes. Overhead was reduced when comparing to a DBT-based platform without these
modifications.

Armand [AG09] presents some differences of using virtualization in embedded systems
highlighting the differences between hypervisor- and micro-kernel-based approaches. The analysis
is centered in virutalization on consumer electronics systems and mobile technologies and aspects
such as tasks and threads, scheduling, memory, communications, device drivers, and virtual machine
management were analyzed.

Wang [WZS+10] proposes a scheduling mechanism based in messages in a Xen-based vir-
tualized real-time platform. To achieve this, authors have improved the existing real-time scheduling
algorithm in Xen. Each real-time guest domain sends information about individual real-time tasks
so the Xen scheduler can arrange the tasks accordingly.

Yoo [YKY10] discusses a method for keeping real-time constraints in a virtualized envi-
ronment in embedded systems. Their main contribution is that to provide a new abstract periodic
interface to a real-time virtual machine so that the virtual machine can meet the physical execution
condition. They use a compositional framework to deal with the two-level scheduling problem.

Steinberg [SK10] presents a microhypervisor-based virtualization architecture - NOVA -
that consists of the microhypervisor and a user-level environment that contains the root partition
manager, virtual-machine monitors, device drivers, and special-purpose applications that have been
written for or ported to the hypercall interface. It is a parvirtualized approach.

Ryu [RKKE10] presents a hypervisor for mobile environments. It works on x86 and ARM
architectures. The authors use the technique of kernel-user address space separation to provide a
safe environment for mobile devices. This has the strong ability of memory protection, and provides
efficient device management.

Rivas [RAN10] discusses about a cross-layer soft real-time architecture for virtualization
where a new scheduling approach is proposed. The architecture of the proposed platform is composed
by three main entities: the Distributed Kernel Coordinator (DKC), the Real-Time Scheduler and the
Janus Executive. It is a Xen-based paravirtualized implementation.

Lee [LbSC10] focuses on improving security in 3G/4G mobile devices. It is based on Xen
and uses paravirtualization. Basically, several improvements were made in terms of I/O treatment
so attacks to the VMM could be easily avoided.

Forneaus [For10] explores the opportunities and challenges in using virtualization in embed-
ded devices. The author presents several requirements that must be achieved to successfully combine
hypervisors and multicore processors. It highlights the need for reasonable code size, performance
and throughput, determinism, hardware support for virtualization among others.

Srinivasan [SPKG10] describes an approach to virtualizing SoC platform and explores the
opportunities for shared use of virtualized SoC devices by multiple concurrently executing services.
The implementation is paravirtualized using Xen hypervisor and x86 architecture.
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Asberg [AFNK11] proposes a framework for scheduling (soft real-time) applications re-
siding in separate operating systems (virtual machines) using hierarchical fixed-priority preemptive
scheduling, without the requirement of kernel modifications. The authors use hierarchical scheduling
to improve the performance of soft real-time virtual machines.

Nakajima [NKS+11] proposes an extension of the SPUMONE platform, with multicore
advances. Still, paravirtualization is used and no architectural modification were suggested.

Xi [XWLG11] shows the RT-Xen platform that provides effective real-time scheduling to
guest Linux operating systems at a 1ms quantum, while incurring only moderate overhead for all
the fixed-priority server algorithms. Comparisons with other algorithms such as Sporadic Server and
Deferrable Server were made to achieve the results.

Lee [LHC11] propose an optimization technique, called inline emulation, to reduce the
cost spending on paravirtualizing operating systems. Inline emulation can also be used in various
virtualization environments to increase the performance of emulating privileged instructions. The
implementation is based in the ARM architecture.

Yang [YKP+11] proposes the implementation of a compositional scheduling framework on
virtualization. They use a two-level scheduling framework in a L4/Fiasco microkernel that works as
a hypervisor. They aim to provide better support to real-time in virtualized embedded systems.

Ost [OVI+12] explores the use of virtualization to enable mechanisms like task migration
and dynamic mapping in heterogeneous MPSoCs, targeting the design of systems capable of adapt
their behavior to time-changing workloads. They propose the use of Low Level Virtual Machine
(LLVM) to postcompile the tasks at runtime depending on their target processor. A novel dynamic
mapping heuristic was proposed, aiming to exploit the advantages of specialized processors while
taking into account the overheads imposed by virtualization.

Li [LKM+12] extends the SPUMONE to provide the virtualization layer to multicore pro-
cessors. The authors aim to use rich functional embedded systems.

3.3.1 Summary

With the growing hardware support for virtualization in embedded architectures, the use
of full-virtualization must be better investigated. Currently, related works focus mainly in para-
virtualization approaches (changes in the guest OS are required). However, full-virtualization is
desired in embedded devices as long as it has proper hardware support [BGDB10]. Thus, the main
contribution of our work consists in investigating the behavior of a hardware-assisted MIPS-based
MPSoC platform, while rendering a secure and transparent environment for the guest OS and
embedded applications.

Analyzing the aformentioned research, it is possible to see that the majority focus attention
to paravirtualized solutions. These approaches depend on guest OS modifications to be successful.
We decided not to use such approach. Also, many research use ARM or x86 as architecture and we
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chose to study and improve a MIPS-based processor to provide some support for virtualization. Our
solution is focused in MPSoCs, since that is a well-established trend in embedded systems. Finally,
some real-time support was added, since that is also a great concern. Table 3.1 summarizes some
of the aforementioned approaches.

Table 3.1 – Comparison among different virtualization approaches
Hypervisor Processors Virtualization

Technique
RT Support Multi-

processor
support

License

OKL4 ARM, MIPS,
Intel

Para-
virtualization

Yes Yes Proprietary

Embedded Xen ARM Para-
virtualization

Not mentioned No GPLv2

Xen-ARM ARM Mixed To be available To be available GPLv2
WindRiver ARM, Pow-

erPC, Intel
Para-
virtualization

Yes Yes Proprietary

SPUMONE SH-4A Para-
virtualization

Soft-real-time Yes Proprietary

Mobi-VMM ARM Para-
virtualization

Yes No Proprietary

Our proposal MIPS full virtualiza-
tion

Yes, with bare-
metal applica-
tions

Yes Proprietary
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4. VIRTUALIZATION IN MPSOCS - PROPOSALS AND
IMPLEMENTATIONS

While the research to this doctoral dissertation was being performed, there were three dif-
ferent approaches to achieve virtualization in MIPS-based systems. Each one has its own advantages
and disadvantages and are described in the next sections.

4.1 First Attempt - a HellfireOS improvement and Paravirtualized approach

This was the initial attempt we made to provide virtualization in embedded systems. This
research is inserted in the Embedded Systems Group at PUCRS, where the Hellfire Project already
existed. Since a lot of the literature pointed out that a hypervisor could be based in a microkernel,
the first attempt was to adapt the existing HellfireOS into a hypervisor.

4.1.1 Hellfire Framework

Hellfire Framework (HellfireFW) [AFM+10] allows a complete deployment and test of par-
allel critical and non-critical embedded applications in mono- and multi-processed systems, defining
the HW/SW architecture to be employed by the designer. The HellfireFW follows a design flow
where several steps can be performed aiming to develop the HW/SW solution for a given application.
This design flow is presented in Figure 4.1.

Figure 4.1 – Hellfire Framework Design Flow
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In terms of application design, the entry point is in C language, where an application is
manually divided into a set of tasks. Each task τi is defined as a n-uple (idi, ri, WCETi, Di, Pi)
and the parameters stand for identification, release time, worst case execution time, deadline and
period of task τi, respectively. They can communicate either through shared memory (in the same
processor) or message passing (in different processors).

After designing the application, the HellfireFW project must be created. This is the step
where the initial HW/SW platform configuration is defined. The C application is executed on the
top of the HellfireOS stack. HellfireOS [AFM+10] is a micro-kernel based Real-time Operating
System - RTOS, highly configurable and easily portable. To ease the OS port to other architectures,
HellfireOS uses a modular structure as depicted in Figure 4.2.

Figure 4.2 – HellfireOS Structure Stack

All hardware specific functions and definitions are implemented on the Hardware Abstrac-
tion Layer (HAL), which is unique for a specific hardware platform solution, simplifying the port
of the kernel onto different platforms. The micro-kernel itself is implemented on top of this layer.
Features like standard C functions and the kernel Application Programming Interface (API) are im-
plemented on top of the micro-kernel. Communication and migration drivers, memory management
and mutual exclusion facilities are implemented on top of the kernel API and the user application is
the highest level in the HellfireOS development stack.

After following these steps, an MPSoC platform configuration is expected with a given
number of processors, a personalized instance of HellfireOS on each processor, and a static task
mapping. The user must then trigger the simulation of the system, which runs for a given time
window and then generates several graphical results for the designer to analyze. If the results are
satisfactory, the SW part of the platform can be easily ported to a prototype, such as an FPGA.
Otherwise, the designer can change the HW/SW settings and rerun the simulation as refinements
are needed.
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4.1.2 Virtual-Hellfire Hypervisor (VHH), a HellfireOS-based Hypervisor

In this section we describe the Virtual-Hellfire Hypervisor architecture, based in the Hell-
fireOS structure. The main advantages of VHH are:

• temporal and spatial isolation among domains (each domain contains its own OS);

• resource virtualization: clock, timers, interrupts, memory;

• efficient context switch for domains;

• real-time scheduling policy for domain scheduling;

• deterministic hypervisor system calls (hypercalls).

VHH considers a domain as an execution environment where a guest OS can be executed
and it offers the virtualized services of the real hardware to it. For embedded systems where
no hardware support is offered, paravirtualization tends to present the best performance results.
Therefore, in VHH, domains need to be modified before being executed on top of it. As a result,
they do not manage hardware interrupts directly. Instead, the guest OS must be modified to allow
the use of virtualized operations provided by the VHH (hypercalls).

Figure 4.3 depicts the Virtual-Hellfire Hypervisor structure. In this figure, the hardware
continues to provide the basic services as timer and interrupt but they are managed by the hypervisor,
which provides hypercalls for the different domains, allowing them to perform privileged instructions.

Figure 4.3 – Virtual-Hellfire Hypervisor Domain structure

In terms of memory management, in MMU-less processors a possible choice is to implement
a software virtual memory management, as proposed in [CG05]. A second viable strategy is to use
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a fixed partition memory scheme. In this case, the required amount of memory is allocated to
each domain at boot (or load) time, meaning that its size cannot grow or shrink at run time. If
the application code of the guest OS of a given domain requires dynamic memory (such as with
malloc or free C primitives), the heap needs to be managed by the domain’s code itself. VHH
uses this second option (fixed partition memory), as we can see in Figure 4.4, where each processor
(Processing Element - PE, in the figure) of the MPSoC has its own Local Memory (LM). This
memory is divided according to the amount of partitions that this processor will hold.

Figure 4.4 – Virtual-Hellfire Hypervisor Memory Management

Another point of concern is dealing with I/O peripherals. Xen [org12] is one of the most
successful paravirtualized implementations for desktop systems and it uses the concept of a specific
I/O domain (known as Domain 0). This is needed because most peripherals must be managed by
a single software driver, which is aware of its current status.

VHH also uses this concept, so I/O ports and interrupt lines of peripherals are managed
by a specific domain, named I/O Domain. This approach is depicted in Figure 4.5, where the
highlighted domain is responsible for handling I/O issues. This limits the use of peripherals to the
processor that holds the I/O Domain. One possible improvements is to allow other domains to
handle it, so that any processor is able to have its own I/O peripheral.

Figure 4.5 – Virtual-Hellfire Hypervisor I/O Handling

The internal architecture of HellfireOS had to be modified to guarantee the use of vir-
tualization. As a matter of fact, we kept some of the original features and took advantage of its
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highly modular implementation by adding the necessary modules to provide virtualization. Thus,
Virtual-Hellfire Hypervisor is implemented based on the following layers:

• Hardware Abstraction Layer - HAL, responsible for implementing the set of drivers that
manage the mandatory hardware, like processor, interrupts, clock, timers etc;

• Kernel API and Standard C Functions, which are not available to the partitions;

• Virtualization layer, which provides the services required to support virtualization and par-
avirtualization services. The hypercalls are implemented in this layer.

In this new layer responsible for allowing virtualization to be used, there are some mandatory
modules, such as:

• domain manager, responsible for domain creation, deletion, suspension etc;

• domain scheduler, responsible for scheduling domains in a single processor;

• interrupt manager, that handles hardware interrupts and traps. It is also in charge of triggering
virtual interrupt and traps to domains;

• hypercall manager, responsible for handling calls made from domains, being analogous to the
use of system calls in conventional operating systems;

• system clock provider, in which two clocks per domain are implemented: one that only ad-
vances while the domain is being executed (virtual) and a real, counted from the boot time.

• timer provider, similar to clock implementation, provides virtual and real timers, both accessible
by hypercalls;

• memory manager, divided in virtual and physical management, according to the underlying
hardware;

• system output facility, where all messages are queued and can be redirected to hardware
peripherals, such as a serial port.

The described architecture of VHH is depicted in Figure 4.6.
A very interesting point of the VHH is the use of an MPSoC as underlying hardware. We

assume the use of a Symmetric MultiProcessor and the hypervisor acts as a MultiProcessor RTOS
(MP-RTOS). The hypervisor is aware of the several domains and respects their own scheduling
policies.

Each processor has its ready task queue, which can contain tasks from different virtual
domains. For each processor, the highest-priority task in the ready queue is executed. To avoid
starvation of non real-time tasks (when allocated in the same processor of real-time tasks), it is
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Figure 4.6 – VHH System Architecture

possible to adopt a scheduling policy that guarantees the execution of best-effort tasks, such as
R-EDF [YNK01].

The mapping of virtual domains onto real processors is done at design time. It is the
designer’s responsibility to associate virtual domains and real processors. In the future, there is
the possibility of using virtualization even as a load balancing solution, where, dynamically, virtual
domains can migrate among the several processors of the MPSoC to improve a given measure, as
performance or energy consumption. When more than one domain is mapped for a single processor,
the scheduling among domains occurs according to a fixed priority scheduling. Then, domains are
scheduled by the hypervisor considering its priority level.

Since HellfireOS is integrated in the Hellfire Framework with several simulation facilities,
VHH is also integrated in it and requires the designer to choose whether virtualization is enabled.
In this case, although user-transparent, the design flow presented by Figure 4.7 is employed and
extended. This flow starts with the configuration of the VHH, where the number of domains is
informed and the VHH core is generated. Following, each of the desired domains is configured in a
very similar way Hellfire Framework used to do with non-virtual HellfireOS edition: application tasks
are added and put together with the OS image. Finally, all system is assembled and executed by an
ISS-like (Instruction Set Simulator) simulator.

4.1.3 Cluster-based MPSoCs

Since we aimed to use MPSoCs, different architectural arrangements can be thought using
virtualization. In this context, cluster-based MPSoCs is a technique that has gained notoriety in
the last few years [GlZG+09], [JSZ10]. In this approach the best of both worlds are intended to be
placed together: Networks-on-Chip (NoCs) allow higher scalability rates but buses keep the design
simpler even with more processors on the system. To better understand the concept, Figure 4.8
depicts a 2x2 sized NoC, which contains a bus located at each local port. Each bus carries along
four processors that communicate in simpler ways inside and, if needed, can communicate with other
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Figure 4.7 – VHH Integrated in the Hellfire Framework

clusters through the NoC. Dotted lines represent the wrappers needed to connect the bus to the
NoC.

Figure 4.8 – Cluster-based MPSoC concept

So, one spin-off proposal of this dissertation was the unification of both concepts: cluster-
based MPSoCs and virtualization. However, instead of using buses on each router of the NoC, we
propose a single processor holding a hypervisor, providing the emulation of several virtual processors.
Since buses are poorly scalable, hypervisors do not need to support more processors than a simple
bus would. The main contribution of this proposal, named as Virtual Cluster-based MPSoCs, is to
provide multiprocessed systems with less area occupation.
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Virtual Cluster-Based MPSoCs

Since our work is based on the Hellfire Project, we also use the Plasma [Cor13] processor,
a MIPS-like architecture. Therefore, the VHH is placed on a Plasma processor as the basis of our
cluster. Then, the VHH is responsible for managing several virtual domains. In our case, each VHH
is responsible for managing its own processing cluster and it allows the internal communication of
these processors through shared memory.

Figure 4.9 is divided in two parts. Part A shows the current version for memory division
in which only a single memory partition per virtual domain is used. This means that this partition
is considered to be the local memory for a given virtual domain. In B, it is possible to see that an
extra partition was added: the shared partition. Here, the idea is to provide easy and low overhead
communication inside the cluster.

Figure 4.9 – VHH Memory for (A) Non-clustered systems (B) Clustered systems

The VHH was extended to allow the communication in two levels. The first level is
named as intracluster communication and occurs through shared memory. Currently, this is not
user transparent and a specific hypercall must be used for this communication. In this hypercall, a
single CPU identification (CPU_ID) must be used, which means they belong to the same processing
cluster.

These hypercalls are similar to the communication functions provided by the HellfireOS and
have the following parameters: VHH_SendMessage (cpu_id, task_id, message, message_length)
used to send a message through the shared memory and VHH_ReceiveMessage (source_cpu_id,
source_task_id, message, message_length) used to receive it.

The second communication level is done among clusters, through the NoC. In our case,
we use the HERMES NoC [MCM+04] and a MIPS-like processor in each router. We adopted a
Network Interface (NI) as a wrapper that connects the NoC router to the processor located in its
local port. This interface works in a similar way that the non-virtualized approach. This increases the
possibility of using several NoC infrastructures as the underlying architecture. Figure 4.10 depicts
this approach.



65

Figure 4.10 – VHH Communication Infrastructure with NoC based Systems

The wrapper is connected to the Plasma core through specific memory addresses: read
and write. Still, a communication VHH driver allows the integration between the wrapper and the
virtual cluster. Also, the hypercalls provided by the VHH allow a virtual processor to send or receive
messages with an extra parameter: the Virtual CPU ID, as an identification of the virtual CPU on
a specific cluster.

Thus, the hypercalls to be used to the inter-cluster communication are: VHH_SendMessage-
NoC (cpu_id, virtual_cpu_id, task_id, message, message_length) used to send a message through
the NoC and VHH_ReceiveMessage (source_cpu_id, source_virtual_cpu_id, source_task_id, mes-
sage, message_length) used to receive it.

The complete vision of the system is depicted in Figure 4.11. In the Figure, VHH is the
Virtual Hellfire Hypervisor. LM stands for Local Memory. NI stands for Network interface and PE,
for Processing Element. R represents each router of the NoC.

Figure 4.11 – Virtual Cluster-Based MPSoC proposal
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Use Cases and Results

The main use for a Cluster-based MPSoC is the possibility for field specialization. In this
case, each cluster is responsible for executing a set of tasks with a common purpose. For instance,
it is possible to execute a JPEG decoder in one cluster, a MPEG decoder in another and so on. In
this case, the greatest advantage is to simplify the communication of similar tasks, since they share
a given memory area, but still allowing a great number of processors, increasing system scalability
through the NoC usage. Figure 4.12 depicts an example of cluster-based MPSoC with application
specialization.

Figure 4.12 – Virtual Cluster-Based MPSoC with Application Specialization

Another possible use of the Virtual Cluster-based MPSoC is when decreasing area with
guaranteed system scalability is needed. Scalability is assured by NoC usage and the cluster-based
MPSoC itself allows an easier use of real-time tasks with no extra communication penalties. Re-
garding area occupation, we prototyped some possible configurations to illustrate the benefits of our
approach in this issue. We used the Xilinx Virtex-5 XC5VLX330T FPGA.

First, when using the HellfireOS with a Plasma processor, we usually indicate a processor
with at least 16KB of local memory. HellfireOS is a much optimized kernel and depending on the
application even such a small memory can fulfill the expected needs. When using the VHH, more
memory is required and the total memory size depends especially on the number of virtual domains
that are required. Although greater memory sizes infer more block RAMs, it does not affect the
FPGA area measured in LUTs. In all experiments performed, the total system memory could be
inferred as block RAMs.

We used three different MPSoC configurations, all with 16 processors (physical or virtual).
First, we have a 16 processor MPSoC, distributed in a 4x4 NoC where each router carries its own
processor, known as Pure 4x4 NoC approach. The second MPSoC configuration is a 2x2 NoC with
bus-based clustering system, known as Bus Clustered approach. Here, each router has a wrapper
to connect it to the clustered-bus, and each bus carries four processors. Finally, the last approach
is the Virtual cluster-based (V-Cluster 2x2 NoC) where a 2x2 NoC was used again and each router
contains a single physical processor. This processor runs the VHH, where 4 virtual domains are
emulated per cluster, totaling the 16 processors of the MPSoC.
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In the first two solutions, each processor has 16KB of local memory. The last, for the
virtual cluster approach, 4 processors with 128KB of memory each were employed. In Table 4.1, it
is possible to see the prototyping results for three different MPSoCs.

Table 4.1 – Area results for MPSoCs configuration
Configuration Area occupation (LUTs)
Pure 4x4 NoC 60934

Bus Clustered 2x2 NoC 56099
V-Cluster 2x2 NoC 17179

These results show a decrease of the area occupation in up to 70%, depending on the
processor local memory configuration and the original MPSoC configuration. Also, depending on
the bus structure used for the Bus-based clustered version, the bus communication overhead is
similar to the virtualization overhead.

4.1.4 Summary

The first attempt consisted in using a previous research of the research group and extend
it so that virtualization was possible. However, by the time the implementation of VHH was being
performed, we decided to pursuit another path. We made this decision because, observing the use
of virtualization in desktop systems and considering some researches [Hei09], [BGDB10], [SCH+09]
it became clear that hardware support to virtualization was mandatory. Then, considering that by
the time this research was being developed, MIPS had no announcements regarding virtualization
support, we decided to modify an existing platform to provide virtualization support.

4.2 Second Attempt - Virtualization Model and Hardware Implementation

By the time we decided to add support for virtualization in an embedded architecture, we
firstly defined a model that would lead the following implementation attempts.

4.2.1 Virtualization Model

This model is focused on multiprocessed embedded systems and on providing some real-
time support to applications. The overall model is depicted in Figure 4.13 and detailed in the
remainder of this section. Some key concepts of our model are described hereafter.

• Application Domain Unit - ADU1. Each Application Domain Unit corresponds to a virtual
machine and is intended to be used to divide the system into specialized pieces.

1Also referred during this paper as virtual domain, virtual machine, and application domain
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Figure 4.13 – Virtualization model for embedded systems

• Non-Real-Time or Best-Effort Virtual Processing Unit - BE-VCPU. Each application
domain can be composed by one or several Virtual Processing Units, which are individually
scheduled onto physical processing units. Thus, different mapping strategies can be used.
For example, VCPUs from the same virtual domain could be placed onto different physical
processors to increase their performance. Still, a VCPU contains a copy of the physical
processor’s registers.

• RT-VCPU. A given domain may require support to real-time. In that case, they need to
count on real-time VCPUs that also have execution privileges to accomplish their constraints.
The strategy to offer real-time is addressed later in this section.

• RT-App. Each real-time application may be divided into real-time tasks that should be
explicitly indicated so the hypervisor can schedule them accordingly.

• guest OS. guest OSs where their tasks can be executed.

• Hypervisor. The core of our virtualization proposal is carefully implemented aiming to reduce
the overheads of a virtualized platform. It manages the creation and execution of VCPUs and
Application Domains. Besides, the hypervisor is responsible for a scheduling scheme where
the physical processing units are always aware of the next VCPU that needs to be executed,
decreasing their idle time.

• Physical Processing Unit - CPU. We propose the virtualization of a MIPS-based platform.
We expect this model to be used in multiprocessed embedded systems connected through
a bus. Although we are aware of the limitations of bus-based architectures, we intend to
provide nodes for future use in cluster-based multiprocessed embedded systems [AdMH11], as
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discussed earlier. The quantity of physical nodes can be limited by the bus implementation’s
constraints.

The overall model presented in Figure 4.13 has a large dependence on the real implemen-
tation to be worthy and we present our strategies regarding the processor later in this section. We
adopted the concept of VCPUs and CPUs as it allows more flexible mapping strategies.

Initially, each virtual domain has a given task-set, associated with its VCPUs. However,
from the VCPUs point of view, a single subset of the entire domain’s task-set is available and is
managed by the domain’s guest OS. This subset can be considered as the VCPU’s task array.

From the entire system point of view, we have the possibility of many VCPUs per domain,
as if in a matrix arrangement. Each matrix element is independently mapped onto the CPUs. Since
we are providing a bus-based virtualization node, the CPUs can be represented as an array of physical
processors available in the system.

Thus, the separation provided by the virtualization model we propose can ease the dynamic
mapping of tasks among VCPUs (if supported by the guest OS), VCPUs among CPUs and even
tasks among CPUs. Figure 4.14 depicts this flexible mapping model for virtualized architectures.
However, further investigation of the possibilities of this strategy are not in the scope of this research.

Figure 4.14 – Flexible Mapping model for multiprocessed embedded systems

4.2.2 Hardware platform

The virtualization model was firstly described as a hardware platform in VHDL language
and the main hardware modules are showed in Figure 4.15. We use a Plasma MIPS CPU, which is a
small synthesizable 32-bit RISC microprocessor that supports an interrupt controller, UART, SRAM
or DDR SDRAM controller, and an Ethernet controller obtained from Opencores.org [Cor13]. The
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Plasma CPU executes all MIPS IT M user mode instructions2 except for unaligned load and store
operations. In addition, the virtualization capabilities added to the Plasma MIPS core resulted in the
vPlasma MIPS, to be detailed later in this section. We adopted the Plasma processor since its VHDL
description is freely available at OpenCores.org, which allows us to modify and prototype new versions
of it. Also, it occupies small area, consumes low-energy and does not contain extra features, which
makes it efficient to add only the structures needed to perform virtualization. Moreover, besides a
licensing scheme that allows us to modify, Plasma has a software toolchain that can also be adapted
when needed.

Figure 4.15 – Virtualization Hardware Platform main modules.

We use a multiprocessed platform in which several CPUs are interconnected through a
Shared BUS that relies on a Bus Arbiter. Each CPU has a local memory (Scratchpad Memory)
and an L1 Cache. CPUs have full visibility of all peripherals available at the Shared BUS, including
the Shared Memory, where the ADUs are allocated. The hypervisor implements access policies to
peripherals and manages the MMU for each processor, as described later. The GPIO device is
useful for external communication. The UART is the main platform’s communication device and
implements a typical 16550 UART device. Finally, the Platform Controller is used to generate
interrupts among processors allowing preemptive communication calls. Besides, it is responsible for
either enabling or disabling cores. The platform has a hardwired-enabled core responsible for booting
the system and powering the other cores up through the Platform Controller.

For inter CPU communication we use a 32-bit wide bus, which is word addressable, byte
writeable, single-cycle arbitrated, half-duplex, and supports multiple masters (CPUs) where just one
can communicate over the bus at a time. Decisions regarding the bus-owner at a given time are made
by the Bus Arbiter. When not in use, both data and address bus’ signals remain at high impedance
levels. The address bus is always fed by the current master while the data bus is bidirectional, and
fed by the master on writes and by the slave on reads. Writes can be performed at the granularity
of bytes, half word and words in any possible endianness on the same bus, allowing mixed endian
cores to execute without conflicts. A read is always performed on full words. When multiple devices

2This means that some kernel mode instructions, such as rfe, are not implemented in the core.
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request the bus at the same time, the arbiter executes a master selection algorithm in a round-robin
fashion, giving access to the next requesting device when the bus is free.

The L1 cache is a direct-mapped 1k-words cache organized in two banks of 64x8 entries
each. It is implemented using two 512x32 BRAMS to hold data and two 64x22 LUTRAMS to hold
the tags. Moreover, the cache implements the atomicity of the LL/SC instruction pair resulting in
a synchronization mechanism between the processors.

4.2.3 Hardware virtualization support

Originally, the Plasma MIPS processor counts on only a single full-privileged execution
mode and does not count on memory management, which is important for security and isolation.
Co-processor 0 (CP0) is responsible for controlling interruptions and timer, and can only be accessed
through two special instructions: mfc0 and mtc0. Such instructions are called sensitive [PG74]
because their execution can change the processor behaviour. Thus, a mechanism is used to detect
and trap such sensitive instructions and, to do that, three key features are implemented in the
CPU core: (i) Memory Management Unit (MMU); (ii) Privileged Execution Mode, and; (iii) ISA’s
modification.

MMU. Our implementation is based on a 16-entry Translation Lookaside Buffer (TLB)
and Figure 4.16 shows the MMU’s block diagram.

Figure 4.16 – MMU block diagram.

When enabled, the MMU works by keeping the line of the last successful translation
for both instruction fetch and data access into two 48-bit registers, named iTLB and dTLB for
instruction and data access purposes, respectively. Then, in a scheme called L1 TLB, a comparator
is used in order to validate the translation. The L2 TLB unifies both instruction and data and uses
one 16x48 LUTRAM and three 4x28 LUTRAMs for its line tags. A successful search is performed
in up to 4 cycles: a 3 -bit up-counter, enabled by a L1 TLB miss, has its 2 lower bits used to
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address the row and the tag memories, which outputs are compared with the current ASID and
virtual address in order to determinate the translation. The combined 4 -bit address is used to
address the 16x48 LUTRAM that feeds back the L1 TLB. The L2 TLB is responsible for generating
a TLB miss exception when none of the proposed translations are valid. In this case, the hypervisor
feeds the TLB L2 using the tlbwi and tlbwr privileged instructions, specially implemented to the
vPlasma MIPS core. The MMU is disabled either at reset or whenever a software trap is performed.
When desirable the MMU can be enabled using a special instruction called jump register into virtual
address (JR.V), which enables the MMU and jumps to the requested address.

Privileged Execution Mode. In order to accomplish Popek and Goldberg’s virtualization
requirements [PG74] the core execution is divided in two distinct modes: kernel and user. Sensitive
instructions (mtc0, mfc0, tlbwi, tlbwr) can be executed only in kernel mode (privileged). If an
attempt to execute these instructions in user mode occurs, an exception is generated and the CPU
enters into kernel mode, passing the control over to the hypervisor. In kernel mode, the MMU is
automatically disabled so the hypevisor has full visibility of the Shared Memory. The rfe instruction
is used to return the processor to its correct the state, that is, before the exception occurred.

ISA’s modification. We added new instructions to the Plasma MIPS core ISA, in addition
to tlbwi and tlbwr, presented earlier. Figure 4.17 brings a sequence diagram that shows software
and hardware actions during an instruction emulation.

Figure 4.17 – guest OS privileged instruction execution.

Originally, MIPS I ISA contains a instruction pair to return from exceptions: jr and rfe:
jr jumps to address contained in the specified register whilst rfe is used in the branch delay-slot
to return the processor to its prior state. However, this behaviour prevents a correct virtualization
from functioning in MIPS I processors, since a register must be used to jump to the exception return
address, forcing the modification of its original value, thus disrupting the normal operation of the
ADU.

To solve this problem we implemented a modified version of the rfe instruction and added
a new one to jump to a virtual address, named jr.v. Also, a new register (register #30 at CP0)
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was implemented as a shadow of the existing K0 MIPS register3 (named k0_shadow). In this case,
when a exception occurs the last value of K0 is saved in the k0_shadow register by the hypervisor.
In the exception handling routine, registers are saved by software normally and restored before the
return. However, K0 is used to indicate the return address to the jr.v instruction. Such instruction
is responsible for enabling the MMU, meaning that the address stored at K0 corresponds to the
virtual address which indicates the exception return address of the ADU. So, the modified version
of the rfe instruction assigns the value preserved at the k0_shadow into k0, keeping register value
consistency to the ADU.

4.2.4 Virtualization software and real-time

Figure 4.18 depicts a general view of our hypervisor composed of the following modules:
(i) Hardware Abstraction Layer (HAL), used to isolate layers, such as domain and scheduler from
further hardware details. It merges drivers interface, along with device drivers implementation,
besides handling the VCPUs abstraction. The exception handler and other low level facilities are
implemented directly in assembly aiming to obtain maximum performance; (ii) Memory-Mapped
I/O (MMIO), which manages the memory-mapped devices; (iii) Application Domain Unit (ADU),
previously described; (iv) Real-time and Best-effort schedulers, responsible to implement the EDF (for
real-time constraints) and best-effort scheduling policies; (v) Dispatcher, responsible for dispatching
the chosen VCPU to the physical CPU; and (vi) Toolkit that reunites a collection of software
facilities, such as linked-list manipulation procedures.

Figure 4.18 – Hypervisor block diagram

3K0 register is normally dedicated to kernel use.
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Hypercalls. The hypervisor implements the hypercall concept to allow an ADU to instanti-
ate several VCPUs (RT- or BE-). Hypercalls are widely used in paravirtualization based approaches,
but in a way so that privileged instructions of the guest OS are replaced by hypercalls. In our
approach, hypervalls are only used to instantiate VCPUs to configure properly the ADU.

The system starts with a fixed number of domains configured previously by the designer,
where each domain owns at least one BE-VCPU. Then, dynamically, each domain can manage its
own VCPUs, as needed by the application. BE-VCPUs need to have a priority parameter define for
their creation while RT-VCPUs require real-time task model parameters, such as deadline, period,
and capacity to be properly handled by the hypervisor’s real-time scheduler.

In practice, a hypercall consists of a write performed by the guest OS at a special memory
address (0xFFFFE800) that causes a trap to the hypervisor. We also use this technique to emulate
a shared peripheral, such as UART. The value written at 0xFFFFE8000 must reflect the address
of a struct containing the new VCPU data, which contains parameters such as capacity and period
(for RT-VCPUs) and priority (for BE-VCPUs).

The sequence flow that represents a guest OS’s execution of a hypercall to instantiate a
new RT-VCPU is depicted in the sequence diagram of Figure 4.19. Initially, the create_rtvcpu()
system call is used as the responsible to fulfil a given struct (named create_rtvcpu_cmd) and write
its address at 0xFFFFE800. Then, when the hypervisor assumes the execution its first action consists
of determining the hypercall type (in this case, an RT-VCPU creation). Next, the admission control
algorithm is executed and, if there is enough system resources, the new RT-VCPU is accepted and
assigned to a physical processor. Then, a proper return (indicating either success or failure) is sent
back to the guest OS, which follows its own execution flow.

Figure 4.19 – Sequence diagram of RT-VCPU creation

Scheduler. The hypervisor implements both Earliest Deadline First (EDF) policy [HT94]
and Best-Effort policies to deal with RT-VCPUs and BE-VCPUs, respectively. For the BE-VCPUs
implementation, a single global Best-Effort queue is kept, while RT-VCPUs are kept in local individual
queues per processor. The EDF is the main hypervisor’s scheduler and it has a higher execution
priority than the best-effort scheduler, which will not suffer from starvation since we use time
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reservation for it. Figure 4.20 presents this two-level scheduling scheme, where RT-VCPUs and
BE-VCPUs are placed in different positions (global and local individual queues).

Figure 4.20 – Real-time and best-effort multiprocessed strategy

Scheduling Sample. In this example, we show how three VCPUs are scheduled in a
system with a single processor. We have two RT-VCPUs and one BE-VCPU. For sake of simplicity,
we will keep the period equal to deadline, using the EDF algorithm. We use the following real-time
parameters for RT-VCPUs (p stands for period, d stands for deadline and c stands for capacity or
worst-case execution time):

• RT-VCPU 0: p = 5, d = 5 and c = 3;

• RT-VCPU 1: p = 4, d = 4 and c = 1;

The overall system real-time utilization is determined by the ∑ c
p

of all RT-VCPUs. In this
case, we have a real-time utilization of 0.85 (3

5+1
4), it means that 85% of the system is dedicated

to the RT-VCPUs. The remainder 15% is dedicated to BE-VCPUs.
Figure 4.21 shows the system scheduling when both RT-VPCUs utilize all of the capacity

assigned to them. RT-VCPU 1 is scheduled first due to its nearest deadline, followed by RT-VCPU
0. BE-VCPU only starts executing at tick time 9, when both RT-VCPUs are waiting for their release
time.

Figure 4.21 – Real-time scheduling sample

Moreover, Figure 4.22 shows the scheduler behaviour when RT-VPCU 0 releases itself
from the processor, in an operation we named Voluntary Preemption. In this case, RT-VCPU 0
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yields the processor in the middle of time slice 3 and the best-effort scheduler is invoked, scheduling
BE-VCPU 0 until the end of the time slice, when a preemption occurs. By the time slice 7, another
voluntary preemption happens, and BE-VCPU 0 is scheduled again. Finally, at time slice 9, both
RT-VCPUs 0 and 1 are waiting for their release times, allowing BE-VCPU to be scheduled again.

Figure 4.22 – Real-time scheduling sample with voluntary preemption

Time Reservation. To avoid starvation of BE-VCPUs, we adopted a time reservation
strategy. In the moment of their creation, each ADU must indicate the system load capacity it
desires to use. From the ADU point of view, this share of the system’s entire capacity is seen as its
own entire capacity. All the VCPUs (RT- and BE-) created by this ADU share its slice of the entire
system’s capacity. If a domain tries to allocate more than its maximum capacity, new VCPUs will
fail to be created as they will not succeed through the admission control algorithm.

Admission Control. Whenever an application domain requests the creation of a new
VCPU, the admission control algorithm checks if there are enough physical resources that can
satisfy a given VCPU’s requirements. In the particular case of SMP systems, even if there is enough
free capacity in the entire system, this may not guarantee the new VCPU’s execution since this
capacity is actually fragmented among several physical CPUs. Thus, there is indeed an efficiency
issue regarding the local CPU queues usage, but with the proper use of dynamic load balancing
techniques this problem can be reduced in the future.

4.2.5 Evaluation and Results

Hardware evaluation

The VHDL description was synthesized to a Xilinx Virtex-4 XC4VLX60 FPGA Device us-
ing ISE 13.2 software. We performed three different synthesis in order to obtain the platform area
occupation: the pure vPlasma MIPS core (without schatchpad and L1 cache), vPlasma processing
node (with schatchpad and L1 cache) and the entire platform with four CPUs. Results are presented
in Table I. The addition of the L1 cache and scratchpad represents an increase of about 1% in the
total area occupation. Such area is a small price to pay considering the performance increase it
brings. The entire platform with four vPlasma processors occupied 41% of area, and it is possible to
synthesize up to 8 processors in the available FPGA with 78% of are occupation. It is important to
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point out that each processor may contain more than one virtual processor. In this case, for many
embedded applications that require high performance and therefore a high number of processors
(typically applications that are implemented by NoCs), virtualization becomes an attractive alterna-
tive. Once you use less area, power consumption is lower if compared to a NoC approach, and the
performance overhead does not significantly affect the entire system performance.

Table 4.2 – Synthesis results on a Xilinx Virtex-4 FPGA.
Number of occupied
Slices

FPGA occupation
(%)

Pure vPlasma core 2.226 8
vPlasma processor 2.658 9
Entire Platform (4
CPUs + interconnec-
tion and memory)

11.087 41

Entire Platform (8
CPUs + interconnec-
tion and memory)

21.016 78

Software evaluation

We have determined the overhead of our implementation based in instruction counts for
three different situations: (i) privileged instructions emulation; (ii) context switching (among virtual
machines), and; (iii) device emulation (for shared devices). For the first and second cases the guest
OS execution causes a trap to the hypervisor. For the third case the guest OS is preempted by the
hypervisor and, if convenient, a new guest OS is scheduled.

Thus, analysing the instruction count for all different instructions we emulated, we achieved
an average of 230 instructions for the emulation of a privileged instruction. We used the
same technique to determine the overhead of creating and deleting VCPUs (both BE and RT). For
that, we got an average of 840 instructions for the creation of a new VCPU and of 712
instructions for the deletion of a VCPU. The overhead of the emulation of a shared device
was determined. Our emulated device is a UART port dedicated to communication to the external
world. It represents a very simple device, where reading or writing a byte from/to the external
word consists in an access to the 0xFFFFE000 address. In this case, the shared memory-mapped
device is not mapped to a specific guest OS, thus, a reading or writing performed in this specific
address causes a trap to the hypervisor, which then emulates the device. The average overhead
detected is 245 instructions. Although this can be considered as a very optimistic result, it is
important to highlight that the more complex the device is the higher overhead it contains. Finally,
we obtained the overheads of the EDF scheduler and we detected an average of 612 instructions
to preempt and schedule a new VCPU using the EDF algorithm.

In order to validate our implementation, we elaborated an experiment where we aim to
demonstrate the correct functioning of our virtualization system. The experiment consists of a pro-
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ducer/consumer application, a classic example of synchronization problems. Our producer/consumer
implementation consists of a producer and a pool of consumers that share a common, fixed-size
ring buffer as the producer allocates data in the ring buffer at a constant rate. In order to simulate
variable process time, the value allocated in the ring buffer coincides with the number of time slices
the consumer needs to process it. The producer/consumer is monitored by a BE-VCPU, known as
management VCPU and the one responsible to control the load of the system. The ring buffer has a
maximum configurable capacity of 50 integer elements. The system starts with a domain containing
the management VCPU, a producer RT-VCPU and a consumer RT-VCPU. The management VCPU
is allowed to instantiate three more consumers. Figure 4.23 illustrates this scenario.

Figure 4.23 – Producer-consumer virtualization scenario

Firstly, RT-VCPUs from 1 to 3 are instantiated and destroyed dynamically by the man-
agement VCPU, which monitors the ring buffer when its occupation exceeds 80%. If the buffer
occupation reaches 100%, the producer stops sampling. Still, the producer has a fixed CPU time
reservation of 20%. Each consumer, when executing, gets 10% of CPU time. Thus, the system
starts with a 30% CPU usage rate, which can grow until 60%, since 40% of system capacity is
reserved to best-effort tasks. Figure 4.24 illustrates this scenario. During start-up, the buffer oc-
cupation increases, since the producer CPU time is twice the consumers’ capacity (consumers need
one time slice for each buffer entry processing). Around time slice 470, it is possible to see that the
buffer reaches 80% of its maximum capacity occupation causing the management VCPU to trigger
three more consumers to avoid buffer saturation. Then, the system utilization increases up to 60%
as the buffer occupation decreases rapidly. However, around time slice 420, the producer starts
generating data that takes two time slices for the consumer to process. Thus, the system’s balance
is established, with an average of 33% of buffer occupation and 60% of system load. Still, around
time slice 1700, the producer starts generating data that takes 1 time slice for the consumer’s treat-
ment. Expectedly, the buffer occupation decreases rapidly. Then, the management VCPU reacts to
the buffer occupation lower than 40% and destroys two VCPUS. Then, the system gets balanced
again at a 40% CPU load rate.
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Figure 4.24 – Producer-consumer execution

4.2.6 Jitter measurement: Virtualized vs. Non-virtualized platform

We used a non-virtualized monoprocessed platform, executing on a MIPS processor running
the EDF scheduling algorithm. The virtualized platform is also monoprocessed and uses an ADU
for best-effort applications and another for real-time applications.

In a feasible periodic task system, each task’s computation must start after its release time
and be completed within its deadline. However, since other concurrent tasks exist and also compete
for the processor, the tasks’ execution may vary throughout the system lifetime. Thus, relatively
to a task’s release time, the maximum amount of time needed for the task to actually initiate
its execution is defined as its jitter (desired to be small and not prevent a task from meeting its
deadline). This experiment addresses jitter measurement of virtualized and non-virtualized systems.
Figure 4.25 shows a case with 90% of system load usage and it is possible to see the high similarity
between virtualized and non-virtualized systems.

As showed previously, the EDF algorithm executed in our hypervisor has higher priority than
the best-effort policy, so similar jitter values are expected. The test used a set of three real-time
tasks (correspond to three RT-VCPUs in the virtualized domain), that were generated randomly,
with a uniform distribution of its period values respecting the [20, 220] interval and a fixed system
load of 90%. We are using the EDF scheduling algorithm and deadlines are assumed to be equals
to the tasks’ periods. The sets were simulated for one million time slices as we measured the jitter
on each period and normalized the number of occurrences to plot a graph showing the Normalized
Number of Occurrences versus the Jitter in Time Slices for each real-time task, ordered by increasing
deadline. Observe that the y axis of each graph (Number of Occurrences Normalized) was plotted
on a logarithmic scale to better illustrate the behaviour since most of the occurrences are close to
1. It is important to notice that the real-time task 0 does not appear in the graph since it has the
smallest deadline the EDF scheduling algorithm guarantees its jitter to be null. This experiment’s
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results show that the real-time tasks can meet their deadlines in a virtualized system even when
sharing processing time with best-effort applications.

Figure 4.25 – Jitter measurement for system load of 90% in virtualized and non-virtualized platforms
*Task 0 does not appear in the graph because its jitter was null

4.2.7 Real-time influence on Best-effort execution: Monoprocessed vs. Multiprocessed

We propose a real-time virtualized model, where more than one CPU can be used. One of
the greatest advantages to use a multiprocessed platform with a hypervisor is to allow load balancing
for CPU usage. To demonstrate that we executed a set of synthetic best-effort applications which,
in average, needed a 72133 amount of ticks to be executed (in a non-virtualized platform). Then,
we executed this same set of applications in a mono- and a multi- processed virtualized platform.
In both cases, the ADU (named as BE-ADU) was placed along with another ADU (named as RT-
ADU). The latter instantiates RT-VCPUs in such a manner that the real-time load of the system
changes increasingly. The virtualized arrangement was implemented using (i) a single CPU, and;
(ii) two CPUs.

Figure 4.26 shows the average execution times of the best-effort application set and the
impact it suffers from the increase of the real-time load into the system. In this figure, we show the
case for both monoprocessed and multiprocessed arrangements. In the first case, it is possible to
see the penalties suffered by the best effort applications regarding the use of real-time applications.
Since we use a minimum of 10% of system load reserved to best-effort (to avoid starvation), we
could not increase the real-time load in the monoprocessed experiment above 90%. However, while
comparing to a non-virtualized approach that adopts two different processors: one for best-effort
and another for real-time handling, in spite of the (expected) increased execution time for the best-
effort applications, the virtualization approach allows to reduce area and energy consumption by
decreasing the amount of needed CPUs in the system.
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Figure 4.26 – Real-time impact onto Best-Effort execution (mono- and multi-processed virtualized
platforms)

In the second case, the curve shows that, for two CPUs, while the real-time load does
not exceed the maximum load of a single processor, the best-effort applications do not suffer any
sort of penalties. However, as soon as the real-time needs to be spread between the processor,
the best-effort applications start to be penalized. The main advantage of using virtualization in a
multiprocessed fashion consists of delegating the responsibility of load balancing to the hypervisor
while still maintaining high security levels among the application domains.

4.2.8 Case-study: porting HellfireOS to modified MIPS

HellfireOS (HFOS) [AFM+10] is a real-time, micro-kernel based, highly customizable op-
erational system. Suitable to run on low memory constrained architectures, like typical critical
embedded systems. Primarily, it was designed to run on the Plasma MIPS core. In order to support
the core modifications, some effort was necessary to modify the OS to the new vPlasma MIPS core.
However, once the HFOS is running on the vPlasma MIPS, virtualize it is straightforward due to
our full virtualization approach.

HFOS was originally designed to run on MMU-less processors. Despite the fact that
vPlasma MIPS implements a MMU, HFOS does not need to be aware on it, since the MMU
is managed exclusively by the hypervisor. Besides, HFOS is not affected by the new privileged
execution mode. The hypervisor always schedules a guest OS placing the processor in user mode.

Since the adaptations we performed in the Plasma processor to provide virtualization
follow the MIPS R3000 Application Binary Interface (ABI) specifications, the OS modifications also
follow this specification. Basically, since the rfe instruction was added to vPlasma’s ISA, some
modifications were required on the exception handler routine. Moreover, simply disabling interrupts
to guarantee atomic execution of instructions is no longer enough, and a system call primitive
(syscall) was implemented, allowing the OS to have similar functionality. On the OS implementation
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level, modifications concern exclusively the Hardware Abstraction Layer (HAL), which is the only
hardware-dependent layer of the operating system. In addition, these modifications did not impact
neither the OS’s code size nor the data memory usage.

4.2.9 Summary

This second attempt was focused on providing hardware support to vitualization. In this
attempt, we offer real-time support by using bare-metal applications. Our hypervisor implements a
scheduling strategy to offer support and future work include further investigation about two-level
scheduling and other strategies.

We have adopted a mixed approach with some hardware facilities to virtualization but
mainly we use emulation of privileged instructions. This causes some overhead and further hardware
support should also be investigated. Still, we decided to try these minimum virtualization support
we added in other MIPS-based processor, and analyze the main differences.

4.3 Third attempt - Another MIPS-processor modification

After defining the virtualization model, we had some drawbacks regarding the simulation
strategy, using VHDL and RTL simulation. The third attempt consists in using another MIPS-based
processor and we chose the MIPS 4Kc. This section details the modification and virtualization
support we added to this architecture.

4.3.1 MIPS4K modification and virtualization support

The MIPS4K family is formed by three members: the 4Kc™, 4Km™, and 4Kp™ cores. The
cores incorporates aspects of both MIPS Technologies’ R3000® and R4000® processors although they
differ mainly in the type of Multiply-Divide Unit (MDU) and the Memory Management Unit (MMU).

In this case:

• the 4Kc core contains a fully-associative Translation Lookaside Buffer (TLB)-based MMU and
a pipelined MDU;

• the 4Km core contains a fixed mapping (FM) mechanism in the MMU, which is smaller and
simpler than the TLB-based implementation used in the 4Kc core, and a pipelined MDU (as
in the 4Kc core) is also used, and;

• the 4Kp core contains a fixed mapping (FM) mechanism in the MMU (like the 4Km core),
and a smaller non-pipelined iterative MDU.
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Figure 4.27 depicts the most relevant blocks on the MIPS 4Kc core: (i) Execution Core;
(ii) Multiply-Divide Unit (MDU); (iii) System Control Coprocessor (CP0); (iv) Memory Management
Unit (MMU) and TLB; (v) Cache Controller; (vi) Bus Interface Unit (BIU); (vii) Instruction Cache
(I-Cache), and; (viii) Data Cache (D-Cache).

Among these blocks, there are a few points we need to highlight. First, the CP0 in the
responsible for controlling the TLB, the cache protocols, the processor modes of operations and
interruptions. Still, this CP0 contains 32 registers that differ from the 32 general-purpose registers
contained in the MIPS architecture. Finally, these specific CP0 registers can only be accessed
through the use of the privileged instructions mtc0 and mtf0. Whenever these instructions are
executed in User mode, a trap is generated.

Figure 4.27 – MIPS 4K core

4.3.2 Memory Management

The MMU in a 4K processor core is conceived to translate any virtual address to a physical
address before sending requests either to the cache controllers for tag comparison or to the bus
interface unit for an external memory reference. This translation is a very useful feature for operating
systems when leading the physical memory to accommodate multiple active tasks in the same
memory. Other features handled by the MMU are memory areas’ protection and the definition of
the cache protocol.

In the 4Kc processor core, the MMU is based in a TLB that consists of three address
translation buffers: (i) a 16 dual-entry fully associative Joint TLB (JTLB); (ii) a 3-entry instruction
micro TLB (ITLB), and; (iii) a 3-entry data micro TLB (DTLB). Thus, when an address is translated,
the appropriate micro TLB (ITLB or DTLB) is accessed first. If the translation is not found in the
micro TLB, the JTLB is then accessed. If there is a miss in the JTLB, an exception is taken.

Still, all the 4K processor cores support three modes of operation: (i) User mode, mostly
used for application programs; (ii) Kernel mode, typically used for handling exceptions and priv-
ileged operating system functions, including CP0 management and I/O device accesses, and; (iii)
Debug mode, used for software debugging usually within a software development tool. For sake
of simplicity, we are not considering such mode in this study.
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It is important to highlight that the address translation performed by the MMU depends
on the mode in which the processor is operating. For example, Part A of Figure 4.28 depicts the
differences between the memory segments that can be seen according to the active processor mode.
It is possible to observe that whilst, in kernel mode, several segments are available (from kseg0
to kseg3, including the kuseg), in user mode of operation, only the useg (with virtual addresses
equivalent to the kuseg segment) is available.

Figure 4.28 – MIPS 4K memory management for User and Kernel modes of operation

Virtual Memory Segments. Originally, the MIPS 4K processor contains virtual memory
segments, which are differently used depending on the mode of operation, as briefly discussed.
Figure 4.28 shows the segmentation for the 4 GB virtual memory space addressed by a 32-bit virtual
address for both user and kernel modes of operation. Initially, the core enters into the kernel mode
during reset and whenever an exception is recognized. While in Kernel mode, the software has access
to the entire address space, as well as to all CP0 registers. On the other hand, User mode accesses
are limited to a subset of the virtual address space (0x0000_0000 to 0x7FFF_FFFF) and can be
inhibited from accessing CP0 functions. Still, while in User mode, virtual addresses 0x8000_0000
to 0xFFFF_FFFF are invalid and cause an exception whenever they are accessed.

This virtual memory segments scheme, which is adopted by MIPS 4k core, is very useful
for a non-virtualized operating system. In this case, the OS can keep the user application and the
kernel isolated by running them in different segments. Typically, the user applications run in User
mode in a segment named useg, which allows the isolation of the OS software components from
user applications with possible malicious behaviour. Besides, in the 4Kc core the OS can isolate the
user applications from each other through the limited memory visibility for each application provided
by the TLB. This is adopted so a user application with unpredictable behaviour does not influence
other system applications.
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Still, an important motivation to use virtual memory segments consists in allowing the
OS to have privileged access in certain memory areas. For example, the Exception Vector (memory
address where the beginning of handler routines for exceptions are placed) located at 0x8000_0000
coincides with the start of the kseg0 segment, showed in Figure 4.28. Also, another interesting
example is the kseg1 where the cache is disabled to allow direct access to the registers of memory-
mapped I/O devices. In this case, both segments’ addresses are not eligible to be mapped by TLB,
thus, they have a fixed-mapping where both segments kseg0 and kseg1 are mapped to the physical
address 0x0000_0000.

Although the virtual memory segments scheme is strongly recommended to non-virtualized
systems, since it increases software reliability, it brings undesirable restrictions to a scenario where
virtualization is desired indeed. MIPS 4K core does not count on a special execution mode for
hypervisors and, due to the ring de-privilege situation, the only piece of software that can be executed
in privileged mode is the hypervisor itself while the guest OSs will execute in a simple User mode.

Specifically, analysing the 4K core, it means that only the first 2GB of the virtual memory
will be available to the virtual machines. A guest OS running in the User mode will not be able to
address virtual memory above 2GB. The second - and very critical - limitation can represent a major
barrier to achieve virtualization in MIPS 4K core: the fixed-mapping of kuseg0 and kuseg1 segments.
In this case, the hypervisor needs to register its exception routine under the Exception Vector address
(at 0x8000_0000) in order to take the control of the execution of privileged instructions by the guest
OS, as well as hardware interruptions, TLB misses and other system conditions.

On the other hand, a guest OS will try to register its own exception handler routine, what
conflicts with the hypervisor implementation and possibly with other guest OSs. Since the Exception
Vector is located at a fixed-mapped address, the hypervisor is not able to move the virtual address
0x8000_0000 to a different physical address attending the guest OSs’ needs. The same scenario
description can be applied to the kseg1 segment, when the hypervisor tries to virtualize a given
device.

Therefore, aiming to support full-virtualization on a MIPS 4Kc core, we propose two main
modifications on the processor’s core:

• removing all virtual memory segments, specially the fixed-address segments (kseg0 e kseg1),
and;

• disabling the TLB-Translation when the Kernel mode is active.

The removal of all virtual memory segments implies that no virtual memory address is
mapped to the physical memory when the TLB does not have a valid entry. However, once the TLB
translations have been turned on and a TLB flush routine has been executed, there is no way to
turn the TLB off again. This imposes that a valid entry needs to be kept in the TLB in order to
map the hypervisor area to the physical memory.

Such scheme is not transparent for a guest OS that tries to configure its own TLB entries.
Then, to avoid such conflicts we have modified the MIPS 4Kc core so the TLB is turned off whenever
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the Kernel mode is active. In this condition the modified core translates each single virtual address
directly to the matching physical address, thus giving full visibility of the memory only to the
hypervisor.

Finally, we extended the visibility of the virtual memory in User mode to 4GB allowing the
guest OS to require addresses above 0x7FFF_FFFF. This is necessary when the guest OS tries to
access either the Exception Vector or a memory mapped device4. The new memory map for both
User and Kernel modes are depicted in Part B of Figure 4.28.

4.3.3 Logical Memory Organization

We implemented the hypervisor also to be responsible for controlling the memory visibility
to each virtual machine using the TLB correctly. In terms of logical memory organization, Figure 4.29
depicts how we divided the implementation of our hypervisor into four different logical areas: (i)
hypervisor private area; (ii) hypervisor scratchpad, which holds the hypervisor’s stack; (iii) exception
vector that contains the MIPS 4K exception vector, and; (iv) available memory that is where virtual
machines can be allocated.

Figure 4.29 – Hypervisor memory logical organization

4.3.4 Exception Vector

MIPS 4K contains a fixed address designated for the Exception Vector starting at 0x8000-
_0000 (when the processor is operating in any mode except for the debug mode). This causes an
address conflict between the hypervisor and the guest OSs because both of them try to register their

4It is important to highlight that the guest OS executes in User mode.
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exception routine at the same address. Thus, to solve this problem it is needed to create a virtual
mapping to the guest OSs, where the physical address 0x8000_0000 is mapped to a virtual address.
So, the hypervisor can register its exception routine at the physical address 0x8000_0000 while the
guest OSs use a virtual address, as described in Figure 4.30.

Figure 4.30 – Exception Vector modification

4.3.5 Exception Return

The guest OSs run in User mode, as the MIPS 4K core generates an exception whenever
a privileged instruction is executed outside of its intended privilege level, enabling the hypervisor
to intercept such instruction and emulate it. Then, after the software emulation of the privileged
instruction occurs, the hypervisor must return the control to the guest OS. In this context, the
ERET instruction (MIPS R4000) is used to return from an exception and the return address used by
it is programmed at the EPC (Exception Program Counter). The EPC register at CP0 ($14) has the
virtual address of the instruction that was the direct cause of the exception. The hypervisor accesses
the address contained in the EPC register to find which instruction should be emulated. After this,
the EPC register is incremented to the address of the next instruction and ERET instruction is
performed. Figure 4.31 depicts which software and hardware actions are performed when a privileged
instruction needs to be executed by the guest OS.

4.3.6 Timer

For timing purposes we use the internal MIPS 4K core timer. It is programmed to generate
a hardware interruption which causes the control to be assumed by the hypervisor that is responsible
for scheduling a new guest OS.



88

Figure 4.31 – guest OS privileged instruction execution

4.3.7 Memory-mapped peripherals

Currently, our hypervisor deals with memory-mapped peripherals using either direct-mapped
or shared approaches. In the first case, the directed mapped peripheral technique is desirable when
there is a need for high performance and/or when there are real-time constraints. The hypervisor
maps the peripheral directly to a guest OS and any requests from other Guests are simply denied. In
such way, no overhead is added when the guest OS accesses its directly mapped peripherals. Thus,
the implementation of this technique consists in mapping the memory region where the peripheral
is located to its guest OS owner, by using the TLB. This guarantees that accesses to a peripheral
by its guest OS owner do not trap to the hypervisor, whereas not allowed guest OS accesses do trap
to the hypervisor, generating an exception that is treated accordingly.

The shared peripheral approach is desirable for peripherals that are needed by more than
one guest OS. For instance, serial ports or ethernet controllers can be considered as shared peripherals
because they allow connectivity to the external world and can be used by several guest OSs. This
approach requires a more complex treatment from the hypervisor point of view. A shared peripheral
does not have its memory area mapped for any guest OS specifically, that is, the peripheral memory
area is unmapped in User mode. An access to such area by a guest OS causes a trap to the hypervisor
that can identify where the request is coming from and then emulates the peripheral. This means
that the hypervisor needs to implement a device driver specifically for each shared peripheral.

A memory-mapped peripheral can be a GPIO pin, a serial port, an Ethernet controller, or
even a high-speed PCI-e peripheral. The decision concerning the placement of a certain peripheral,
if either shared or directly mapped, occurs at design-time. For instance, if Ethernet capabilities are
desired for more than one guest OS, it might be interesting to share this device. Otherwise, if a
single guest OS is the responsible for all the Ethernet communication, probably the best decision is
to map it directly. Still, high-speed or real-time constrained peripherals should be directly mapped
to a specific guest OS due to lower overhead and better response time rates.
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4.3.8 Multiprocessor concerns

Synchronization Primitive. MIPS II provides two instructions for synchronization pur-
poses: Load Linked (LL) and Store Conditional (SC). However, in the MIPS 4K core, these instruc-
tions are originally intended for single processor architectures. Therefore, to provide synchronization
among the many processors intended by our architecture, we developed a lock-based system using a
memory-mapped peripheral that guarantees atomicity for the following software layers of the system.

Inter-domain communication. Our proposal is flexible enough to work on monopro-
cessed and multiprocessed architectures. Either way, we need to provide a communication mech-
anism between Application Domain Units. The hypervisor is responsible for this support basically
performing a copy from the sender domain’s memory area into the receiver’s domain memory area.
For this to work, the guest OS must have a proper driver that understands our communication pro-
tocol, implemented to take advantages of the proposed architecture, reducing possible overheads.

4.3.9 Results

To simulate our platform we used OVP [OVP13], which is a hardware simulator written in
C language, instruction-accurate, open-source and able to simulate an entire platform. OVP offers
a large open-source model database, supporting several processor families (like MIPS, ARM and
PowerPC) besides many peripherals. Still, it performs fast simulation aiming to deliver a virtual
platform for embedded software development without the need of the real hardware platform.

In our case, the implementation of our virtualization technique requires several modifica-
tions in the processor core. Currently, we have no HDL implementation available of a MIPS 4K
core.So, we are proposing a modified MIPS 4K core that allows full virtualization to be achieved.
In this scenario, the OVP simulator and its open-source models allow us to implement the new
processor’s core behaviour and simulate our software stack.

Given the lack of a hardware implementation of the architecture and even a cycle-accurate
simulator, no real performance evaluation is possible. Thus, tests were only performed using the
OVP simulator, which does not model neither memory access nor cache timing correctly. However,
the resulting instruction counts can still be used to get an approximate idea of the performance
score, besides assuring that the implementation works as expected.

Therefore, we have determined the overhead of our implementation based in instruction
counts for three different situations: (i) privileged instructions emulation; (ii) context switching
(among virtual machines), and; (iii) device emulation (for shared devices). For cases (i) and (ii) the
guest OS execution causes a trap to the hypervisor. For the case (iii) the guest OS is preempted by
the hypervisor and, if convenient, a new guest OS is scheduled.



90

The instruction counts were obtained by configuring the OVP simulator to output the
exact sequence of instructions executed by the core in an understandable assembly code format.
Such feature increases the simulation time but is useful for a detailed analysis of the execution
sequence or for debug purposes. Following, we show a sample of the privileged instruction sequence
emulation:

1 - 0x00000070 : mtc0 t0,c0\_status
2 - 0x80000180 : sw k0,-2048(zero)
3 - 0x80000184 : lui k0,0x0
4 - 0x80000188 : addiu k0,k0,228
5 - 0x8000018c : jr k0
6 - 0x80000190 : lw k0,-2048(zero)
7 - 0x000000e4 : sw k0,-2024(zero)
9 - ...
10 - 0x00000228 : lw sp,116(k0)
11 - 0x0000022c : lw k0,104(k0)
12 - 0x00000230 : eret
13 - 0x00000074 : mtc0 zero,c0\_cause
14 - 0x80000180 : sw k0,-2048(zero)

Code line 1 contains a privileged instruction which is being executed by a guest OS5. The
processor core switches to Kernel mode and jumps to the exception vector at the physical address
0x80000180 (exposed in code line 2). The exception vector routine jumps to the hypervisor specific
handler routine (line 5) at the physical address 0x000000e4 (line 7). The specific handler routine
code was resumed among lines 7 and 11 for sake of simplicity. Then, line 12 shows the hypervisor
returning the control to the guest OS using the ERET MIPS R4000 instruction explained previously.
This instruction jumps to the address configured in the EPC register at CP0 and switches the core
to User mode. The next instruction in the guest OS is another privileged instruction (line 13) at
virtual address 0x00000074. This causes a new exception trapped by the hypervisor and a repetition
of this sequence.

Thus, analyzing the instruction count for all different instructions we emulated, we achieved
an average of 220 instructions for the emulation of a privileged instruction. We used the
same technique to determine the overhead of a context switch among virtual machines. Context
switches between applications on the same guest OS will not trap to the hypervisor and there is no
overhead. For the sake of simplicity, at the present time, we consider the round-robin scheduling
algorithm running in the hypervisor. We detected an average of 420 instructions to preempt
and schedule a new VM.

Finally, the overhead of the emulation of a shared device was determined. Our emulated
device is a UART port dedicated to communication to the external world. It represents a very
simple device, where reading or writing a byte from/to the external word consists in an access to the
0xFFFFE000 address. As discussed previously, a shared memory-mapped device is not mapped to a
specific guest OS, thus, a reading or writing performed in this specific address causes a trap to the
hypervisor, which then emulates the device. The average overhead detected is 260 instructions.

5the guest OS is being executed in User mode, since the address 0x000000070 is a virtual address
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Although this can be considered as a very optimistic result, it is important to highlight that the
more complex the device is, the higher overhead it contains.

Finally, we estimated the number of Lines of Code (LoC) needed by the entire hypervisor:
around 2KLoC written in both C and Assembly languages. In this case, around 500 lines are
described in Assembly language and represent the Hardware Abstraction Layer (HAL). The rest,
entirely written in C Language, is mainly divided in around 150 LoC dedicated to the round-robin
schedule algorithm, about 600 lines to implement the VCPU concept, Timer and IRQ emulation as
the rest is responsible for other routines.

4.3.10 Evaluation methodology

To perform our evaluation we’ve implemented a peripheral responsible only for measuring
time in microseconds. This peripheral is placed in the shared bus and each virtual machine accesses
it through emulation, with a 600-instruction overhead. This induces some extra timing to each
access that is not significant when compared to the algorithm’s results. We use HellfireOS as a
guest OS.. Other configuration details are described at each case study, as needed.

4.3.11 Processing Overhead Measurement

This test demonstrates the processing overhead of our proposal by comparing it to a non-
virtualized solution. We have implemented a CPU-bounded application that implements the classic
Hanoi Tower problem [Hay77] resolution. Results were measured from the average execution time of
one hundred iterations using a 16-piece configuration. Figure 4.32 shows the virtualization overhead
compared to the non-virtualized platform. We varied the amount of physical cores (CPUs), even in
the native execution. Then, for the virtualized platform, besides varying the amount of CPUs we
varied the amount virtual cores (VCPUs) per physical core.

Figure 4.32 – Virtualization execution overhead for the Hanoi algorithm
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Best-case scenario can be considered when we have one VCPU per CPU. In this case, the
average overhead is not significant (around 0.32%). However, in the worst case comparison, when
we have a single CPU and 8 VCPUs, the overhead grows dramatically to more than 700% since we
need to share a single physical resource between a bigger amount of VCPUs. Still, there are cases
when the total amount of VCPUs is inferior to the amount of CPUs. In these cases the average
overhead is around 0.33%, meaning that there is no significant interference of the scheduling scheme
in the overall system performance. The compromise of the VCPU per CPU ratio must be carefully
analysed by the designer in order to balance the benefits and the cost induced by the platform.

We also analysed the execution and emulation of shared peripherals. To stimulate such
problem, we analysed the relationship between the virtualization overhead growth and the amount of
UART accesses (per 100000 instructions), depicted in Figure 4.33. It is possible to see that the more
UART accesses a program performs, the more its execution overhead grows. However, we believe
that depending on the application’s behavior our virtualization overhead can still be acceptable. It
is also important to highlight that, if a given virtual machine uses extensively a given peripheral, it
could be considered to use the direct-mapping strategy, which eliminates the emulation overhead.

Figure 4.33 – Virtualization overhead at UART accesses

4.3.12 Communication Overhead Measurement

Figure 4.34 shows the results of two communication-bounded application. Firstly, the
Ping Test application is responsible only for performing message exchanges. Secondly, the Bitcount
application contains a master processor that is responsible for counting the amount of set bits in
a given array of bits using a given number of slaves to help complete the task. Both applications
are executed in virtualized and non-virtualized (native) scenarios. Since these are communicating
applications, native execution requires at least two physical cores, varying from 2, 4 and 8 CPUs.
In the virtualized environment, we’ve performed an analysis based in the VCPU per CPU ratio
(VCPU:CPU), varying from 1:1, 2:1, 3:1 and 4:1. Still, for the ping test we varied the size of each
message, since the larger the message size, the more packets are needed to send it through the
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network. Results were taken as an average of execution time needed to send one thousand messages
for each test set. For the Bitcount test we use an array size of 4096 and each VCPU as a slave
and one thousand executions for the average results. Since this test involves a lot of privileged

Figure 4.34 – Communication Test with Synthetic Application (Ping Test)

instructions to perform the communication, we observed that the overhead is equally high. Even in
the best cases, when the VCPU per CPU ratio was set in 1:1, the communication overhead was in
average 800%, due to the trap-and-emulate strategy we use. This occurs mainly due to our trap-
and-emulate strategy. We believe that some refinement in the way full virtualization is provided,
such as adding different execution modes (as similar to what Intel, AMD, and ARM have done)
would definitively decrease the overall execution overhead.

4.3.13 Mixed Scenario Measurement

Finally, the third scenario mixes the processing and communication bounded applications
to allow an analysis of the interference they cause in each other. We use the Hanoi as the CPU-
bounded application and the Bitcount communicating algorithm. Figure 4.35 depicts the execution
times in two cases: in the graph on the right side of the figure, we present the Bitcount execution
times. On the left side of the figure, we present the Hanoi execution times. For both tests, each
VCPU contains one test (1 Hanoi or 1 Bitcount) as we varied the amount of Hanois and Bitcounts
per test, also varying the amount of CPUs. Native scenario only explores one CPU per Hanoi or
Bitcount employed.

It is possible to see that the Bitcount execution suffers more interference from the amount
of CPUs employed, with a single CPU being the worst case scenario and eight CPUs being the
best-case scenario. The Hanoi execution time is also clearly affected by the increase of Bitcounts in
the system, although the processing time itself is affected by the amount of Hanois in the system
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Figure 4.35 – Mixed Scenario With Bitcount and Hanoi application’s interference in each other’s
execution time

(more VCPUs per CPU ratio) and by the time spent by the hypervisor treating the privileged
communication.

4.3.14 Discussion

These results were taken aiming to investigate the behavior of the proposed platform. We
use a hardware-assisted virtualization based in the trap-and-emulate technique. Therefore, we were
able to achieve low execution overheads depending on the VCPU per CPU ratio. Obviously, if we
are using a single CPU to execute two vCPUs, we’d expect the execution time of the application
running on the vCPU to double, at least. However, the virtualized approach would need half the
area occupied by the non-virtualized approach, and that’s a tradeoff that needs to be analysed. Also,
if we are talking about applications that could share a physical CPU (non-prohibitive overhead) but
could not coexist due to security reasons, the strong separation between Application Domains could
be a solution.

Our platform allows inter-domain communication both in mono- and multi-processed en-
vironments. For that, each Application Domain uses a network peripheral, which accesses need to
be treated by the hypervisor. The hypervisor is the module responsible for performing the actual
communication, by accessing the memory and copying the desired data. Therefore, tests with com-
munication present higher overhead. We believe that adding extra hardware support, such as extra
execution modes (like virtualization mode, proposed by Intel), duplicating certain structures (such as
the register bank, to decrease context-switch overhead), and an improving lock system (to provide
synchronization) can dramatically decrease these overheads.

Finally, by analysing these results we believe our platform is suitable for monoprocessed
and small multiprocessed environments with less than 8 CPUs (due to the shared memory strategy),
where applications with high idle time coexist with medium-intensive processing applications. This
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scenario would benefit from the consolidation offered by virtualization with acceptable penalty due
to the low amount of emulations.



96



97

5. FINAL CONSIDERATIONS

Virtualization has been usually adopted by enterprise market to better enjoy the multipro-
cessors’ computing power. Meanwhile, embedded systems used to be extremely restricted systems.
However, their current multiple functionalities lead to a non-linear growth of the software complex-
ity. In this context, many solutions are being studied, like virtualization. Mainly, the advantages
of embedded virtualization are: (i) to allow several OSs (RTOS and user OSs) to run in the same
processor; (ii) to reduce the manufacturing cost; (iii) to improve security and reliability; and (iv) to
decrease ES software development complexity.

However, despite these several advantages, the implementation of the virtualization tech-
nique can bring undesired overheads. To cope with that, most embedded systems that counted
on virtualization facilities opted for using a paravirtualization approach. Paravirtualization uses the
concept of hypercalls that must be inserted in each guest OS so that no unnecessary traps are
performed.

Indeed, paravirtualization has the ability of decreasing virtualization overheads: at the cost
of performing modification in the guest OS source code. These modification are not always simple
or trivial. They imply in greater engineering costs and can affect the the product’s time to market.

Considering that, this research has proposed the use of paravirtualization in the first at-
tempt of the virtualization model. In that first attempt we also proposed the use of virtualization to
provide cluster-based MPSoCs with application specialization and less area consumption. Neverthe-
less, analyzing the potential drawbacks of paravirtualization, we decided to investigate approaches
based in virtualization with hardware support.

In the second virtualization model attempt we decided to adopt a hardware virtualization
support. Thus, we decided to modify a MIPS-based processor to allow some virtualization support.
Our approach is a mixed version of hardware support and trap-and-emulate. We are aware of the
limitations trap-and-emulate can bring as we discuss them later. The first processor we modified
to support virtualization was a Plasma core, a MIPS I processor. We managed to successfully
implement virtualization and focused on multiprocessor and real-time support.

It is important to state that our multiprocessor support was guided by the cluster-based
MPSoC approach proposed in the first attempt. So, we use a bus-based communication system
that can be integrated in a NoC for cluster-based architectures in the future. Still, the real-time
support is a simple one, where real-time applications are delegated directly to the hypervisor that
uses a mixed scheduling approach of priority-based and EDF algorithms.

After defining a virtualization model we implemented the hardware support in a MIPS II
processor. By that time, we changed the simulation strategy by using a higher level simulation tool.
We added virtualization support to the MIPS 4Kc core and simulated other applications thanks
to the new simulation strategy. This architecture was also implemented to support multiprocessed
systems.
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The evolution of the virtualization model and this research itself investigated the possibility
of providing hardware support to virtualization in simpler cores. Multiprocessor and real-time support
were also main points of concern. However, during the final stages of this research, MIPS has
officially announced the guidelines for hardware support to full virtualization in its architectures. This
support has some similarities with ours especially regarding to memory division and management.
The main differences is that the guidelines are focused on MIPS V processors and that it focuses
on full virtualization where no emulations of privileged instructions are needed.

Therefore, our research has demonstrated its validity since MIPS itself defined hardware
support to its architecture, enabling better virtualization use. It is important to notice that, by the
time this dissertation was written, there were no commercial solutions implementing the virtualization
guidelines for MIPS processors.

Finally, this research has achieved its main goals by providing successfully an investigation
concerning the use of virtualization techniques in multiprocessed architectures of embedded systems.
There were three main attempts of a virtualization model, as from the first one we used mainly the
cluster-based idea, that guided the following models. The second attempt introduced the support to
real-time and the third attempt was able to reunite these characteristics in a more complex processor
than those used before.

5.1 Revisiting Research Questions

In the beginning of this dissertation we proposed two main questions to be addressed
throughout the research development. The first question, What is the impact of the architecture
diversity typically found in ESs in employing the virtualization technique? could be answered by
exploring related virtualization support in embedded architectures. It was possible to see some
similarities among each architecture’s strategies as well as some differences, since it must be adapted
to each architecture profile.

The second question, Considering the existing virtualization implementation approaches
in general-purpose computers, which one is more suitable for a given embedded environment? we
concluded that hardware-based approaches tend to be more successful, since they offer greater per-
formance and flexibility when represent an extension of a given architecture. Still, paravirtualization
is a suitable solution where there is no possibility of adapting the hardware itself.

5.2 Research publications

This research has successfully contributed in several aspects with the field of virtualization
in embedded systems. We proposed multiprocessor and real-time support for MIPS-based approaches
and successfully adapted two different cores for virtualization.
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Still, since this research is inserted in a broader research group, we had two main kinds
of publications: direct-related, which discuss about virtualization techniques, and; indirect-related,
which discuss improvements of the Hellfire framework and other design strategies.

List of direct-related (D) and indirect-related (I) publications1:

1. (D) Aguiar, A.; Hessel, F., "Embedded systems’ virtualization: The next challenge?," Rapid
System Prototyping (RSP), 2010 21st IEEE International Symposium on , vol., no., pp.1,7,
8-11 June 2010 doi: 10.1109/RSP.2010.5656430

2. (I) Aguiar, A.; Filho, S.J.; Magalhaes, F.G.; Casagrande, T.D.; Hessel, F., "Hellfire: A
design framework for critical embedded systems’ applications," Quality Electronic Design
(ISQED), 2010 11th International Symposium on , vol., no., pp.730,737, 22-24 March 2010
doi: 10.1109/ISQED.2010.5450495

3. (D) Aguiar, A. C. P. ; Hessel, Fabiano . Virtualização em sistemas embarcados: é o futuro?.
In: I Workshop de Sistemas Embarcados - WSE, 2010, Gramado - RS. I Workshop de Sistemas
Embarcados. Porto Alegre, 2010. p. 17-28.

4. (D) Aguiar, A. C. P. ; Hessel, Fabiano . Adapting Embedded Systems’ Framework to Provide
Virtualization: the Hellfire Case Study. In: Conferência Brasileira de Sistemas Embarcados
Críticos, 2011, São Carlos - SP. 1a Conferência Brasileira de Sistemas Embarcados Críticos,
2011.

5. (D) Aguiar, A.; de Magalhaes, F.G.; Hessel, F., "Embedded virtualization for the next gener-
ation of cluster-based MPSoCs," Rapid System Prototyping (RSP), 2011 22nd IEEE Interna-
tional Symposium on , vol., no., pp.113,119, 24-27 May 2011 doi: 10.1109/RSP.2011.5929984

6. (I) Aguiar, A. ; Johann Filho, Sergio ; Magalhaes, F. ; Hessel, F. . Introdução ao Desen-
volvimento de Software Embarcado. In: Alberto Souza, Wagner Meira. (Org.). Jornadas de
Atualizacao em Informatica. 1ed.Rio de Janeiro: PUC Rio, 2011, v. 1, p. 109-158.

7. (D) Aguiar, A.; Hessel, F., "Virtual Hellfire Hypervisor: Extending Hellfire Framework for
embedded virtualization support," Quality Electronic Design (ISQED), 2011 12th International
Symposium on , vol., no., pp.1,8, 14-16 March 2011 doi: 10.1109/ISQED.2011.5770725

8. (D) Aguiar, A.; Hessel, F., Tutorial on Embedded Virtualization: Embedded systems? Vir-
tualization: Concepts, Issues and Challenges, Quality Electronic Design (ISQED), 2012 13th
International Symposium on , 2012.

9. (I) Antunes, E.; Soares, M.; Aguiar, A.; Johann, F.S.; Sartori, M.; Hessel, F.; Marcon, C.,
"Partitioning and dynamic mapping evaluation for energy consumption minimization on NoC-
based MPSoC," Quality Electronic Design (ISQED), 2012 13th International Symposium on ,
vol., no., pp.451,457, 19-21 March 2012 doi: 10.1109/ISQED.2012.6187532

1Currently there are two conference papers in review and one article in minor review.
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10. (I) Magalhaes, F.G.; Longhi, O.; Filho, S.J.; Aguiar, A.; Hessel, F., "NoC-based platform
for embedded software design: An extension of the Hellfire Framework," Quality Electronic
Design (ISQED), 2012 13th International Symposium on , vol., no., pp.97,102, 19-21 March
2012 doi: 10.1109/ISQED.2012.6187480

11. (I) Aguiar, A.; Hessel, F., "Exploring embedded software concepts using the hellfire plat-
form in an undergraduate course," Interdisciplinary Engineering Design Education Conference
(IEDEC), 2012 2nd , vol., no., pp.96,99, 19-19 March 2012 doi: 10.1109/IEDEC.2012.6186931

12. (D) Alexandra Aguiar and Fabiano Hessel. 2012. Current Techniques and Future Trends in
ES’s Virtualization. Software Practice and Experience 42, 7 (July 2012), 917-944. DOI =
10.1002 / spe.1156 http://dx.doi.org/10.1002/spe.1156

13. (D) Aguiar, A.; Moratelli, C.; Sartori, M.L.L.; Hessel, F., "Hardware-assisted virtualization
targeting MIPS-based SoCs," Rapid System Prototyping (RSP), 2012 23rd IEEE International
Symposium on , vol., no., pp.2,8, 11-12 Oct. 2012 doi: 10.1109/RSP.2012.6380683

14. (I) Filho, S.J.; Aguiar, A.; de Magalhaes, F.G.; Longhi, O.; Hessel, F., "Task model suitable for
dynamic load balancing of real-time applications in NoC-based MPSoCs," Computer Design
(ICCD), 2012 IEEE 30th International Conference on , vol., no., pp.49,54, Sept. 30 2012-Oct.
3 2012 doi: 10.1109/ICCD.2012.6378616

15. (D) Aguiar, A.; Moratelli, C.; Sartori, M.L.L.; Hessel, F., "A virtualization approach for MIPS-
based MPSoCs," Quality Electronic Design (ISQED), 2013 14th International Symposium on
, vol., no., pp.611,618, 4-6 March 2013 doi: 10.1109/ISQED.2013.6523674

16. (I) Aguiar, A.; Filho, S.J.; Magalhaes, F.G..; Hessel, F., "Customizable RTOS to support
communication infrastructures and to improve design space exploration in MPSoCs" to appear
in Rapid System Prototyping (RSP), 2013 24rd IEEE International Symposium on , 2013

17. (I) Alexandra Aguiar, Sergio Johann Filho, Felipe Magalhaes, and Fabiano Hessel. 2013.
Communication support at the OS level to enhance design space exploration in multiprocessed
embedded systems. In Proceedings of the 28th Annual ACM Symposium on Applied Com-
puting (SAC ’13). ACM, New York, NY, USA, 1555-1556. DOI=10.1145/2480362.2480652
http://doi.acm.org/10.1145/2480362.2480652

5.3 Limitations, ongoing and future work

Our approach has some limitations. The trap-and-emulate strategy was used since the
hardware modification we made were mainly focused on memory separation of virtual machines to
provide security. We did not add a hypervisor execution mode and therefore privileged instructions
needed to be emulated. The modifications needed to add another execution mode vary with each
architecture.
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Currently, an ongoing work of the research group consists in studying the MIPS virtualiza-
tion support guidelines so that we can implement them on a processor and, subsequently, implement
a hypervisor that offers full virtualization without trapping privileged instructions from the guest
OSs.

Also, we concluded that one of the bottlenecks is the hypervisor initialization. Thus, some
efforts are being spent to optimize it. Still, we are working to provide dynamic memory allocation
for the domains, since they are currently set statically.

Regarding real-time support, we intend to use the model’s flexibility and create separate
domains and VCPUs with specific optimizations. Our currently approach combines full virtualization
and native execution but specific paravirtualization-based domains are still considered to provide real-
time. Still, more real-time algorithms must be implemented, since we now have a round-robin based
scheduling combined with EDF. Currently, only monoprocessed virtual domains are available due to
limitations regarding the guest OS we are using (Hellfire Lite OS [AFM+10]).

Finally, concerning multiprocessed environments we intend to implement the cluster-based
architecture with virtualization and compare it to another cluster-based platform that does not use
virtualization. This other platform, without virtualization, has already been developed in the research
group and will be used for further comparisons.
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