

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL

FACULDADE DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

DANIEL CAMOZZATO

A METHOD FOR GROWTH-BASED PROCEDURAL

FLOOR PLAN GENERATION

Porto Alegre

2015

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL
FACULDADE DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

A METHOD FOR GROWTH-BASED
PROCEDURAL FLOOR PLAN GENERATION

Daniel Camozzato

Dissertação apresentada como requisito à
obtenção do grau de Mestre em Ciência da Com-
putação na Pontifícia Universidade Católica do
Rio Grande do Sul.

Orientador: Profa. Dra. Soraia Raupp Musse

Porto Alegre
2015

Dados Internacionais de Catalogação na Publicação (CIP)

P192a Camozzato, Daniel

A method for growth-based procedural floor plan generation / Daniel

Camozzato. – Porto Alegre, 2015.

76 f.

Diss. (Mestrado) – Fac. de Informática, PUCRS.

Orientador: Profª. Drª. Soraia Raupp Musse.

1. Informática. 2. Modelagem Geométrica. 3. Algoritmos.

4. Computação gráfica. I. Musse, Soraia Raupp. II. Título.

CDD 006.60151

Ficha Catalográfica elaborada pelo

Setor de Tratamento da Informação da BC-PUCRS

ACKNOWLEDGMENTS

Over the past two years, I have had the privilege of working with Prof. Dr. Soraia Raupp Musse
as my advisor. This work would not have been possible without her guidance, support and patience.
Her steadfast enthusiasm and drive are a fountain of inspiration, pushing those around her to do
better.

Several others have helped me with this work. I am deeply grateful to Dr. Fernando Marson,
who provided insight into procedural generation and whose good ideas have set me on the right
path. I am also thankful for the insight and camaraderie of Dr. Leandro Dihl, with whom I shared
fruitful discussions regarding this work. I also want to show my appreciation to Dr. Adriana Braun,
who contributed expertise and helped me rethink several points of the model.

I would like to thank my fellow students, Amyr Borges Forte Neto, Cliceres Mack Dal Bianco,
Rossana Queiroz and Vinícius Cassol for their support, feedback and friendship. They have been
great labmates and helped make every day an enjoyable experience, sharing joys and woes in the
trenches. I thank my friend Elaine Golendziner for helping me juggle many thoughts and for giving
me subtle pushes in the right direction. I thank my best friend Tammie Summers not only for
countless hours of proofreading, but also for just listening to me talk. Thank you for providing all
the motivation. I must also thank my parents for providing me support, not only during this stretch,
but throughout my life. Thank you for giving me the opportunity to thrive.

I would like to thank the Post-Graduate Program on Computer Science in PUCRS for providing
me with the resources needed to complete this research, and for endeavoring to make my job easier.
In special I would like to thank Régis Escobal da Silva and Diego Cintrão for their kindliness and
patience, promptly answering my last minute questions. I would also like to thank the National
Counsel of Technological and Scientific Development (CNPq) for funding my research.

Finally, I would like to express my gratitude in writing to all those who have provided instruction
and guidance throughout my graduate career, in special professors Dr. Marcio Pinho, Dr. Fernando
Gehm Moraes, and Dr. Leandro Möller, who taught me the value of starting with baby steps.

Thank you,
Daniel Camozzato

A METHOD FOR GROWTH-BASED PROCEDURAL FLOOR PLAN
GENERATION

RESUMO

Neste trabalho apresenta-se um método procedural para criar plantas baixas levando em conta
requisitos do usuário e também o limite das paredes externas de uma construção. Primeiro, uma
grade é criada no espaço disponível. Então, cada aposento é posicionado de tal forma a ocupar uma
célula da grade, e é subsequentemente expandido, ocupando células adjacentes para alcançar seu
tamanho final. Essa abordadem baseada em crescimento pode gerar diferentes modelos de interior
que atendem aos requisitos do usuário sem depender de passos custosos de otimização. O método
proposto é capaz de lidar com uma variedade de formatos externos das paredes da construção,
incluindo polígonos não convexos. Possíveis aplicações incluem ferramentas de arquitetura e a
geração de conteúdo digital.

Palavras-chave: Algoritmos geométricos, modelagem procedural, geração de planta baixa.

A METHOD FOR GROWTH-BASED PROCEDURAL FLOOR PLAN
GENERATION

ABSTRACT

We present a procedural method to create floor plans considering user-provided requisites as well
as the constraint of a building’s exterior walls. First, a grid is created in the available space. Then,
each room is placed to occupy a single cell in the grid, and subsequently expanded, occupying adja-
cent cells to achieve its final size. This growth-based approach can generate different interior models
which follow user requisites without relying on costly optimization steps. The proposed method han-
dles a wide variety of building shapes, including non-convex polygons. Possible applications include
architectural tools and digital content generation.

Keywords: Geometric algorithms, procedural modeling, floor plan generation.

LIST OF FIGURES

Figure 2.1 A screen shot showing a building’s first person view and an overhead view of
a completely generated floor. [6] . 24

Figure 2.2 Straight skeleton with entrance doors appended (a), division into regions and
further into sub-regions to create corridors and apartments (b), a pseudo-
Voronoi/S-Space algorithm to select edges for walls (c), a finished apartment
(d) and a floor plan generated using this technique (e). [23] 25

Figure 2.3 Example of floor plan (a) containing 3 nonconnected rooms (labeled with X)
and its respective connectivity graph (b). [11] 26

Figure 2.4 The floor plan seen in Figure 2.3 modified to include a corridor (a) and its
respective connectivity graph (b). [11] . 26

Figure 2.5 The problem domain (a) and its quadrangulation (b). The given tile tem-
plates (c). Each template is shown as its base polygon and its admissible
transformations. A complete tiling generated by linear integer programming
(d). The shape registration errors are visualized in the upper-right corners.
The mesh geometry optimized to further reduce the shape registration errors
(e). [20] . 27

Figure 2.6 Two office floor plan designs. Left: corridor and room templates used during
the tiling step. Note the topological constraints for corridor placement (the
matching colored edges) and room placement (red rectangles mark door po-
sitions). Right: two different floor plans resulting from different predefined
placements of corridor root nodes. [20] . 27

Figure 2.7 Left: Modeled house based on a floor plan generated by Martin’s algorithm.
Right: Top-down view of the same house’s floor plan. [12] 28

Figure 2.8 Computer-generated building layout. Left: An architectural program gener-
ated by a Bayesian network trained on real-world data. Right: a set of floor
plans optimized for the architectural program. [13] 29

Figure 2.9 Three different floor plan layouts created by modifying the feature area posi-
tions. [26] . 30

Figure 2.10 Example for the room expansion algorithm: (a) initial room positions, (b)
rectangular growth, showing the step where the rooms have reached their
maximum size, (c) L-shape growth. [10] . 30

Figure 3.1 An overview of the proposed method. A grid is created in the available
floor plan space according to the building’s features (a). Then, each room is
placed (b) and expanded to its final size (c). Edges of the grid become walls
when the adjoining cells are occupied by different rooms. The exterior line
segments are walls (in black), windows (in cyan) and a door (in brown, also
marked with an arrow). Brown internal walls are wall on which a door may
be placed during 3D extrusion. 35

Figure 3.2 Cells containing features such as wall’s corners, windows and doors are con-
sidered eligible to receive rooms (in pink). Additional eligible cells (in green)
are made available by selecting cells tD meters away from all other eligible
cells. This is done iteratively to cover the entire grid. Note how the number
of eligible cells increases as tD is reduced (from a to c, tD = 3, tD = 2.5 and
tD = 2 meters, respectively). 38

Figure 3.3 The score associated to a set of eligible cells when a bedroom is inserted and
the window rule is in effect. A bedroom requires a window, so the window
rule sets the score of eligible cells without a window to zero (in red). Windows
are cyan line segments on the outer edge of the floor plan. 40

Figure 3.4 The score associated to a set of eligible cells when a dining room is inserted
and the window rule is in effect. A dining room does not require a window,
so the window rule only halves the score of eligible cells without a window
(in yellow). Windows are cyan line segments on the outer edge of the floor
plan. 41

Figure 3.5 The score associated to a set of eligible cells when a living room is to be
placed and the social rule is in effect. The living room is a social room, so
the social rule decreases the score of eligible cells the further away they are
from the building’s entrance (the brown line segment located on the top left
of the floor plan). 42

Figure 3.6 The score associated to a set of eligible cells when a bedroom is to be placed
and the private rule is in effect. The bedroom is a private room, so the private
rule decreases the score of eligible cells the closer they are to the building’s
entrance (the brown line segment located on the top left of the floor plan). . 43

Figure 3.7 The score associated to a set of eligible cells when a bedroom has already
been placed in the floor plan and a second bedroom is to be placed while
the elastic connection rule is in effect. The elastic connection rule attributes
higher score to eligible cells which are closer to the room that has already
been placed. 44

Figure 3.8 The score associated to a set of eligible cells when a room requisite exists
between a dining room (already placed, in magenta) and a kitchen (currently
being placed), and the hard connection rule is in effect. The eligible cells
closest to the dining room have the highest score (in green), with some lower
score further away (in yellow). Beyond the threshold tH , the score is set to
zero (in red). 45

Figure 3.9 The room expansion process’ fixing step. The red room is undergrown and
blocked along the up/down direction in the top-left corner (a). The blue
room liberates space by contracting down (b) and immediately growing (c).
The red room then expands to its minimum required size (d and e). 48

Figure 3.10 Eligible cell scores for the placement of the BED1 seed. 51
Figure 3.11 Eligible cell scores for the placement of the BED2 seed. 52
Figure 3.12 Eligible cell scores for the placement of the BED3 seed. 52
Figure 3.13 Eligible cell scores for the placement of the DIN seed. 53
Figure 3.14 Eligible cell scores for the placement of the KIT seed. 53
Figure 3.15 Eligible cell scores for the placement of the LIV seed. 54
Figure 3.16 Eligible cell scores for the placement of the BATH1 seed. 54
Figure 3.17 Eligible cell scores for the placement of the BATH2 seed. 55
Figure 3.18 Final single-cell room placement. 55
Figure 3.19 Room expansion process. Moves 1, 2, 3, 4, 5, 6, 7, 9, 10 and 11 are performed

during the first expansion step. Moves 16, 19 and 20 are performed during the
second expansion step. The stricken numbers are steps in which no expansion
was performed. 56

Figure 3.20 The final floor plan, with a corridor (in grey) and walls where internal doors
are to be placed (the brown line segments between rooms). 56

Figure 4.1 A floor plan generated by an architect (a) and three floor plans generated
with a similar architectural plan (b-d). The brown line segments between
rooms are walls on which an internal door is to be placed. 58

Figure 4.2 The connection trees for the floor plans seen in Figure 4.1. 58
Figure 4.3 An input building with diagonal walls, with its resulting grid (a) and an

example floor plan (b). 59
Figure 4.4 Outlines a-h used in the measurements. 61
Figure 4.5 Outlines i-q used in the measurements. 62
Figure 5.1 Floor plans which are valid, but might be considered unrealistic. 65

LIST OF TABLES

Table 2.1 Taxonomy for procedural floor plan generation methods 31
Table 3.1 Variables used in the method. 36
Table 4.1 The area occupied by each type of room in the floor plans seen in Figure 4.1. 57
Table 4.2 Measurements for the outlines seen in Figure 4.4(a-h) after a thousand exe-

cution attempts. 63
Table 4.3 Measurements for the outlines seen in Figure 4.5(i-q) after a thousand exe-

cution attempts. 64

SUMMARY

List of Figures 13

List of Tables 17

1. INTRODUCTION 21

2. RELATED WORK 23
2.1 Subdivision algorithms . 23
2.2 Tile placement algorithms . 25
2.3 Inside out algorithms . 26
2.4 Growth-based algorithms . 28
2.5 A taxonomy for procedural floor plan generation methods 30
2.6 Comparison with state-of-the-art methods . 31

2.6.1 Subdivision . 32
2.6.2 Growth-based . 32
2.6.3 Inside out . 32
2.6.4 Tile placement . 33

3. MODEL 35
3.1 Input . 35
3.2 Grid generation . 37
3.3 Room placement . 37

3.3.1 Determining eligible cells . 38
3.3.2 Scoring eligible cells . 38
3.3.3 Selecting an eligible cell . 45

3.4 Iterative room expansion . 46
3.4.1 Scoring expansion options . 46
3.4.2 Selecting an expansion option . 47
3.4.3 Expansion steps . 48

3.5 Full example . 49

4. RESULTS 57
4.1 Evaluation . 57

4.2 Discussion of the algorithm’s behavior . 57
4.3 Measurements . 59
4.4 Effect of the rules . 60

5. CONCLUSION 65

REFERENCES 67

A. PUBLICATIONS 71

B. CONFIGURATION FILES 73
B.1 Building’s outline . 73
B.2 Room and connection requisites . 74
B.3 Wall length threshold tW and distance threshold tD 76

21

1. INTRODUCTION

Computer graphics applications require models which are commonly created by hand using 3D
modeling software. In architecture and engineering, this consists of creating 3D buildings from floor
plans to provide a preview of the interior and exterior of unbuilt buildings. In video games, a similar
task is performed for the creation of game levels. Such tasks are nontrivial, requiring skill and time.

Several solutions have been proposed in the literature to attenuate the modeling cost. For
architectural applications, an automated system that converts 2D architectural floor plans to 3D
computer graphics models can be used (see Yin et al. [31]). In video games, procedural algorithms
can be used to generate content (see Hendrikx et al. [7]), including virtual environments such as
cities (e.g. [8,19,28,29]), buildings (e.g. [5,16,17,32]) and furniture (e.g. [4,14]). Further, research
has been conducted on the integration of semantic data with procedural generation techniques, to
provide design tools and enable the use of procedurally generated models in simulations [27]. Other
methods that use procedural modeling were also covered in a recent survey by Smelik et al. [25].

Several methods have also been presented to provide the interior 3D model of buildings, perform-
ing an automated generation of floor plans. One motivation to generate floor plans procedurally for
predetermined building shapes is that procedural building generators often create hollow shells, with-
out a 3D model for the interior. To create a complete building an interior must be generated [25].
A second motivation is the planning and optimization of real-world architectural layouts, a problem
often tackled from the layout optimization standpoint (e.g., [2, 15, 24,30]).

Four main categories of procedural floor plan generation methods can be distinguished in recent
research work. The first type takes the boundaries of a building and subdivides the internal space to
create rooms. Examples for this type of method include the works by Noel and Siobhan [18], Hahn
et al. [6], Rinde and Dahl [23], Marson and Musse [11] and Liu et al. [9]. The second type takes the
inverse approach, creating the building from the inside out. Rooms are placed according to room
connection constraints, without using a building’s boundaries as a constraint. Rather, the building’s
exterior appears as a result of the room layout. This is exemplified in the methods presented by
Martin [12] and Merrell et al. [13]. The third type of floor plan generation method distributes room
seeds within the building’s boundaries, and grows rooms iteratively to their final size, occupying the
internal space. Examples of these growth-based methods are presented by Tutenel et al. [26] and
Lopes et al. [10]. The final type is exemplified in the work by Peng et al. [20], which tessellates
a domain into a quadrilateral mesh and completely covers the domain with tiles which in this case
represent rooms.

Each approach has advantages and disadvantages. The subdivision approach is efficient and
straightforward, but it does not provide ample control over room shapes and connections in the
resulting domain partition. The resulting layouts either ignore room types and connections (e.g. [23])
or are only suitable for regular outline shapes (e.g. [9,11]). The second approach, which consists of
generating the building from the inside out, can be used to generate realistic floor plans, but has

22

limited use since it cannot be applied to buildings with predetermined exteriors. The tile placement
approach presented by Peng et al. [20] can generate a floor plan for an arbitrary building exterior,
covering the available space with tiles which represent desired room shapes, but it does not provide
control over how and where tiles will be placed. Finally, growth-based algorithms avoid costly
stochastic optimization steps, but need to solve problems which may arise from bad initial room
placements. For example, two rooms which are meant to be adjacent may remain separate in the
floor plan due to the interference of a third room’s growth. Also, a room may fail to grow to an
acceptable size if other rooms which surround it impede its growth.

In this work, we present a growth-based procedural floor plan generation method. The objective
of this algorithm is to generate floor plans respecting both the external features of a building (walls
and openings) and a user-provided set of requisites for the architectural plan (the number and types
of rooms, and connections between rooms).

Our first contribution is the use of an irregular grid which is created considering the exterior
walls and openings of the building. This results in room placement and growth that snaps to
features of the building, creating more realistic floor plans than with an arbitrary regular grid. The
second contribution is a method to generate floor plans which follows user requirements for room
connections and shapes without the need for a deliberate room connection diagram, such as what is
used in other methods (e.g. [11, 13]). This is achieved with an algorithm that makes it more likely
for rooms to be placed close together when proximity is desirable, without enforcing adjacency. The
third contribution is an alternative to the room expansion algorithm presented by Lopes et al. [10],
which does not guarantee that rooms will expand to a minimum requisite size, nor provides control
over the room’s final shape. Our method guarantees that rooms will acquire a minimum length and
width.

The remainder of this document is organized as follows: Chapter 2 presents and discusses the
related work which serves as a base for this research. Chapter 3 presents the proposed procedural
floor plan generation method. Chapter 4 discusses the results. Finally, Chapter 5 presents our final
considerations.

23

2. RELATED WORK

For the purposes of this study, we focus our review on methods that generate the interior
distribution of rooms for buildings, or floor plans. Several different techniques are presented and
detailed in the following sections, followed by a taxonomy based on their characteristics.

2.1 Subdivision algorithms

A method for generating the interior floor plan for office buildings in real-time is presented
by Hahn et al. [6]. Their research focuses on generating rooms and floors based on the user’s
position, and removing from memory rooms that are no longer visible. This avoids unnecessary use
of memory and processing, allowing the procedural generation process to handle large buildings with
many different rooms (e.g., skyscrapers).

The process also provides a persistent environment. A discarded room can be restored to its
previous configuration by reusing the same random seed that was originally used in its creation,
followed by reapplying all changes which may have been made by the user to its objects. All changes
made in a given region are stored in a hash map when a region is removed from memory.

The process generates grid-like layouts (see Figure 2.1) through random splitting with axis-
aligned planes. Eleven rules serve as a guideline to avoid inconsistencies in the regeneration system
and to produce valid interiors (for example, one rule ensures that all rooms can be accessed from
the entrance).

Buildings created by this technique are divided into rectangular regions connected by portals.
Starting from the building’s outline, the process first positions all elements that span across multiple
floors, such as elevator shafts and staircases. The process then splits up the building into a number
of floors. On each floor a hallway subdivision is applied, creating straight hallway segments or
rectangular hallway loops. Finally, the interior spaces are subdivided into rooms, and appropriate
objects are placed within.

Rinde and Dahl [23] present a method which performs a subdivision of a building’s exterior
outline. The input data are the the outer wall of the structure and the positions and sizes of any
windows and doors. Other parameters are used to control the result of the algorithm in a variety of
ways, ranging from corridor width to which types of regions and rooms the building should contain.

First, a building skeleton is generated from the input data to facilitate the analysis of the
building’s shape, as well as the construction of interior transition areas, such as corridors. This is
achieved using a modified version of the straight skeleton algorithm [3], which produces a skeleton
for a polygon. In this case, all exterior walls are pushed inwards at a constant rate and a skeleton
edge is created where two walls meet. Doors are created from edges traced perpendicular from the
skeleton (see Figure 2.2 (a)).

After the skeleton has been built the corridors within the building are placed. This is the

24

Figure 2.1: A screen shot showing a building’s first person view and an overhead view of a completely
generated floor. [6]

Transition Area used to gain access to all parts of the interior. Regions making up the maximum
continuous areas are created and used for further sub-region division. The sub-regions represent the
boundaries of a collection of rooms (e.g. apartments) (see Figure 2.2 (b)). The room walls are
built using a hybrid weighted pseudo-Voronoi/S-Space algorithm (see Figure 2.2 (c)), where the cell
boundaries of a Voronoi diagram are used to select suitable S-Space edges for walls (see Figure 2.2
(d)). Finally, rooms are built using the resulting room walls. During this process a graph of potential
neighboring rooms is also constructed, which is then used to allocate room types and place doors
between rooms. Figure 2.2 (e) shows a floor plan generated from exterior walls.

Marson and Musse [11] present a method that subdivides the available footprint using the
squarified treemaps algorithm (see Bruls et al. [1]), such that the subdivision process attempts to
maintain each room with an aspect ratio of one. The inputs for the algorithm are the dimensions of
the building, the desired width and length for each room, and the type for each room, which defines
the possible connections between rooms.

The first step in the process applies the squarified treemap algorithm to divide the building’s
area into three zones: the social, private, and service zones. The second step applies the squarified
treemap again to each zone, creating rooms. Once the rooms have been created, the connections
between rooms are placed according to a connection tree. The final step is to verify that all rooms
can be accessed from the entrance. If a room cannot be accessed (see Figure 2.3), the process
creates a corridor (see Figure 2.4).

25

Figure 2.2: Straight skeleton with entrance doors appended (a), division into regions and further
into sub-regions to create corridors and apartments (b), a pseudo-Voronoi/S-Space algorithm to
select edges for walls (c), a finished apartment (d) and a floor plan generated using this technique
(e). [23]

2.2 Tile placement algorithms

Peng et al. [20] present a method for tiling a domain with a set of deformable templates, such
that the domain is completely covered and the templates do not overlap. The method breaks the
layout algorithm into two steps: a discrete step to layout the approximate template positions and
a continuous step to refine the template shapes. In the first stage, the domain and templates
are tesselated into quadrilateral meshes (see Figure 2.5 (a), (b) and (c)). A gap-free tiling of
the quadrangulated domain with graph-isomorphic copies of the quadrangulated templates is found
by an integer programming approach (see Figure 2.5 (d)). Since the shape of a placed tile may
deviate from the source template, the tiles are optimized by a continuous quadratic optimization
until convergence or until a time limit is reached (see Figure 2.5 (e)).

The approach is suitable for a wide range of layout problems, including the generation of floor
plans of large facilities such as offices, malls, and hospitals. During the integer tile placement,
additional topological constraints are used to enforce corridor placement and room accessibility.
The accessibility criteria is met by using corridor tiles that connect the room tiles to the building
entrances or elevators. The aesthetic criteria is met by the admissible transformations of the room
templates. The corridor templates are realized by a multi-level branching tree constraint (note the
colored borders for corridor templates and red doors in Figure 2.6). Figure 2.6 shows two different
office floor plan designs resulting from different predefined locations of the corridor root nodes.

26

Figure 2.3: Example of floor plan (a) containing 3 nonconnected rooms (labeled with X) and its
respective connectivity graph (b). [11]

Figure 2.4: The floor plan seen in Figure 2.3 modified to include a corridor (a) and its respective
connectivity graph (b). [11]

2.3 Inside out algorithms

Martin [12] presents an algorithm to generate floor plans for residential buildings (see Figure 2.7).
The process consists of three main stages.

In the first stage, the basic structure of a house is represented by a graph in which each node
corresponds to a room, and each edge corresponds to a connection between rooms. The graph itself
is generated by using the front door as a root node, followed by adding all public rooms, and finally
adding all private rooms. The specific room types are not initially assigned, but defined immediately
after the public rooms have been distributed, according to a set of user-informed attributes.

At the beginning of the second stage, every room has been assigned a type and the connections

27

Figure 2.5: The problem domain (a) and its quadrangulation (b). The given tile templates (c).
Each template is shown as its base polygon and its admissible transformations. A complete tiling
generated by linear integer programming (d). The shape registration errors are visualized in the
upper-right corners. The mesh geometry optimized to further reduce the shape registration errors
(e). [20]

Figure 2.6: Two office floor plan designs. Left: corridor and room templates used during the tiling
step. Note the topological constraints for corridor placement (the matching colored edges) and
room placement (red rectangles mark door positions). Right: two different floor plans resulting
from different predefined placements of corridor root nodes. [20]

between rooms have been determined, but the rooms are not yet located in space. The second stage
generates the 2D position of each room from the graph generated in the first stage. To do this, the
process treats the graph as a tree with its root at the room that adjoins the front door. From this
root, each child node is evenly distributed adjacently, with equal distance from each other and from
the root. The process is then repeated for each of the children nodes.

In the third stage, the rooms are expanded to their final size. Each room exerts an outward
"pressure" that is proportional to the size the room needs to be. Thus, each room expands to
occupy the remaining building space. If a wall is shared by two rooms, the algorithm considers the
pressure inside and outside, to determine whether the room will expand.

Merrell et al. [13] present a method to generate realistic residential building floor plans from

28

Figure 2.7: Left: Modeled house based on a floor plan generated by Martin’s algorithm. Right:
Top-down view of the same house’s floor plan. [12]

high-level user specifications. They identify that the rules used by architects are too numerous and
ill-specified to be modeled by a hand-designed rule-based system. So, instead, they apply machine
learning techniques. A Bayesian network is trained with data from real-world buildings to infer
aspects of architectural design which are subjective and difficult to codify. Such data includes, for
example, which types of room are often adjacent, the room area and aspect ratio, and whether the
adjacency is open or adjoined by a door.

In the first stage of the procedural generation process, a sparse set of high-level requirements
is defined in a flexible manner. There are requirements such as the number of bedrooms, or the
approximate square footage. Then, the Bayesian network is used to expand the requirements into a
complete architectural program, describing room adjacencies and the desired area and aspect ratio
for each room.

The second stage turns an architectural program into a detailed floor plan for each of the
building’s floors. This is achieved through stochastic optimization over the space of possible building
layouts [22].

At each iteration of the algorithm, a new building layout is generated with local and global
reconfigurations that significantly alter the overall layout. A reconfigurated layout is achieved through
two types of moves: sliding walls and rooms swaps. The cost function that evaluates the quality of
the proposed layout takes into account the accessibility, area, aspect ratio and shape for each room,
as well as a term to penalize irregularity in the outline of each floor. Figure 2.8 presents the floor
plan optimized for a given architectural program.

2.4 Growth-based algorithms

Tutenel et al. [26] propose an growth-based floor plan generation method. Each different type
of room is defined as a class in a semantic library, and for each class several relationships can be
defined. The relationships determine which room-to-room adjacencies are permitted, but can also

29

Figure 2.8: Computer-generated building layout. Left: An architectural program generated by a
Bayesian network trained on real-world data. Right: a set of floor plans optimized for the architec-
tural program. [13]

define additional constraints, such as requiring that a garage be placed facing the street.
To place the rooms, two steps are performed. First, rectangles called feature areas are placed at

locations where all class relationships are met. Then, all rooms expand iteratively until they touch
other rooms.

Figure 2.9 presents three floor plan layouts created by feature areas being placed differently inside
a fixed-shape building. To place the feature areas, certain rules are followed. For example, in this
case, the hall must connect to the street-side exterior wall (seen at the bottom of the image), and
the living room must be placed adjacent to the kitchen.

This algorithm also uses the semantic library to determine relationships and constraints which
serve as a guide to distribute objects (such as furniture) on the floor plan. All the possible placement
positions are determined by considering the object’s requirement, such as the clearance space required
around an object, or the necessity of being placed against a wall.

Lopes et al. [10] note that previous techniques cannot handle irregular room shapes, for example,
L-shaped or U-shaped rooms. They propose a grid-based expansion algorithm which grows rooms
within a building layout.

The inputs to the process are the grid cell dimension in meters, a list of rooms to generate,
adjacency and connectivity constraints, and for each room, its house zone (public, private or hallway)
as well as its preferred area.

To generate a floor plan the following steps are followed. First, the algorithm divides the floor
plan space by generating private and public zones.

Second, the room placement phase is performed. For this process, a separate grid of weights

30

Figure 2.9: Three different floor plan layouts created by modifying the feature area positions. [26]

is created. Initially, each cell outside the building receives a weight of zero, and each cell inside
receives a weight of one. The weights in each cell are then modified as needed, according to the
restraints. For example, to guarantee that a given room connects to the outside of the building, the
cells which do not connect outside receive a weight of zero. Based on these grid weights, one cell
is selected to place a room’s seed.

The third step expands the rooms. The algorithm picks one room at a time and attempts to
grow it one step. Rooms which require a larger area are selected more frequently, expanding faster.
When all rooms have been expanded to their maximum rectangular shape, the process attempts
to expand the rooms in a L-shape. In a final step, the algorithm scans the grid for empty cells
and assigns them to a nearby room, filling the gaps. Figure 2.10 shows an example of the output
generated by the expansion process.

Figure 2.10: Example for the room expansion algorithm: (a) initial room positions, (b) rectangular
growth, showing the step where the rooms have reached their maximum size, (c) L-shape growth. [10]

2.5 A taxonomy for procedural floor plan generation methods

The previous sections presented a review of different approaches that can be applied to procedural
floor plan generation. We propose a taxonomy to classify these methods according to the following
characteristics:

• Type: the type of procedural floor plan generation. The types are subdivision, tile placement,

31

inside out and room growth. Subdivision algorithms take the boundaries of a building and
subdivide the interior space to create rooms. Tile placement algorithms partition the domain
and place tiles representing rooms upon the resulting grid. Inside out algorithms distribute
rooms according to room connectivity requisites, without using a building’s boundaries as a
constraint. Growth-based algorithms distribute room seeds within a building’s boundaries, and
grow rooms iteratively to their final size, occupying the interior space.

• Outline constraint: determines whether a predetermined building exterior serves as a con-
straint, and if so, what kind of shape the building can take. Some methods do not accept a
building exterior as a constraint, some accept rectangles, some accept non-convex axis-aligned
polygons and some accept arbitrary polygons.

• Window constraint: determines whether the method uses windows as a constraint for room
placement.

• Room requirements: this concerns whether user-provided requirements for a room’s shape
and placement in the floor plan are respected by the method.

• Connection requirement: determines whether user-provided connection requirements (for ex-
ample, the need for two rooms to be adjacent) are respected by the method.

Table 2.1 provides an overview of the reviewed methods, classifying each according to the pro-
posed taxonomy.

Table 2.1: Taxonomy for procedural floor plan generation methods

Method Type Outline const. Window const. Room req. Connect. req.
Martin 2006 Inside out No No Yes No
Hahn 2006 Subdivision Rectangle No No No
Rinde 2008 Subdivision Arbitrary Yes No No

Tutenel 2009 Room growth Axis-aligned No No Yes
Marson 2010 Subdivision Rectangle No Yes No
Lopes 2010 Room growth Axis-aligned No No Yes
Merrell 2010 Inside out No No Yes Yes
Peng 2014 Tile plac. Arbitrary No No No

Our method Room growth Arbitrary Yes Yes Yes

2.6 Comparison with state-of-the-art methods

In this section, we present a comparison of our algorithm with what we consider to be the state-
of-the-art in each procedural floor plan generation approach (subdivision, growth-based, inside out
and tile placement).

32

2.6.1 Subdivision

The method presented by Rinde and Dahl [23] has in common with our method that it also uses
an initial interior partition to determine likely positions for walls. However, the process employs a
subdivision approach rather than room growth. Their approach is flexible, generating floor plans
for arbitrary shapes. However, the interior divisions are performed without regard for the required
room sizes or a user-provided topology. Rather, room types are assigned at the end, by analyzing
the connection graph obtained as a result of subdivision. In contrast, our algorithm creates floor
plans by following user requirements from the start.

2.6.2 Growth-based

The method presented by Lopes et al. [10] is the most similar to ours, but there are several
differences. First, their algorithm grows rooms using a regular grid with square cells. Thus, the
room’s growth follows the arbitrary length of the grid’s cells. Our approach uses an irregular grid
created according to the building’s features. Thus, rooms grow according to the characteristics of
the building, not arbitrarily.

Second, our algorithm uses both exterior walls and openings (windows and doors) as constraints,
while the algorithm by Lopes et al. uses only exterior walls. This effectively means that their
algorithm must place openings last, as a result of the procedurally generated floor plan, while our
algorithm considers predetermined positions for openings and is capable of generating a floor plan
for an existing building.

Finally, in Lopes et al., the only control provided for the room expansion process is that the
higher a room’s priority is set, the more it will grow. For example, a room with priority set to be
twice as high as another will grow to be twice as big. Their algorithm does not provide any control
over the final shape of the room, nor does it guarantee that a room will achieve a minimum size. In
our approach, rooms are expanded at least to the the minimum requisite size, and further expanded
to a target user-defined width and length. This prevents the creation of small, non-functional rooms.

2.6.3 Inside out

The method presented by Merrell et al. [13] generates realistic results by applying stochastic
optimization to an architectural plan which is automatically generated by a Bayesian network which
is trained with real-world buildings. These architectural plans consist of a tree structure, with
nodes representing rooms and edges representing connections between rooms, along with other
information such as the required room aspect ratios and sizes. However, their method does not use
a predetermined building exterior as a constraint. It is not clear how rooms can be fitted inside an
arbitrary shape while still keeping intact the room connections defined in the connection tree. Our
approach avoids this problem by doing away with the connection tree and instead making it more
likely for rooms to be placed close together when necessary, without enforcing adjacency.

33

A second difference is that our algorithm does not use an optimization process. Our approach
does not intend to find the optimal floor plan, but rather a floor plan that respects the user-provided
requirements and the building’s exterior features at the same time. By avoiding costly optimization
steps, our algorithm execution time remains low, while Merrell et al. report upwards from 30 seconds
for the floor plan optimization time.

2.6.4 Tile placement

The method by Peng et al. [20] is capable of covering a mesh of quadrilaterals by using a set of
tile templates. Their algorithm can be used for any layout problem requiring full coverage without
gaps. Concerning floor plan generation, their approach is to use tiles which represent desired room
shapes which must occur, and topology rules ensure room connectivity. The result is a large-scale
distribution of tiles which resemble a building’s floor plan.

The aesthetic component is preserved through the use of templates, which results in the desired
shapes being placed within the domain. However, there is no control over where exactly a template
will be added, nor how often it will be repeated. Thus, it cannot follow a specific set of user
requirements for the number or placement of rooms. On the other hand, the algorithm is similar
to ours in that no connection tree is used, and it could perhaps be modified (by adding more
constraints) to provide more control over room quantity and placement.

34

35

3. MODEL

The proposed method for procedural floor plan generation uses a growth-based approach. First,
a grid is created in the available floor plan space (see Figure 3.1(a)). Then, each room is placed
to occupy a single cell in the grid (b), and subsequently expanded to occupy adjacent cells until
the room achieves its final size (c). Edges of the grid become walls when the adjoining cells are
occupied by different rooms.

Figure 3.1: An overview of the proposed method. A grid is created in the available floor plan space
according to the building’s features (a). Then, each room is placed (b) and expanded to its final
size (c). Edges of the grid become walls when the adjoining cells are occupied by different rooms.
The exterior line segments are walls (in black), windows (in cyan) and a door (in brown, also marked
with an arrow). Brown internal walls are wall on which a door may be placed during 3D extrusion.

For ease of reference, we have summarized all the variables used in this chapter in Table 3.1.

3.1 Input

The floor plan generation algorithm requires three inputs: a building’s outline (its external walls
and openings), user-provided room requisites RR and connection requisites RC . The algorithm
places and expands one room for each RR defined by the user, and each connection requisite RC

refers to two different RR which must be kept adjacent. These requisites form an architectural plan
describing the number and type of rooms that must exist in the floor plan, as well as any room
adjacencies.

36

Table 3.1: Variables used in the method.

Variable Description
Ko Total score of the expansion o regarding RR

kbo Blocked direction rule’s partial score for o regarding RR

kno Necessity rule’s partial score for o regarding RR

kwo Window waste rule’s partial score for y regarding RR

o An expansion option (either up, down, left or right)
Po Probability for an expansion option o to be selected
Py Probability for an eligible cell y to be selected
RC Connection requisite
RR Room requisite
Sy Total score of the eligible cell y regarding RR

sdy Entrance door rule’s partial score for y regarding RR

sey Elastic connection rule’s partial score for y regarding RR

shy Hard connection rule’s partial score for y regarding RR

sky Small window rule’s partial score for y regarding RR

spy Private rule’s partial score for y regarding RR

ssy Social rule’s partial score for y regarding RR

swy Window rule’s partial score for y regarding RR

tD Distance threshold (for eligible cells)
tW Wall length threshold
y An eligible cell where a room can be placed

Room requisites have the following attributes: type (either social, private or service), mini-
mum/maximum width, length and area, window necessity, and a priority to determine the order in
which rooms are placed and expanded. Unlike other algorithms (e.g., Marson and Musse [11] or
Merrell et al. [13]), our algorithm does not use a explicit connection tree to predefine the adjacencies
of rooms in the floor plan. Rather, during room placement (see Section 3.3), rooms may (or may
not) be more likely to be placed close together. Only rooms defined in connection requisites RC are
guaranteed to be adjacent. For example, a connection requisite may be used to keep a kitchen and
a dining room adjacent in the floor plan.

Walls and openings are received as a list of typed line segments forming a non-convex polygon.
These typed line segments are used by the grid generation process (see Section 3.2) to create the
irregular grid used for room placement and expansion.

The objective of the presented algorithm is to create a floor plan within the boundaries of the
building’s exterior walls while expanding rooms to at least their minimum size and keeping rooms
defined in requisites RC adjacent. If the algorithm is successful, it manages to fulfill all RR and all
RC and the resulting floor plan is considered valid.

37

3.2 Grid generation

To create a grid in the floor plan space we use the partition proposed by Peponis et al. [21]
which is obtained by extending all exterior lines meeting at reflex angles (see Figure 3.1(a), in red).
The extended lines form an irregular axis-aligned grid, created according to the building’s features.
Internal walls are often guided by features of the external walls rather than protruding randomly
within a floor plan. Thus, the edges of this grid are natural positions for internal walls.

Note that in our approach diagonal elements do not extend lines and the grid remains axis-
aligned even if diagonal walls are present in the input. Elements such as diagonal walls and openings
otherwise exist normally in the cells in which they occur. Further, a line cannot be extended into an
opening because the lines in the grid may become walls, and a wall cannot be built into a door or
window. If such a line is created, it instead extends up to the last line before the opening (see the
dashed lines in Figure 3.1(a)).

Windows are resources in a floor plan and may need to be assigned to different rooms. Thus,
to keep windows in different cells of the grid, lines are additionally extended perpendicular to the
midpoint of each line segment that separates two openings (see Figure 3.1(a), in blue).

Depending on the exterior features of the building, the above partition rules may not be sufficient
to create an acceptable grid for the proposed algorithm. For example, for a rectangular building
where all windows lie on one side, the resulting grid is a set of long parallel slices. Thus, we
additionally extend a line perpendicular to the midpoint of any wall segment which is longer than a
threshold tW (see Figure 3.1(a), in green). This is done recursively until no wall segment is longer
than tW .

Increasing tW allows for longer walls to remain without subdivision, which results in a coarser
grid. A coarser grid decreases the accuracy of the room expansion process, but favors snapping the
internal walls to lines extended from exterior features of the building, which is preferable for internal
walls. Conversely, decreasing tW creates a finer grid which allows greater control for the room
expansion process, but decreases the chance of snapping to lines extended from exterior features
of the building. Thus, tW is a variable which must be tuned to balance competing needs (fine
control of the expansion vs. snapping to more meaningful grid lines). In our results, we empirically
determined tW = 1.8m to be a good balance between these needs.

Note that the grid created by this step is irregular, presenting edges according to the buildings’
features, rather than at arbitrary steps along the X and Y axis.

3.3 Room placement

The room placement step creates a room occupying a single cell for each user-provided room
requisite RR. These single-cell rooms are expanded to their final size in a later step (see Section 3.4).

38

3.3.1 Determining eligible cells

To place rooms in the grid, we first create a list of grid cells which are considered eligible to
receive rooms. The purpose is to limit the options for room placement and ensure that rooms will
be placed with sufficient distance from one another to be allowed to grow.

In a first step, we select every cell containing a door or a window. We consider these prime
locations for rooms because it is advantageous to place rooms in cells containing features of the
building. However, since this step only selects cells containing features of the exterior wall, additional
cells must be made eligible to populate the inside of the building.

We use a threshold distance tD to select the first cells which are at least tD meters distant from
the previously selected cells. We repeat this process iterativelly to cover the entire grid evenly, until
all cells are within approximately tD meters from an eligible cell.

Figure 3.2 presents an example of eligible cells selected for different values of tD. Lower thresholds
result in a larger number of eligible cells, allowing more rooms to be placed. However, each room
is also given less space to expand, and prime positions (in pink) lose importance, becoming less
likely to be chosen during room placement. We empirically determined tD = 2.5m to generate good
patterns of eligible cells, providing enough eligible cells for rooms to be placed and enough room for
rooms to expand.

Figure 3.2: Cells containing features such as wall’s corners, windows and doors are considered eligible
to receive rooms (in pink). Additional eligible cells (in green) are made available by selecting cells
tD meters away from all other eligible cells. This is done iteratively to cover the entire grid. Note
how the number of eligible cells increases as tD is reduced (from a to c, tD = 3, tD = 2.5 and tD = 2
meters, respectively).

Using a different threshold tD modifies the number and distribution of eligible cells, leading to
different room placement and expansion possibilities. A specific tD values may be more suitable to
a given building. However, the results of such adjustments are non-trivial to predict.

3.3.2 Scoring eligible cells

When a room is to be placed, each unoccupied eligible cell y receives a score S according to
how well the eligible cell fulfills the needs defined in the room requisite RR. The score for an eligible
cell y is:

Sy = swy ssy spy sey shy sdy sky, (3.1)

39

where swy, ssy, spy, sey, shy, sdy and sky are factors weighed between 0 and 1 referring to scores
associated with different rules. Note that Sy also lies within this range. Each score Sy is calculated
for a specific room requisite RR. Therefore, after each room is placed in the grid, all scores are
reset and must be calculated again.

Some rules only apply under certain conditions; for example, spy is valued by the private rule
which only affects room requisites RR with the private type. Whenever a rule does not apply, its
associated score is considered to be 1.

Window rule

The purpose of the window rule is to make it more likely for rooms to be placed in eligible cells
that contain a window. Any eligible cell without a window has its score halved. Further, if the
room requisite RR determines that a window is absolutely required, then any eligible cell without
a window has its score set to zero. For example, each bedroom explicitly demands a window, so
eligible cells without windows have their score set to zero when the bedroom is placed.

The score sw for an eligible cell y is:

swy =

1, if a window is present in y,

0.5, if a window is not required and is not present in y,

0,otherwise (if a window is required, but is not present in y).

(3.2)

Figure 3.3 shows the scores assigned to each eligible cell when a bedroom is to be placed while
the window rule is in effect. Scores go from lowest (in red) where there are no windows to highest
(in green) where there is a window present. Figure 3.4 shows the scores when a dining room is to
be placed, instead. The dining room, unlike the bedroom, does not need a window. Thus, the score
for eligible cells without windows is only halved (in yellow), compared to eligible cells containing a
window (in green).

Social rule

The purpose of the social rule is to make it more likely for social rooms (e.g., the living room)
to be placed near the entrance of the building. This rule only affects room requisites RR which are
of the social type (it does not apply to rooms of the service and private types). The further away
the eligible cell is from the entrance, the lower its score will be for the social room.

The score ss for an eligible cell y is:

ssy = 1− dist(celly, cellD)
(maxi (dist(celli, cellD)) , (3.3)

where dist(celly, cellD) is the distance between the eligible cell y and the cell D which contains the
entrance door and maxi (dist(celli, cellD)) is the maximum distance between cell D and any cell i

40

Figure 3.3: The score associated to a set of eligible cells when a bedroom is inserted and the window
rule is in effect. A bedroom requires a window, so the window rule sets the score of eligible cells
without a window to zero (in red). Windows are cyan line segments on the outer edge of the floor
plan.

in the grid.
Figure 3.5 shows the scores assigned to each eligible cell when a living room is to be placed and

the social rule is in effect. Scores go from highest (in green) near the entrance door, on the top left
of the floor plan, to lowest (in red) the furthest away from the entrance, on the bottom right.

Private rule

The purpose of the private rule is to make it more likely for private rooms (e.g., the bedroom)
to be placed away from the entrance of the building. This rule only affects room requisites of the
private type (it does not apply to rooms of the service and social types). The further away the
eligible cell is from the entrance, the higher will be its score for the private room.

The score sp for an eligible cell y is:

spy = dist(celly, cellD)
maxi (dist(celli, cellD)) . (3.4)

Figure 3.6 shows the scores assigned to each eligible cell when a bedroom is to be placed and
the private rule is in effect. Scores go from lowest (in red) near the entrance door, on the top left
of the floor plan, to highest (in green) the furthest away from the entrance, on the bottom right.

41

Figure 3.4: The score associated to a set of eligible cells when a dining room is inserted and the
window rule is in effect. A dining room does not require a window, so the window rule only halves
the score of eligible cells without a window (in yellow). Windows are cyan line segments on the
outer edge of the floor plan.

Elastic connection rule

The purpose of the elastic connection rule is to make it more likely for rooms of the same type
to be kept close together. When a room is placed, all rooms of the same type placed thereafter will
be affected. The eligible cells close to the room that has already been placed receive higher scores,
and eligible cells further away receive lower scores.

For example, if a bedroom (a room of the private type) is placed in the floor plan, then if
another room of this same type is to be placed, the eligible cells close to the bedroom will receive
higher scores. Note that the elastic connection rule applies based on room type, not on whether a
connection requisite RC has been defined for these rooms.

If multiple rooms of the same type have been placed, and a new room of the same type is being
placed, then the elastic connection rule will apply multiple times, one time for each room already
placed.

The score se for an eligible cell y is:

sey =
n∏

i=1
0.5dist(celly,cellj), (3.5)

where dist(celly, cellj) is the distance between the eligible cell y and each cell j containing a
previously placed room which shares the same type in its RR as the room being placed. Note that

42

Figure 3.5: The score associated to a set of eligible cells when a living room is to be placed and the
social rule is in effect. The living room is a social room, so the social rule decreases the score of
eligible cells the further away they are from the building’s entrance (the brown line segment located
on the top left of the floor plan).

se applies even if a connection requisite RC has not been defined for these rooms.
Figure 3.7 shows the scores assigned to each eligible cell when a bedroom has already been

placed (in magenta) and a second bedroom is to be placed while the elastic connection rule is in
effect. Scores go from highest (in green) near the bedroom that has already been placed to lowest
(in yellow), further away.

Hard connection rule

The purpose of the hard connection rule is to enforce user-provided connection requisites RC .
For example, when the user determines that a kitchen must be adjacent to a dining room, the hard
connection rule applies for these two specific rooms.

The difference between the elastic connection rule and the hard connection rule is that, while the
elastic connection rule applies for all rooms of the same type, the hard connection rule only applies
for the pair of rooms associated in a connection requisite RC . Further, while the elastic connection
rule creates a field of gradually decreasing scores, the hard connection rule applies a cutoff distance
threshold tH to set the score of all eligible cells beyond tH meters to zero. This forces adjacency
between the rooms in RC .

When the hard connection rule is in effect, the first room in a connection requisite RC is placed
normally. When the second room in RC is to be placed, the eligible cells closest to the first room

43

Figure 3.6: The score associated to a set of eligible cells when a bedroom is to be placed and the
private rule is in effect. The bedroom is a private room, so the private rule decreases the score of
eligible cells the closer they are to the building’s entrance (the brown line segment located on the
top left of the floor plan).

receive the highest score, and those further away receive lower scores. Effectively, the first room in
a connection requisite is not affected by the hard connection rule, and the second room is affected
by the position of the first room.

The score sh for an eligible cell y is:

shy =

0.5dist(celly,cellh), if dist(celly, cellh) < tH

0,otherwise,
(3.6)

where dist(celly, cellh) is the distance between the eligible cell y and the cell h containing a pre-
viously placed room with which adjacency must be kept. The threshold distance tH is defined as
twice the length of tW (the wall length threshold of the grid); that is, effectively any eligible cell
beyond two times the threshold distance tW has its score set to zero.

In Figure 3.8, a room requisite exists for a dining room and a kitchen. The dining room has
already been placed (in magenta) and we are now placing a kitchen, which must be kept close. The
figure shows the score assigned to each eligible cell, according to the distance from the dining room.
The highest scores (in green) are closest to the dining room, with some lower scores further away
(in yellow). The cutoff threshold distance sets the score of the remaining eligible cells to zero (in
red).

44

Figure 3.7: The score associated to a set of eligible cells when a bedroom has already been placed
in the floor plan and a second bedroom is to be placed while the elastic connection rule is in effect.
The elastic connection rule attributes higher score to eligible cells which are closer to the room that
has already been placed.

Entrance door rule

The cell which contains the entrance door is a special case because only rooms of the social
type can be placed there. Rooms of the private and service type cannot be placed at the entrance
because these types block connectivity. For example, a bedroom cannot be placed at the entrance,
because a bedroom cannot serve as a path to the rest of the building.

The score sdy for an eligible cell y is:

sdy =

0, if a door is present in y but RR is not of the social type,

1,otherwise.
(3.7)

Small window rule

The small window rule applies only to eligible cells containing a window. If the cell cannot fulfill
any dimension in a room requisite RR, the eligible cell’s score is set to zero. The small window
rule effectively prevents rooms which require large windows from being assigned to eligible cells
containing small windows.

The score sky for an eligible cell y is

45

Figure 3.8: The score associated to a set of eligible cells when a room requisite exists between
a dining room (already placed, in magenta) and a kitchen (currently being placed), and the hard
connection rule is in effect. The eligible cells closest to the dining room have the highest score (in
green), with some lower score further away (in yellow). Beyond the threshold tH , the score is set to
zero (in red).

sky =

0, if a window is present in y but no dimension of RR is fulfilled by y,

1,otherwise.
(3.8)

3.3.3 Selecting an eligible cell

After the score of each eligible cell y has been determined for the room being currently placed,
the score array S is normalized, such that:

Py = Sy

(∑n
x=1 Sx) , (3.9)

where x is every eligible cell for which a score S has been calculated. Thus, each normalized score
Py is the probability for a given eligible cell y to be randomly selected.

An example: if three eligible cells are available, with S1 = 0.1, S2 = 0.6, and S3 = 1, the
probabilities are, respectively:

46

P1 = S1
(S1+S2+S3) ≈ 5.9%,

P2 = S2
(S1+S2+S3) ≈ 35.3% and

P3 = S3
(S1+S2+S3) ≈ 58.8%.

(3.10)

When an eligible cell is selected, it is occupied by the current room and removed from the list
of eligible cells. On the next iteration, it will not receive a score S, nor be considered for selection.
The process of scoring and selecting eligible cells is repeated iteratively until every room requisite
RR has been placed. If there are no eligible cells left in the grid and there are still room requisites
RR to be placed, the procedural generation process fails. Either the floor plan is too small for the
architectural plan, or the threshold used to generate eligible cells is too high.

3.4 Iterative room expansion

The room expansion process is performed after each room requisite RR has been placed in the
floor plan as a single-cell room (see Figure 3.1(b)). It expands each single-cell room to its final size,
handling conflicts between rooms which are competing for space. This step also ensures that all
rooms can be accessed from the entrance, keeping cells needed for room connectivity from being
occupied.

3.4.1 Scoring expansion options

A room’s expansion is performed in iterative steps, and during each step, the room expands in
a single direction. Each expansion option o (up, down, left and right) receives a score K according
to how beneficial o is toward fulfilling the goals set by the room requisite RR. The score for an
expansion option o is:

Ko = kbo kwo kno, (3.11)

where kbo, kwo and kno are factors weighed between 0 and 1, referring to scores associated with
different rules.

Blocked direction rule

The purpose of the blocked direction rule is to prevent rooms from overlapping or leaving the
boundaries of the building’s external walls as a result of an expansion step. The score kbo for an
expansion option o is:

47

kbo =

0, if choosing o causes rooms to overlap or leave building,

1,otherwise.
(3.12)

Window waste rule

Windows are limited resources in a floor plan, given that all rooms benefit from having a window.
The purpose of the window waste rule is to make it less likely for an expansion option to be chosen
if it causes a room to receive a window, when the room already has one. The score kwo for an
expansion option o is:

kwo =

1, if nw = 0 or nw = 1,

0.2
(nw−1) , if nw > 1,

(3.13)

where nw is the number of windows within the room if the expansion option o is chosen.

Necessity rule

The purpose of the necessity rule is to make it less likely that an expansion option will be chosen
if the expansion adds to a dimension that has already been expanded to the minimum size required
in the room requisite RR. The score kno for an expansion option o is:

kno =

1, if dim < RminW ∧dim < RminL,
0.5, if dim > RminW ⊕dim > RminL,
0.1,otherwise,

(3.14)

where dim is the dimension increased when choosing the expansion option o, RminW is the minimum
required width in RR and RminL is the minimum required length in RR.

Thus, the kn score is highest when the expansion option increases a dimension that does not
fulfill neither the width nor the length requisite, it is lower when it increases a dimension that already
fulfills either the width or the length requisite, and lowest when it increases a dimension that already
fulfills both the width and the length requisites.

3.4.2 Selecting an expansion option

To select an expansion option o, the score array K is normalized, such that:

Po = Ko

(∑n
x=1 Kx) , (3.15)

where x is every expansion option for which a score K has been calculated. Thus, each normalized
score Po is the probability for a given expansion option o to be randomly selected.

48

At this point, each expansion option o has received a score Ko referring to its fitness toward
fulfilling the goals set by the room requisite RR (see Equation 3.11).

3.4.3 Expansion steps

Rooms are expanded during three distinct steps: the first expansion step, the fixing step and
the second expansion step. The purpose of the first expansion step is to grow each single-cell room
to its minimum size, as determined in the room requisite RR. First, the rooms are sorted in a list
according to the priority of their respective RR. Then, each room is selected in order, from highest
to lowest priority, and expanded until either its minimum size is achieved, or no expansion option is
available. When the list of rooms is fully traversed, the algorithm moves on to the fixing step.

The fixing step attempts to expand rooms which remain undergrown after the first expansion step.
To do so, the algorithm attempts to liberate space along the dimensions in which the undergrown
room still requires growth to fulfill its RR. To liberate space in a given direction (either up/down
or left/right), each room adjacent to the undergrown room (in the relevant direction) contracts one
cell away. After the contraction, the room which contracted grows again to its minimum size (but
not toward the direction it contracted from). Finally, the undergrown room occupies the liberated
space. An undergrown room may cause multiple adjacent rooms to contract.

Figure 3.9 presents an example of the fixing step liberating space for an undergrown room. In
Figure 3.9 (a), the red room on the top left corner is undergrown, but is blocked by the exterior wall
(on the up direction) and the blue room (on the down direction). The blue room contracts down,
liberating space for the red room (Figure 3.9 (b)). The blue room immediately expands, to once
again fulfill its room requisite RR (Figure 3.9 (c)). The up direction (from which blue contracted)
is forbidden during this expansion. Finally, the red room expands to its minimum requisite size
(Figure 3.9 (d) and (e).

Figure 3.9: The room expansion process’ fixing step. The red room is undergrown and blocked along
the up/down direction in the top-left corner (a). The blue room liberates space by contracting down
(b) and immediately growing (c). The red room then expands to its minimum required size (d and
e).

The fixing step does not always succeed in liberating space for an undergrown room. There
are two cases in which the fixing step fails. The first case is when the adjacent room is one cell
wide and cannot contract away from the undergrown room. The second case is when an adjacent

49

room contracts, but fails to expand afterward. In this case, the space cannot be liberated and the
contraction is unmade.

If the fixing step cannot expand an undergrown room, the user requirement RR cannot be fulfilled
and the floor plan is considered invalid.

If all rooms have been expanded successfully during the first expansion step (or fixed during the
fixing step), the room expansion process moves to the second expansion step. The purpose of this
step is to occupy the remaining space in the floor plan. The rooms are once again sorted by priority,
according to their room requisites RR, but this expansion step is different from the first. This time,
rooms take turns to expand a single step, and an additional rule is used: if an expansion option
is chosen that causes any room in the floor plan to be blocked from the entrance, the expansion
is reverted and the room is removed from the list of rooms to be expanded. Thus, rooms expand
as long as they do not disrupt room connectivity. Note that social rooms propagate connectivity.
Circulation areas are created in the cells which remain unclaimed by any room at the end of the
expansion process.

The final step determines which walls can be used to connect rooms. During 3D extrusion, these
walls become either open walls or doors between rooms. Our approach does not use a connection
tree, so instead connectivity is determined considering each two adjacent room’s types, using rules
for which room types can be connected.

3.5 Full example

This section presents a full execution of the procedural generation algorithm.
Room placement step:

• Placing room BED1, rules active: window, private; see Figure 3.10.

• Placing room BED2, rules active: window, private, elastic (BED1); see Figure 3.11.

• Placing room BED3, rules active: window, private, elastic (BED1, BED2); see Figure 3.12.

• Placing room DIN, rules active: window, social; see Figure 3.13.

• Placing room KIT, rules active: window, hard (DIN); see Figure 3.14.

• Placing room LIV, rules active: window, social, elastic (DIN); see Figure 3.15.

• Placing room BATH1, rules active: window, private, elastic (BED1, BED2, BED3), hard
(LIV); see Figure 3.16.

• Placing room BATH2, rules active: window, private, elastic (BED1, BED2, BED3, BATH1);
see Figure 3.17.

• Finished placing rooms; see Figure 3.18.

50

First expansion step (see Fig. 3.19):

• 1 - expanding DIN up.

• 2 - expanding DIN right, minimum size achieved.

• 3 - expanding KIT up.

• 4 - expanding KIT left, minimum size achieved.

• 5 - expanding LIV down.

• 6 - expanding LIV right, minimum size achieved.

• 7 - expanding BED1 left, minimum size achieved.

• 8 - BED2 already has minimum size.

• 9 - expanding BATH1 right, minimum size achieved.

• 10 - expanding BED3 up.

• 11 - expanding BED3 up, minimum size achieved.

• 12 - BATH2 already has minimum size.

Fixing step:

• No room to fix.

Second expansion step (see Fig. 3.19):

• 13 - DIN cannot expand, blocked, done expanding.

• 14 - KIT blocks connectivity (down and right), done expanding.

• 15 - LIV cannot expand, blocked, done expanding.

• 16 - expanding BED1 left.

• 17 - BED2 cannot expand, blocked, done expanding.

• 18 - BATH1 cannot expand, blocked, done expanding.

• 19 - expanding BED3 up.

• 20 - expanding BATH2 up.

• 21 - BED1 cannot expand, blocked, done expanding.

• 22 - BED3 cannot expand, blocked, done expanding.

51

• 23 - BATH2 blocks connectivity (up), done expanding.

In the final step, corridors and doors are created, generating the final floor plan seen in Fig-
ure 3.20.

Figure 3.10: Eligible cell scores for the placement of the BED1 seed.

In this chapter, we presented our method for growth-based procedural floor plan generation,
which creates an irregular grid considering the features of a building’s external walls, places rooms
without a connection tree, according to a set of rules and user requirements, and finally expands
rooms in the grid to fulfill each room’s minimum size while maintaining the connectivity of all rooms
to the entrance. We also presented an example of the algorithm’s execution. We now present the
results achieved with this method.

52

Figure 3.11: Eligible cell scores for the placement of the BED2 seed.

Figure 3.12: Eligible cell scores for the placement of the BED3 seed.

53

Figure 3.13: Eligible cell scores for the placement of the DIN seed.

Figure 3.14: Eligible cell scores for the placement of the KIT seed.

54

Figure 3.15: Eligible cell scores for the placement of the LIV seed.

Figure 3.16: Eligible cell scores for the placement of the BATH1 seed.

55

Figure 3.17: Eligible cell scores for the placement of the BATH2 seed.

Figure 3.18: Final single-cell room placement.

56

Figure 3.19: Room expansion process. Moves 1, 2, 3, 4, 5, 6, 7, 9, 10 and 11 are performed during
the first expansion step. Moves 16, 19 and 20 are performed during the second expansion step. The
stricken numbers are steps in which no expansion was performed.

Figure 3.20: The final floor plan, with a corridor (in grey) and walls where internal doors are to be
placed (the brown line segments between rooms).

57

4. RESULTS

In this section we present the results of this research work, as well as a discussion of the results.

4.1 Evaluation

Our first analysis is a qualitative evaluation of the floor plans generated by our method. Figure 4.1
presents a floor plan created by an architect (a) and three procedurally generated floor plans (b-d).
To generate these floor plans we used room requisites RR with similar size to the rooms seen in the
original floor plan (a). The only connection requisite RC defined an adjacency between the dining
room and the kitchen. All other connections were left for the algorithm to sort out according to
the default room placement rules. All results use default threshold configurations (tW = 1.8m and
tD = 2.5m).

Table 4.1 presents the area assigned to each type of room for the different floor plans seen in
Figure 4.1. Note that the area assigned to each type of room varies because the algorithm does not
attempt to create the exact same rooms seen in (a), but rather to achieve the minimum dimensions
required by the room requisites RR. However, the proportional area occupied by each remains mostly
the same. For example, the bedrooms occupy the most space in all floor plans.

Figure 4.2 presents the connection trees for the floor plans seen in Figure 4.1. We note that
private rooms remain in higher levels and social rooms in lower levels of the procedurally generated
trees, with mostly the same types of connections. We conclude that in this example the procedural
floor plan generator was capable of generating different room layouts with approximately the same
topology and area distribution as the floor plan created by an architect (a).

Table 4.1: The area occupied by each type of room in the floor plans seen in Figure 4.1.

Fig. 4.1 (a) Fig. 4.1 (b) Fig. 4.1 (c) Fig. 4.1 (d)
Type Real Procedural Procedural Procedural

Kitchen area 9m2 7.23m2 14.54m2 5.36m2

Dining and Living area 25.36m2 19.97m2 19.97m2 22.7m2

Bedroom area 28.4m2 29.12m2 24.36m2 24.36m2

Bathroom area 6.63m2 8.17m2 7.14m2 10.88m2

4.2 Discussion of the algorithm’s behavior

Unlike other algorithms (e.g., Marson and Musse [11] or Merrell et al. [13]), our algorithm does
not use a explicit connection tree to predefine the adjacencies of rooms in the floor plan. Rather,
during room placement (see Section 3.3), rooms may (or may not) be more likely to be placed
close together. Only rooms defined in connection requisites RC are guaranteed to be adjacent. The

58

Figure 4.1: A floor plan generated by an architect (a) and three floor plans generated with a similar
architectural plan (b-d). The brown line segments between rooms are walls on which an internal
door is to be placed.

Figure 4.2: The connection trees for the floor plans seen in Figure 4.1.

objective of the presented algorithm is to create a floor plan within the boundaries of the building’s
exterior walls while expanding rooms to at least their minimum size and keeping rooms defined in
requisites RC adjacent. If the algorithm is successful, it manages to fulfill all RR and all RC and
the resulting floor plan is considered valid.

In our approach diagonal elements do not extend lines and the grid remains axis-aligned even
if diagonal walls are present in the input. Elements such as diagonal walls and openings otherwise
exist normally in the cells in which they occur (see Figure 4.3).

The proposed procedural generation algorithm, discussed in Chapter 3, operates in iterative steps.
First, it places each room occupying a single cell in the grid, and then grows each room iteratively to
its final size. Each step of the algorithm presents several options for how to proceed, but with each
step a single option is chosen. For example, when a room grows, it grows in a single direction, and
when a room is placed, it is placed in a single cell. Thus, given the initial configuration (consisting
of a grid, a set of eligible cells and a set of user requisites), a finite set F of possible floor plans

59

Figure 4.3: An input building with diagonal walls, with its resulting grid (a) and an example floor
plan (b).

can be generated. This finite set F can be expanded by exhaustively exploring all permutations
for room placement and all subsequent options for room growth. Note that most of the resulting
layouts will be unacceptable, presenting rooms with inadequate size or connections considering the
user requisites.

The factors of the scoring functions (see Equations 3.1 and 3.11) have two effects. First, the
factors prohibit certain types of floor plan from being generated. For example, the window rule
explicitly prohibits floor plans with windowless bedrooms in the finite set F . Second, the factors
qualify the options available in each step. For example, the social rule assigns higher scores to
eligible cells which are closer to the entrance, and this indicates that it is more beneficial to place
the social room near the entrance. However, this does not prohibit the social room from being
placed away from the entrance.

We allow a low score option to be selected because otherwise the same floor plan would always
be generated. Further, selecting a low score option is not immediately optimal, but it can lead to
better subsequent options and to a better floor plan overall. This is similar to the idea of avoiding
local maximums in stochastic optimization. However, since the scoring process only considers the
current state, it is equally possible that choosing a low score option will lead to further low score
options and a worse floor plan overall.

Since decisions only consider the current state, it is also possible for the algorithm to choose an
option that makes it impossible to create a valid floor plan (a floor plan which fulfills user requisites).
This can happen in three situations: first, when there is no eligible cell where a room can be placed;
second, when there is no room for a room to grow and achieve it’s minimum requisite size; and
finally, when the initial distribution or growth of rooms results in a layout where rooms cannot be
accessed from the entrance.

4.3 Measurements

To measure how often invalid floor plans occur, we executed the algorithm using several different
test cases. Each test case uses a specific building exterior (see Figures 4.4 and 4.5) and a specific
number of room requisites RR and connection requisites RC . All test cases use default threshold
configurations (tW = 1.8m and tD = 2.5m) which result in a specific grid and number of eligible
cells for each building exterior. For each test case the algorithm has been executed a thousand

60

times, and the results can be seen in Tables 4.2 and 4.3, where Outline specifies which building
exterior has been used, yn is the number of eligible cells available and RR and RC are the number
of user-provided room and connection requisites.

There are three types of error which result in floor plans which are invalid and must be discarded.
EP is the number of times the room placement step failed to find an eligible cell for a RR. This
often occurs if a room defined in a connection requisite RC is placed such that no adjacent eligible
cell is available for the second room in RC . The higher the number of RC , the more likely it is for
the error to occur. EE is the number of times the first expansion step failed to fulfill the minimum
size defined in RR, followed by the failure of the fixing step to expand this undergrown room. Floor
plans which provide little space for rooms to grow have higher room expansion error rates. EC

is the number of times one or more rooms were disconnected from the entrance after the first
expansion step. To be disconnected, the room must not be reachable through social areas (such
as circulation areas or rooms with the social type). A higher number of non-social RR generates
additional blockages, increasing the chance for connectivity errors to occur. Finally, FIX is the
number of times the fixing step succeeded, fixing at least one undergrown room and recovering a
floor plan which would otherwise be invalid with an EE occurrence, SUC is the number of times a
valid floor plan has been generated and Tt is the total execution time in milliseconds.

Among the results in Tables 4.2 and 4.3, some observations can be made. First, increasing the
number of requisites RR and RC creates additional constraints which make it more difficult for
rooms to be placed and to be expanded. As expected, this results in a higher number of invalid
floor plans. Second, a higher number of invalid floor plans result in a lower total execution time.
This is because by failing (through an occurrence EP , EE or EC), the algorithm stops and exits
early. Third, increasing the number of RR and RC does not significantly impact the execution
time of the algorithm. This is because if there are more rooms to be expanded, each room has
less space to occupy. However, the run time for each building outline varies because the different
grid and distribution of eligible cells impacts the number of iterations needed for the algorithm to
finish. Fourth, in some cases (for example cases i3, i4 and i5), the number of successes is zero
because the number of room requisites RR is higher than the number of eligible cells yn available.
This effectively means that there is no available cell for rooms to be placed and the user requisites
cannot be fulfilled. This is different from cases o4 and o5, where the number of RR is lower than
the number yn. In these cases, the building was not large enough to accommodate all the user
requisites. Fifth, it takes only a few milliseconds to generate each floor plan.

4.4 Effect of the rules

As mentioned in Section 4.2, the scoring functions (see Equations 3.1 and 3.11) have the effect
of prohibiting certain floor plans from occurring in the set F of floor plans which can be generated for
a certain input, and also the effect of modifying the probability for each floor plan to be generated.
The purpose of the rules, then, is to make valid floor plans more likely to occur.

61

Figure 4.4: Outlines a-h used in the measurements.

Ablating a factor of the eligible cell score function (see Equation 3.1) modifies the probabilities
assigned to each eligible cell. Removing swy allows requisites RR of the bedroom type to be placed
in any eligible cell. It also removes the modifier that makes it more likely for eligible cells with
windows to be selected, and as a result rooms will stop favoring windows and be distributed more
evenly in the grid. Removing ssy will remove the modifier that makes it more likely for eligible cells
near the entrance to be selected for social rooms, and as a result it will be more likely for floor plans
where social rooms appear far from the entrance to occur. Removing spy will remove the modifier
that makes it more likely for eligible cells away from the entrance to be selected for private rooms,
and as a result it will be more likely for floor plans where private rooms appear near the entrance
to occur. Removing sey removes the modifier that causes eligible cells to be scored according to
the placement of rooms of the same type, and as a result, rooms of the same type will no longer be
grouped together in the floor plan. Removing shy will remove the scoring pattern which implements
the connection requisite, so connection requisites will no longer cause rooms to be placed adjacent
to one another. Removing sdy removes the requirement that only rooms of the social type can be
placed at the cell containing the entrance door, and as a result, a room of the private or service

62

Figure 4.5: Outlines i-q used in the measurements.

type can be placed at the entrance (making the floor plan invalid). Finally, removing sky removes
the requirement that an eligible cell containing a window must be able to fulfill at least one of the
RR’s size requirements (either length or width), and as as result, an RR requiring a large window
may be placed in a cell containing a small window.

Factors can also be ablated in the expansion option score function (see Equation 3.11), modifying
the probability for each expansion option to be selected. Removing kbo removes the prohibition for
rooms to expand outside the building’s outline, and also the prohibition for rooms to expand beyond
the border of neighboring rooms. Removing kwo removes the modifier which makes it less likely
for a room to expand in a direction if it results in adding windows beyond the first to the room.
As a result, the expansion process will not discriminate cells containing windows, and this resource
will be consumed more quickly. Removing kno removes the modifier that makes it more likely for a
room to expand in a direction that has not yet fulfilled one of the dimension requisites of RR. As a
result, rooms will randomly expand in any direction, without regard for trying to achieve the room’s
minimum size.

63

Table 4.2: Measurements for the outlines seen in Figure 4.4(a-h) after a thousand execution at-
tempts.

Case Figure yn RR RC EP EE EC FIX SUC Tt (ms)
a1 4.4(a) 9 6 0 0 15 49 234 936 3062
a2 4.4(a) 9 6 1 0 32 57 247 911 3081
a3 4.4(a) 9 8 0 0 107 390 334 503 2573
a4 4.4(a) 9 8 1 37 86 403 332 474 2658
a5 4.4(a) 9 8 2 360 66 270 236 304 1926
b1 4.4(b) 11 6 0 0 263 285 268 452 2074
b2 4.4(b) 11 6 1 0 362 209 255 429 2190
b3 4.4(b) 11 8 0 0 625 300 213 75 1896
b4 4.4(b) 11 8 1 8 658 276 192 58 1848
b5 4.4(b) 11 8 2 67 601 283 186 49 1785
c1 4.4(c) 12 6 0 0 36 106 47 858 4843
c2 4.4(c) 12 6 1 5 64 113 46 818 4813
c3 4.4(c) 12 8 0 0 85 266 77 649 4533
c4 4.4(c) 12 8 1 68 175 232 51 525 4113
c5 4.4(c) 12 8 2 435 74 179 39 312 2819
d1 4.4(d) 9 6 0 0 189 220 62 591 714
d2 4.4(d) 9 6 1 25 201 298 57 476 1784
d3 4.4(d) 9 8 0 43 314 597 77 46 520
d4 4.4(d) 9 8 1 78 325 564 68 33 1575
d5 4.4(d) 9 8 2 433 191 354 23 22 378
e1 4.4(e) 10 6 0 0 197 213 143 590 2226
e2 4.4(e) 10 6 1 4 316 167 151 513 2142
e3 4.4(e) 10 8 0 0 356 585 155 59 1783
e4 4.4(e) 10 8 1 56 427 467 145 50 1733
e5 4.4(e) 10 8 2 292 322 357 114 29 1484
f1 4.4(f) 10 6 0 0 327 213 16 460 2489
f2 4.4(f) 10 6 1 7 294 252 15 447 2454
f3 4.4(f) 10 8 0 0 503 433 35 64 1912
f4 4.4(f) 10 8 1 30 408 490 24 72 1906
f5 4.4(f) 10 8 2 111 345 449 19 95 1841
g1 4.4(g) 11 6 0 0 51 67 72 882 2849
g2 4.4(g) 11 6 1 15 68 79 105 838 2797
g3 4.4(g) 11 8 0 0 80 671 152 249 1979
g4 4.4(g) 11 8 1 82 90 601 180 227 1996
g5 4.4(g) 11 8 2 281 48 510 142 161 1639
h1 4.4(h) 11 6 0 0 65 245 283 690 2503
h2 4.4(h) 11 6 1 47 49 223 293 681 2462
h3 4.4(h) 11 8 0 19 248 622 295 111 1977
h4 4.4(h) 11 8 1 76 188 601 285 135 2084
h5 4.4(h) 11 8 2 293 237 357 175 113 1745

64

Table 4.3: Measurements for the outlines seen in Figure 4.5(i-q) after a thousand execution attempts.

Case Figure yn RR RC EP EE EC FIX SUC Tt (ms)
i1 4.4(i) 6 6 0 67 3 868 34 62 889
i2 4.4(i) 6 6 1 63 5 859 41 73 904
i3 4.4(i) 6 8 0 1000 0 0 0 0 412
i4 4.4(i) 6 8 1 1000 0 0 0 0 429
i5 4.4(i) 6 8 2 1000 0 0 0 0 443
j1 4.4(j) 13 6 0 0 354 52 27 594 916
j2 4.4(j) 13 6 1 0 381 91 54 528 2802
j3 4.4(j) 13 8 0 0 749 161 46 90 2154
j4 4.4(j) 13 8 1 4 763 169 41 64 2184
j5 4.4(j) 13 8 2 24 718 159 63 99 2247
l1 4.4(l) 11 6 0 0 9 85 1 906 3523
l2 4.4(l) 11 6 1 8 13 68 2 911 3361
l3 4.4(l) 11 8 0 0 21 203 3 776 3392
l4 4.4(l) 11 8 1 37 30 201 2 732 3309
l5 4.4(l) 11 8 2 415 18 135 2 432 2304
m1 4.4(m) 10 6 0 0 262 162 221 576 808
m2 4.4(m) 10 6 1 0 292 201 309 507 2476
m3 4.4(m) 10 8 0 0 561 333 299 106 2236
m4 4.4(m) 10 8 1 5 560 344 297 91 2244
m5 4.4(m) 10 8 2 73 521 315 279 91 2177
n1 4.4(n) 8 6 0 0 3 211 136 786 3143
n2 4.4(n) 8 6 1 55 3 364 119 578 2601
n3 4.4(n) 8 8 0 182 10 711 161 97 1747
n4 4.4(n) 8 8 1 296 7 641 128 56 1571
n5 4.4(n) 8 8 2 428 2 536 87 34 1343
o1 4.4(o) 9 6 0 0 250 188 48 562 1599
o2 4.4(o) 9 6 1 0 393 177 35 430 1371
o3 4.4(o) 9 8 0 69 705 141 7 85 1393
o4 4.4(o) 9 8 1 71 800 129 8 0 1340
o5 4.4(o) 9 8 2 386 564 50 5 0 1080
p1 4.4(p) 12 6 0 0 8 34 31 958 3314
p2 4.4(p) 12 6 1 0 16 30 53 954 3472
p3 4.4(p) 12 8 0 0 10 186 75 804 3194
p4 4.4(p) 12 8 1 1 24 113 62 862 3333
p5 4.4(p) 12 8 2 110 28 73 52 789 3099
q1 4.4(q) 10 6 0 0 265 110 125 625 3092
q2 4.4(q) 10 6 1 54 380 67 75 499 2811
q3 4.4(q) 10 8 0 0 637 127 191 236 2668
q4 4.4(q) 10 8 1 28 660 118 168 194 2641
q5 4.4(q) 10 8 2 82 596 123 177 199 2524

65

5. CONCLUSION

In this document we have presented a method for growth-based procedural floor plan generation
which considers a building’s exterior features as well as user-provided requisites. The method expands
on the idea presented by Lopes et al. [10] in several ways. First, by using an irregular grid for room
placement and expansion which allows rooms to snap to the features of the exterior walls. Second,
by considering window constraints during the floor plan generation. And finally, by using a different
room expansion algorithm which allows user-provided room requisites and finer control over the
resulting floor plan.

There is an ample body of research on architectural theory, but such work is often formulated in
general terms and open to interpretation, and therefore difficult to apply to the problem of procedural
floor plan generation. Merrell et al. [13] avoid this pitfall by using machine learning and subsequently
inferring an architectural plan, in the form of a connection tree, which is then transformed into a
floor plan with stochastic optimization. Due to the constraint created by the external walls, our
algorithm could not similarly use a connection tree. Our solution is the proposed room placement
algorithm, which keeps rooms close together without enforcing connectivity.

The procedural generation algorithm guarantees that every valid floor plan fulfills user-provided
requisites RR and RC , but valid floor plans are not necessarily considered adequate by all users.
For example, in Fig. 5.1(a), a corridor runs along the exterior wall of the building. In (b) a U-shape
corridor and very small bathroom can be seen. In (c) two circulation areas connect the living room
to different sets of bedrooms. In (d), a small kitchen is beside a large dining room. Such evaluations
are subjective and vary from person to person.

Figure 5.1: Floor plans which are valid, but might be considered unrealistic.

A large part of the experience of an interior space is how it is furnished and decorated. To improve

66

the quality of the floor plans generated by our method, it could be integrated with an algorithm
for the automatic placement of furniture (e.g., Merrell et al. [14]). Regarding performance, our
algorithm seems appropriate for real-time applications. The low run time (see Tables 4.2 and 4.3)
means that the algorithm could be executed during a virtual-world’s walk through, generating floor
plans for buildings which need to be entered by the user in real-time.

For future work, we intend to expanded our model to handle multiple-floor residences, modifying
the concept of an entrance door to the concept of a floor entrance, instead. Second, we intend
to expand the model to accept external walls with arbitrary shapes, for example, diagonal and
curve walls. This would require a modification of the room expansion algorithm, to allow rooms to
grow along different directions, and not only along the UP/DOWN and LEFT/RIGHT dimensions.
Another improvement would be a post-processing step, to adjust the exact final position of each
wall, enabling finer adjustments than our grid allows. Finally, our algorithm would benefit from an
explicit corridor placement step, to enforce room connectivity.

67

REFERENCES

[1] Bruls, M., Huizing, K., and Van Wijk, J. J. Squarified treemaps. In Data Visualization
2000. Springer, 2000, pp. 33–42.

[2] Charman, P. Solving space planning problems using constraint technology. Nato ASI Con-
straint Programming: Students’ Presentations, TR CS 57, 93 (1993), 80–96.

[3] Felkel, P., and Obdrzalek, S. Straight skeleton implementation. In Proceedings of
spring conference on computer graphics (1998), Citeseer.

[4] Germer, T., and Schwarz, M. Procedural arrangement of furniture for real-time walk-
throughs. In Computer Graphics Forum (2009), vol. 28, Wiley Online Library, pp. 2068–2078.

[5] Greuter, S., Parker, J., Stewart, N., and Leach, G. Real-time procedural gener-
ation ofpseudo infinite’cities. In Proceedings of the 1st international conference on Computer
graphics and interactive techniques in Australasia and South East Asia (2003), ACM, pp. 87–ff.

[6] Hahn, E., Bose, P., and Whitehead, A. Persistent realtime building interior genera-
tion. In Proceedings of the 2006 ACM SIGGRAPH symposium on Videogames (2006), ACM,
pp. 179–186.

[7] Hendrikx, M., Meijer, S., Van Der Velden, J., and Iosup, A. Procedural content
generation for games: A survey. ACM Transactions on Multimedia Computing, Communica-
tions, and Applications (TOMCCAP) 9, 1 (2013), 1.

[8] Kelly, G., and McCabe, H. Citygen: An interactive system for procedural city generation.
In Fifth International Conference on Game Design and Technology (2007), pp. 8–16.

[9] Liu, H., Yang, Y.-L., AlHalawani, S., and Mitra, N. J. Constraint-aware interior
layout exploration for pre-cast concrete-based buildings. The Visual Computer 29, 6-8 (2013),
663–673.

[10] Lopes, R., Tutenel, T., Smelik, R. M., de Kraker, K. J., and Bidarra, R. A
constrained growth method for procedural floor plan generation. In Proceedings of GAME-ON
2010, the 11th International Conference on Intelligent Games and Simulation (2010).

[11] Marson, F., and Musse, S. R. Automatic real-time generation of floor plans based on
squarified treemaps algorithm. International Journal of Computer Games Technology 2010
(2010), 7.

[12] Martin, J. Procedural house generation: A method for dynamically generating floor plans.
In Proceedings of the Symposium on Interactive 3D Graphics and Games (2006), pp. 1–2.

68

[13] Merrell, P., Schkufza, E., and Koltun, V. Computer-generated residential building
layouts. ACM Transactions on Graphics (TOG) 29, 6 (2010), 181.

[14] Merrell, P., Schkufza, E., Li, Z., Agrawala, M., and Koltun, V. Interactive
furniture layout using interior design guidelines. In ACM Transactions on Graphics (TOG)
(2011), vol. 30, ACM, p. 87.

[15] Michalek, J., Choudhary, R., and Papalambros, P. Architectural layout design
optimization. Engineering optimization 34, 5 (2002), 461–484.

[16] Müller, P., Wonka, P., Haegler, S., Ulmer, A., and Van Gool, L. Procedural
modeling of buildings, vol. 25. ACM, 2006.

[17] Müller, P., Zeng, G., Wonka, P., and Van Gool, L. Image-based procedural
modeling of facades. ACM Trans. Graph. 26, 3 (2007), 85.

[18] Noel, J., and North, S. Dynamic building plan generation. Bachelor thesis, The University
of Sheffield (2003).

[19] Parish, Y. I., and Müller, P. Procedural modeling of cities. In Proceedings of the 28th
annual conference on Computer graphics and interactive techniques (2001), ACM, pp. 301–308.

[20] Peng, C.-H., Yang, Y.-L., and Wonka, P. Computing layouts with deformable tem-
plates. ACM Transactions on Graphics (TOG) 33, 4 (2014), 99.

[21] Peponis, J., Wineman, J., Rashid, M., and Bafna, S. On the description of shape and
spatial configuration inside buildings: convex partitions and their local properties. Environment
and Planning B 24 (1997), 761–782.

[22] Press, W. H. Numerical recipes 3rd edition: The art of scientific computing. Cambridge
university press, 2007.

[23] Rinde, L., and Dahl, A. Procedural generation of indoor environments. Master’s Thesis,
Chalmers University of Technology (2008).

[24] Rodrigues, E., Gaspar, A. R., and Gomes, Á. Automated approach for design gen-
eration and thermal assessment of alternative floor plans. Energy and Buildings 81 (2014),
170–181.

[25] Smelik, R. M., Tutenel, T., Bidarra, R., and Benes, B. A survey on procedural
modelling for virtual worlds. In Computer Graphics Forum (2014), Wiley Online Library.

[26] Tutenel, T., Bidarra, R., Smelik, R. M., and de Kraker, K. J. Rule-based
layout solving and its application to procedural interior generation. In CASA Workshop on 3D
Advanced Media In Gaming And Simulation (2009).

69

[27] Tutenel, T., Bidarra, R., Smelik, R. M., and Kraker, K. J. D. The role of
semantics in games and simulations. Computers in Entertainment (CIE) 6, 4 (2008), 57.

[28] Watson, B., Muller, P., Wonka, P., Sexton, C., Veryovka, O., and Fuller,
A. Procedural urban modeling in practice. Computer Graphics and Applications, IEEE 28, 3
(2008), 18–26.

[29] Weber, B., Müller, P., Wonka, P., and Gross, M. Interactive geometric simulation
of 4d cities. In Computer Graphics Forum (2009), vol. 28, Wiley Online Library, pp. 481–492.

[30] Whitehead, B., and Eldars, M. The planning of single-storey layouts. Building Science
1, 2 (1965), 127–139.

[31] Yin, X., Wonka, P., and Razdan, A. Generating 3d building models from architectural
drawings: A survey. IEEE Comput. Graph. Appl. 29, 1 (Jan. 2009), 20–30.

[32] Zmugg, R., Thaller, W., Krispel, U., Edelsbrunner, J., Havemann, S., and
Fellner, D. W. Procedural architecture using deformation-aware split grammars. The
Visual Computer 30, 9 (2014), 1009–1019.

70

71

A. PUBLICATIONS

The following paper has been submitted and published as a result of this work:

• Camozzato, D., Dihl, L., Silveira, I., Marson, F. and Musse, S. Procedural floor plan gen-
eration from building sketches. The Visual Computer (2015), vol. 31, pp. 753-763, doi:
10.1007/s00371-015-1102-2

72

73

B. CONFIGURATION FILES

The method presented in this document requires that the following files and settings be provided
as an input: a building’s outline, a list of room requisites RR and connection requisites RC , the wall
length threshold tW and the threshold distance tD. In the following sections each different input is
detailed.

B.1 Building’s outline

To create a floor plan, the method requires the outline of the building for which a floor plan
should be created. This outline is a non-convex polygon, and each line in the polygon is additionally
identified as either a wall, a window or a door.

In the prototype implementation three files are used to inform the bulding’s outline. The first
file contains x and y coodinates for the vertices of the polygon:

20 // Number of vertices in the polygon
0 0 // x0 y0
0.7 0 // x1 y1
1.35 0 // And so on
2 0
2 -0.1
2 -3.35
5.25 -3.35
5.25 -2.15
5.25 -2.05
6.5 -2.05
7.5 -2.05
9.35 -2.05
10.35 -2.05
11.15 -2.05
11.15 2.45
11.15 3.45
11.15 4.5
1 4.5
0.2 4.5
0 4.5

The second file contains indexes for lines in the polygon which are windows:

74

7 // Number of windows
1 // Index for a line which is a window
4
5
6
9
11
14

The last file contains indexes for lines in the polygon which are doors:

1 // Number of doors
17 // Index for a line which is a door

Any line which is not defined as a window or a door is considered a wall.

B.2 Room and connection requisites

To inform the procedural generator which rooms must exist and how they must be connected
in the floor plan, a list of requisites must be provided. A room is placed and expanded for each
room requisite RR. The placement of rooms within the building depends on different rules (see
section 3.3), among which is the hard connection rule, which forces adjacency between rooms. The
hard connection rule applies only for each pair of rooms defined in a connection requisite. An
example list of requisites is presented below:

<Requisites>
<RoomRequisites>

<Room name="BEDR1" type="Private" priority="10">
<Width min="2.0" max="5.0" />
<Depth min="2.0" max="5.0" />
<Area min ="6.0" max="20.0" />
<Window required="yes" />

</Room>
<Room name="BEDR2" type="Private" priority="7">

<Width min="2.0" max="4.0" />
<Depth min="2.0" max="4.0" />
<Area min ="6.0" max="20.0" />
<Window required="yes" />

</Room>
<Room name="DIN1" type="Social" priority="12">

<Width min="3.0" max="5.0" />

75

<Depth min="4.0" max="6.0" />
<Area min ="10.0" max="25.0" />
<Window required="no" />

</Room>
<Room name="KITC1" type="Service" priority="5">

<Width min="1.5" max="3.5" />
<Depth min="1.5" max="3.5" />
<Area min ="4.0" max="10.0" />
<Window required="no" />

</Room>
<Room name="LIVN1" type="Social" priority="6">

<Width min="3.0" max="6.0" />
<Depth min="3.0" max="6.0" />
<Area min ="9.0" max="25.0" />
<Window required="yes" />

</Room>
<Room name="BATH1" type="Private" priority="3">

<Width min="0.8" max="2.0" />
<Depth min="0.8" max="2.0" />
<Area min ="2.0" max="4.0" />
<Window required="no" />

</Room>
<Room name="BATH2" type="Private" priority="7">

<Width min="1.3" max="3.0" />
<Depth min="1.3" max="3.0" />
<Area min ="2.5" max="5.0" />
<Window required="no" />

</Room>
</RoomRequisites>
<ConnectionRequisites>

<Connection name="BATH2,BEDR1" type="Door">
<Link a="BEDR1" b="BATH2" />

</Connection>
<Connection name="DIN1,KITC1" type="OpenWall">

<Link a="DIN1" b="KITC1" />
</Connection>

</ConnectionRequisite>
</Requisites>

76

B.3 Wall length threshold tW and distance threshold tD

There are two variables which must be set to configure the algorithm. The first variable is the
wall length threshold tW , which is used during the grid generation step (see section 3.2). Each wall
which is longer than tW generates a new internal line perpendicular to its midpoint. This process
is performed recursively, until no wall is longer than tW . This effectively limits the length of cells in
the grid.

The second variable is the distance threshold tD, which is used to identify which cells in the grid
can become eligible cells. To become an eligible cell, a cell must be at least tD meters away from
any other eligible cell. Cells are selected recursively to populate the interior of the building with
eligible cells.

