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“— Would you tell me, please, which way |
ought to go from here?

— That depends a good deal on where you
want to get to.

— I don’t much care where.

— Then it doesn’t matter which way you go.’
(Lewis Carroll, Alice in Wonderland)
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CIRCUITOS ASSINCRONOS: INOVACOES EM COMPONENTES,
BIBLIOTECAS DE CELULAS E TEMPLATES DE PROJETO

RESUMO

O paradigma sincrono foi, por décadas, a principal escolha da industria para o
projeto de circuitos integrados. Infelizmente, com o desenvolvimento da industria de semi-
condutores, restricdes de projeto relativas a poténcia de um circuito e incertezas de atrasos
aumentaram, dificultando o projeto sincrono. Alguns dos motivos para isso sdo 0 aumento
na variabilidade dos processos de fabricacdo de dispositivo, as perdas de desempenho re-
lativas em fios e as incertezas temporais causadas por variabilidades nas condi¢des opera-
cionais de dispositivos. Dessa forma, o paradigma assincrono surge como uma alternativa,
devido a sua robustez contra variagdes temporais e suporte ao projeto de circuitos de alto
desepenho e baixo consumo. Entretanto, grande parte da industria de ferramentas de auto-
macao de projeto eletrénico foi desenvolvida visando o projeto de circuitos sincronos e atu-
almente o suporte a circuitos assincronos é consideravelmente limitado. Esta Tese propoe
novas técnicas de projeto para otimizar circuitos assincronos, desde o nivel de células ao ni-
vel de sistema. Comegamos analisando e otimizando componentes basicos para o projeto
desses circuitos e depois apresentamos novas solugdes para implementa-los no nivel de
transistores. As otimizacbes propostas permitem uma melhor exploracao dos parametros
desses circuitos, incluindo poténcia, atraso e area. Em um segundo momento, exploramos
0 uso desses componentes como células para a geragao de uma biblioteca de suporte ao
projeto semi-dedicado de circuitos assincronos. Nesse contexto, propomos um fluxo com-
pletamente automatizado para projetar tais bibliotecas. O fluxo compreende ferramentas
de dimensionamento de transistores e caracterizacao elétrica, desenvolvidas nesta Tese,
e uma ferramenta de projeto de leiaute, desenvolvida por um grupo de pesquisa parceiro.
Esse trabalho também apresenta uma biblioteca aberta, com centenas de componentes
validados extensivamente através de simulacdes pos-leiaute. Além disso, usando essa bi-



blioteca desenvolvemos novos templates para o projeto de circuitos assincronos no nivel
de sistema, propondo um fluxo automatico para sintese e mapeamento tecnolégico. Com-
parado a uma solugao assincrona no estado da arte, nosso mais novo template apresenta
uma eficiéncia energética quase duas vezes maior. As contribuicdes desta Tese permitiram
a construcao de uma infraestrutura para o projeto de circuitos assincronos, abrindo caminho
para a exploracao do uso de templates assincronos para solucionar problemas modernos e
futuros no projeto de circuitos integrados.

Palavras-Chave: Projeto de components assincronos, projeto de bibliotecas de células,
templates para o projeto de circuitos assincronos, quasi-delay-insisitive, semi-custom.



ASYNCHRONOUS CIRCUITS: INNOVATIONS IN COMPONENTS, CELL
LIBRARIES AND DESIGN TEMPLATES

ABSTRACT

For decades now, the synchronous paradigm has been the major choice of the in-
dustry for building integrated circuits. Unfortunately, with the development of semiconductor
industry, power budgets got tighter and delay uncertainties increased, making synchronous
design a complex task. Some of the reasons behind that are the increase in process variabil-
ity, the losses in wire performance and the uncertainties in the operating condition of devices.
These and other factors significantly impact transistor electrical characteristics, making it
more complicated to meet timing closure in synchronous systems and compromising power
efficiency. The asynchronous paradigm emerges as an efficient alternative to current design
approaches, given its inherent high robustness against delay variations and suitability to
low-power and high-performance design. However, while a major segment of the design au-
tomation industry was developed to support synchronous design, currently, design automa-
tion for asynchronous circuits is limited, to say the least. Furthermore, basic components for
semi-custom design approaches, typically available in standard cell libraries were optimized
to target synchronous implementations and those necessary to support asynchronous de-
sign were also left behind. This Thesis proposes new techniques to optimize asynchronous
design, from cell to system level. We start by analyzing and optimizing basic components for
asynchronous design and then propose new manners of implementing them at the transistor
level. The proposed optimizations and novel components allow better exploring power, delay
and area trade-offs, providing a guideline for asynchronous designers. We then explore how
to design these components as cells for building a library to support semi-custom design.
To that extent, we propose a completely automated flow for designing such libraries. This
flow comprises transistors sizing and electrical characterization tools, developed in this The-
sis, and a layout generation tool, developed by a fellow research group. We also provide a



freely available library, designed with the flow, with hundreds of components that were ex-
tensively validated with post-layout simulations. Using this library we devised new templates
for designing asynchronous circuits at the system level, exploring an automated synthesis
solution and expanding design space exploration. Compared to a similar state-of-the-art so-
lution, our latest template provides almost twice better energy efficiency and comprises an
original automated method for technology mapping and synthesis optimizations. The contri-
butions of this Thesis allowed the construction of an infrastructure for building asynchronous
designs, paving the way to explore their usage to solve contemporary and future challenges
in integrated circuit design.

Keywords: Asynchronous components design, cell library design, asynchronous circuits
design templates, quasi-delay-insensitive, semi-custom.
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1. INTRODUCTION

Asynchronous circuits have been the research subject of several research groups
since the late 1950s, when they were first proposed. However, these circuits never made it
to consumer products in a large scale because semiconductors market evolved to well ac-
commodate synchronous design, but not asynchronous. The reason for that is the reduced
complexity that the former allowed in early technology nodes. As technologies evolved and
transistors shrunk, though, problems that could be easily waived in synchronous design
complicated and new design challenges started to emerge. In this new scenario, interest
on asynchronous circuits design regained relevance both in academia and industry. The
problem is that, because the market evolved to support the synchronous paradigm, design
methodologies, tools and intellectual property (IP) blocks also evolved in a specialized way
to optimize synchronous design. Hence, a gap currently exists between the levels of au-
tomation for asynchronous circuits and for synchronous ones. The work conducted in the
context of this Thesis provides a step towards higher levels of design automation and better
design space exploration for asynchronous circuits. This chapter explores the motivation,
goals and contributions of this Thesis.

1.1 Preliminaries

Digital circuits are widely spread in our society since their take off in the early 1970s,
after the invention of the metal-oxide-semiconductor (MOS) transistor [RCNO03]. Evolving
from mainframe and minicomputers to smartphones, tablets, wearable devices and medi-
cal applications, digital circuit-based appliances are a part of our daily lives. Initially, digital
integrated circuits (ICs) were all full-custom, i.e. truly handcrafted, where every transis-
tor was manually placed, routed and optimized [RCNO3]. However, as silicon technologies
evolved, integration capabilities rocketed from thousands to millions, and then to billions, of
transistors in a single chip, as predicted by Gordon Moore in the 1960s [M0o065, Moo03].
This was the welcoming the era of very large scale integration (VLSI) design. With this
evolution, full-custom approaches proved to be unsustainable and digital designers had to
adhere to strategies that were more amenable to automation. As a result, hardware descrip-
tion languages (HDLs) [Vah10] and semi-custom design approaches like the standard-cell
methodology were born and quickly spread among VLSI designers [WH10, RCNO3, Mic94].
Using HDLs, designers could specify the behavior of a digital circuit in a precise and for-
mal manner using a textual description consisting of expressions, statements and control
structures [Vah10]. Moreover, HDLs enabled a technology independent specification flow
that allowed reusing code and performing verification steps in the early stages of the design
process. The standard-cell methodology provided complementary benefits, as the process
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Figure 1.1 — Combinational and sequential circuits: (a) Schematic of a combinational half
adder circuit; (b) example waveform for circuit (a) operation; (c) Basic symbol of a flip-flop;
(d) example waveform showing the flip-flop behavior.

of implementing a circuit in a given silicon technology was facilitated. Accordingly, it provided
designers with libraries of basic circuits already laid out and verified, called cells, which were
used to compose complex ICs [Mic94]. In fact, the standard-cell methodology is a natural
match for HDLs and is extensively used in contemporary VLSI design as an answer to de-
sign automation needs. Moreover, it is often referred as the key success factor for the rapid
growth of the VLSI market [ELEHS03, HFO03, JNAOQ].

Digital circuits can be divided into two main classes, combinational and sequential
[WH10, RCNO03, Mic94]. Combinational circuits transform data by relating output values to
input values using specific Boolean functions. In fact, the outputs of a combinational circuit
depend only on the values of its inputs and the function that it implements [WH10, RCNO03].
Combinational circuits are found at system and cell level. For example, Figure 1.1(a) shows
the schematic of a combinational circuit that implements a half adder using two combina-
tional cells: a two-input XOR and a two-input AND. In this circuit, whenever nodes A and B
are at different logic values, node S will be at logic 1. If A and B are at the same logic value,
S will be at logic 0. Also, whenever A and B are at logic 1, C will be at logic 1, otherwise it will
be at logic 0. Figure 1.1(b) shows a waveform that presents temporal changes in nodes A
and B of the example circuit being propagated to nodes S and C, according to the described
functionality. Note that these circuits are not ideal: cells and wires that interconnect them
will present delays for propagating a transition in the logic value of a given node to another,
as Figure 1.1(b) shows.

A sequential circuit, in turn, has memory and its output is not only a function of its
inputs, as in combinational logic, but also of its previous states. Consequently, the circuit has
the ability to "remember" past events and tracks part of its events history [RCNO3]. One of
the most common building blocks of sequential circuits is the flip-flop (or 1-bit register), which
symbol appears in Figure 1.1(c). As Figure 1.1(d) shows, a flip-flop samples the value on
their D input only during transitions of the CK input (in this specific case, a rising transition). It
then propagates the value sampled in D to output Q. Note that variations in the value of D will
not be captured except after rising transitions in CK. Similarly to combinational circuits, real
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Figure 1.2 — Example sequential logic block: (a) circuit schematic and (b) waveform depicting
its behavior.

flip-flops are not ideal and display propagation delays. Moreover, as Figure 1.1(d) shows,
these circuits also present two timing constraints: setup (f;) and hold () times. The former
is the amount of time during which data needs to be stable before the flip-flop can sample its
input and the latter is the amount of time it needs to be kept stable after the flip-flop sampling
edge occurs. Respecting these constraints enables the circuit to safely capture information
in D and propagate it to Q.

The operation of basic sequential cells like flip-flops may look simple, but it en-
ables a powerful assumption in digital design: output Q can only have its value changed
at specific transitions on CK. Such characteristic enables adding combinational logic to se-
quential circuits and allows the design of complex digital circuits, like finite state machines
and pipelines, capable of performing a wide variety of tasks [RCNO3]. In fact, according to
Rabaey et al. [RCNO03], most practical circuits require combinational and sequential com-
ponents for their design. For instance, Figure 1.2(a) shows the schematic of an example
sequential circuit using flip-flops and the combinational logic showed in Figure 1.1(a). As
the associated waveform in Figure 1.2(b) shows, variations in the values of inputs A and B
will immediately affect the internal nodes S and C. However, the outputs S,,q and Cr Will only
have their values switched at rising transitions in CK.

The next natural question is how to generate signal CK, to correctly control the se-
guencing of events in a sequential circuit. This is an important question, especially because
there are often hundreds, or even thousands, of flip-flops in large digital circuits. It is difficult
to safely determine when a combinational circuit has ended its computation, because the
validity of data in the outputs of such a circuit depends on individual delays of combinational
paths, those between every two nodes of a circuit. For instance, in the tiny example circuit
of Figure 1.1(a) there are 4 distinct combinational paths: (i) A-S (passing through the XOR
gate); (ii) A-C (passing through the AND gate); (iii) B-S (passing through the XOR gate);
and (iv) B-C (passing through the AND gate). In this way, a control block for the registers in
Figure 1.2(a) would have to be aware of what is the current state of the nodes of the circuit,
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and what nodes are transitioning, as well as what is the delay of each combinational path,
isolated and in combination, to be able to indicate validity of output data and to control when
new data can be injected at the inputs. A concept that grew with semiconductors industry, in-
cluding IP and electronic design automation (EDA) tools vendors, was to use a single signal
to simultaneously control all registers of a circuit. This concept is also known as the syn-
chronous paradigm and it serves as basis to enable the definition of HDLs, the construction
of EDA tools and the proposal of standard cell libraries, to cite a few of the main character-
istics of the available electronic digital design environments. In fact, most commercial VLSI
design flows available to date target synchronous design.

In synchronous circuits, a global signal called clock controls the whole sequencing
of events, based on the simultaneous sampling of data in all memory elements [RCNO3].
This signal triggers memory elements at a fixed frequency, defined at design-time. This
conveys to the designer a discrete notion of time. The only requirement is that the time
between two sampling actions must be at least equal to (but typically greater than) the worst
case delay of all combinational logic blocks between any pair of flip-flops separated only by
combinational logic blocks. In fact, in this relies the beauty of synchronous design. Since all
memory elements will sample their inputs at the same instant of time and it as long as the
design ensures that the clock period covers the worst case delay defined above, the delay of
combinational blocks, cells and wires, can be ignored altogether. Figure 1.3 shows a general
representation of a synchronous circuit segment. In this circuit, assume the minimum and
maximum delays of the combinational logic, i.e. the minimum and maximum delays from
QO to D1, are termn and terma, respectively. Assume also the delays tromin @aNd tromax are the
minimum and maximum propagation delays of register Ro, i.e. the minimum and maximum
delays from D0 to Q0. Assume also that the setup and hold time constraints of register R1
are trisewp aNd trinoa, respectively, and that the clock CLK period is t¢ . According to Rabaey
et al. [RCNOS3], under ideal conditions, where the clock edges occur in both registers at the
same time, i.e. CLK0=CLK1, the correct functionality of such a circuit is guaranteed provided
that:

etk — tRomax — tcLmax = tR1setup (1.1)

and

tromin + tcLmin > tR1nold (1.2)

In other words, Equations 1.1 and 1.2 ensure that, respectively, the setup and the
hold constraints of registers are respected.
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Figure 1.3 — Example of a typical segment of a synchronous datapath.

1.2 Motivation

Unfortunately, clock signals are never ideal. In fact, in a real circuit, transitions
at the points CLK0 and CLK1 in Figure 1.3 would usually lag in different proportions with
regard to the reference clock signal (CLK). This is due to spatial variations in the arrival
time of the clock signals, caused by static mismatches in the clock paths and differences
in their loads. This phenomenon is classically called clock skew, and is often constant
from cycle to cycle [RCNO3]. In other words, if the active edge of CLK1 (the edge that
triggers the register) is delayed by a time ¢, then on the next cycle, it will be delayed by the
same amount of time. Note that clock skew modifies the analysis of the example circuit of
Figure 1.3 because registers R0 and R1 are no longer activated at the same instant of time.
This requires adjustments in Equations 1.1 and 1.2, as discussed in detail in [RCNO03]. To
guarantee the correct operation of the circuit, one must take into account the value of 6 and
modify equations to account for it, which gives:

teik — tromax — toLmax + 0 > tRisetup (1.3)

and

tromin + toLmin — 0 > tR1hold (1.4)

Equation 1.3 indicates that bigger ¢ values have the potential to improve the per-
formance of the circuit, since larger maximum propagation delays tromax @and to max €an be
tolerated for a same clock period . In fact, this is correct, but increasing the skew has
the side effect of making it more difficult to meet hold constraints. As Equation 1.4 shows,
the bigger the value of 4, the larger the delays required for the combinational logic path
to meet the equation. Also, § can be a negative value, which relaxes hold constraints but
tightens setup constraints. Dealing with those problems was classically a low price to pay
for the advantages of the synchronous paradigm. However, as reported by several authors
(check [SGY*09, SRG*01, CPR10, TVC10, EKD*03, KKFK13]), this price is considerably
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higher in modern technologies. Accordingly, the correct and efficient distribution of a global
clock signal is becoming an increasingly expensive task, and the margins required for the
clock signal to deal with delay uncertainties are getting prohibitively constraining. Some
of the reasons behind that are the increase in process variability [KGB*11], the losses in
wire performance [HMHO1, HGDO04, Cit04] and the uncertainties in the operating condition
of devices [EKD*03, KKFK13]. These and other factors significantly impact transistor elec-
trical characteristics, and make it more complicated to meet timing closure in synchronous
systems. In fact, according to the International Technology Roadmap for Semiconductors
(ITRS) inits 2011 edition [ITR], a shift in IC design paradigms seems to be inevitable. This is
why asynchronous design techniques are receiving increasing attention of the VLSI research
community.

A digital circuit is called asynchronous when no clock signal is used to control any
sequencing of events in its registers. Instead, asynchronous circuits rely on a handshaking
protocol for each pair of registers to locally communicate for operation and synchronization
purposes [MyeO1, SFO1a, BOF10]. This means that each pair of registers communicates
by explicitly signaling, sending and receiving data. As the resulting behavior, registers are
active only when and where needed, and combinational blocks need not to be constrained
by a single global maximum delay value. Such characteristics present several advantages
over the synchronous paradigm and can alleviate problems faced by designers in modern
technologies, as discussed in different works, such as [SRG*01, MN06, BNS*07, BOF10,
CPR10, NS11, CCGC13, NS15a, NS15b]. Accordingly, asynchronous circuits have been
mainly used for achieving:

High speed operation: They can operate with average case delays, while their synchronous
counterparts rely on worst case delays. This is because in asynchronous design, regis-
ters synchronize locally and logic blocks can be individually optimized. In synchronous
systems, all registers are controlled by a single clock signal and combinational blocks
are all constrained to a common maximum delay constraint. Also, delay uncertainty is
a major problem in modern silicon technologies and are caused by three main sources:
process, voltage and temperature (PVT) variations [Nas00]. Delay variations caused
by process are typically constant within a chip, but vary within a wafer lot. Voltage and
temperature, on the other hand, depend on environmental and operating conditions
and cause dynamic delay variations during the operation of the circuit. To account for
PVT variations, synchronous designs need safety delay margins on the clock signal
that may result in substantial performance losses [EKD*03, DTP09, KKFK13]. This is
particularly problematic because such margins affect the global maximum delay con-
straint, constraining all combinational blocks. Asynchronous circuits, on the other hand
can accommodate delay variations more easily [MN06, CPR10], leading to better per-
formance in the presence of such variations. Examples of commercial high speed
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asynchronous solutions are the Ethernet switch designed by Intel [Int], presented in
[DLD*14], and the FPGAs designed by Achronix [Ach, RRP*09].

Low power operation: In order to account for PVT variations, synchronous designers need
safety margins not only on the period of the clock signal, but also in the supply volt-
age source [EKD*03, DTP09, KKFK13]. Because static power is directly related to
the supply voltage and switching power increases quadractically with supply voltage
[RCNO3, WH10], these margins can have a substantial impact on the total power of
a synchronous system. Furthermore, when not computing, an asynchronous circuit
is naturally quiescent, consuming only leakage current. This is different from syn-
chronous circuits, which periodically have their registers activated by the clock signal,
even when expecting no computation. It is true that the idle power in a synchronous
circuit can be reduced by using clock gating techniques. However, even in that case,
such techniques can complicate clock distribution and compromise power figures by
incurring in extra static power [Wim14]. In fact, clock distribution circuitry typically ac-
counts for 45% of the total power of a modern processor [AFE*05]. Another important
point is that, due to their nature, asynchronous circuits cope better with delay uncer-
tainties and are better candidates to voltage scaling techniques [MNO6], which can
provide substantial power savings, as discussed by Chang et al. in [CPR10].

The above items are the two main reasons why the VLSI research community is
regaining interest on asynchronous design. They demonstrate the potentials of this tech-
nology to cope with contemporary and future design challenges and are the main reason
why we decided to work with asynchronous circuits design. Another advantage of using
the asynchronous paradigm is its high modularity [Mye0O1, SFO01a, BOF10]. In fact, be-
cause asynchronous circuits do not rely on a discrete notion of time, and rather synchronize
and communicate using local handshakes, they have a modular interface and can be more
easily used to compose a system-on-chip (SoC) design. In other words, because an asyn-
chronous IP block is self-timed, one can more easily place multiple communicating asyn-
chronous IP blocks in a single design. This is in contrast to synchronous solutions, which
require intricate clock distribution and synchronization strategies, like the one discussed in
[RAB*12]. Such characteristic is particularly appealing for contemporary Multi-Processor
SoC (MPSoC) applications, as it enables building such systems in a more “plug-and-play”
manner. Another beneficial aspect of asynchronous design is that asynchronous circuits
can cope better with delay variations and continue to operate correctly along a larger range
of PVT variations [MNO06]. For instance, in [BNS*07], Bouesse et al. discuss how to use
asynchronous design to increase robustness to power supply disturbances. Furthermore,
as discussed in [PCV12, SCM*11], asynchronous design can also be used for hardening
other circuit aspects, like robustness to single event effects and robustness to side chan-
nel attacks in cryptographic applications. However, despite the listed potential benefits, the
asynchronous paradigm has an Achilles heel, which prevented its wider adoption: an acute



36

lack of EDA support. Such lack of EDA support provides a large research field and is the
fundamental motivation for the work presented in this document.

1.3 Problem Description

As previously explained, a major segment of the EDA industry was developed
to support standard cell synchronous design. In this way, methodologies for clock gen-
eration, control, distribution and closure matured while the development of asynchronous
design methodologies lagged behind [BOF10]. For instance, major EDA vendors like Ca-
dence [Cad] and Synopsys [Syn] have automated support for clock tree and clock gating
circuitry generation, test mechanisms insertion and even complicated optimizations like re-
timing, time borrowing and useful skew [Fri01, XD96]. All of these target synchronous
design, and have no specific support for asynchronous circuits. Furthermore, basic com-
ponents for semi-custom approaches, designed at the cell level and available in standard
cell libraries were optimized to target synchronous implementations and those necessary
for asynchronous design were also left behind [BOF10]. For example, IP vendors like ARM
[ARM] provide standard cell libraries with combinational and sequential cells for synchronous
design exclusively, together with libraries of cells creayed specifically for clock distribution
trees. However, there is no IP vendor providing cells required for asynchronous design,
which are often different from those employed in synchronous circuits [BOF10]. Even HDLs
were devised and revised targeting synchronous circuits design. Note that these problems
are aggravated by two facts:

1. Differently from synchronous, asynchronous circuits can be designed using multiple
different templates, each with its own advantages and drawbacks. Such characteris-
tic allow better design space for asynchronous circuits but complicates the design of
EDA tools and cell libraries to support the different templates and benefit from their
advantages.

2. Standard-cell libraries and tools for synchronous design are available for decades and
were employed in a vast set of designs by the VLSI industry. This means that all this
environment was extensively verified and validated in commercial applications. In this
way, shifting to new tools and libraries to target asynchronous design is risky, because
these were not extensively validated and engineers are not used to them.

In fact, different authors claim that the main reason why asynchronous design is not
widely employed in VLSI design is the lack of EDA support for its design [CCKT09, PAAS14,
JNO08, KL02, BDL11, SSJ13, BLDK06, SRG*01, KOM13, AFE*05, GBN13, SGY*09]. In this
way, there are multiple gaps to fulfill to provide EDA support for asynchronous design, and
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multiple problems to be solved. Our target in this Thesis is to provide better EDA support to
asynchronous designers in cell libraries and templates design.

1.4 Goals

Given the exposed motivation and problem description, the strategic goal is to pro-
pose a set of contributions that enhance the available infrastructure for the design and im-
plementation of asynchronous circuits.

To accomplish this strategic goal, the following set of specific objectives were de-
fined:

1. To systematize the process of composing cell libraries for asynchronous design;

2. To define a cell design flow that supports the development of cell libraries for asyn-
chronous design;

3. To enable semi-custom asynchronous design using both conventional cell libraries and
libraries of cells specifically designed for asynchronous circuits;

4. To expand the asynchronous circuit design space, providing new techniques and re-
sources at the logical and circuit levels that complement, enhance or optimize existing
semi-custom asynchronous design techniques.

1.5 Originality of this Thesis

This work has its roots in the proposition of a basic library of cells for asynchronous
design called Asynchronous Standard Cells Enabling n Designs (ASCEND). The library was
initially designed as a final year undergraduate project carried out by the Author. The ini-
tial targeting technology was STMicroelectronics 65nm bulk CMOS technology. This library,
called ASCEnD-ST65 [Mor10], then served the purpose of semi-custom design, where it
was coupled to academic tools, during the Master of Science developments of the Author
[Mor12]. Since its proposition, the library was employed in the design of different applica-
tion circuits, such as Network-on-Chip (NoC) routers, as discussed in [PMMC10, PMMC11,
MMG*13, GMMC15]. In the context of this Thesis, ASCEnD-ST65 was initially employed to
explore semi-custom asynchronous design approaches and, during this process, a need for
new components was detected. Hence, a first novel contribution of this work is the enrich-
ment of the library with new components. To do so, a set of guidelines were specified to
ensure that the library was compatible with conventional cell libraries. This avoids the need
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for designing cells that are already available in such libraries and helps meeting specific
objectives 1 and 3 from Section 1.4.

The design of a cell library is a laborious task and requires EDA support. Fortu-
nately, a basic design flow for the ASCENnD-ST65 library was also available since its propo-
sition in [Mor10], as described in [MOPC11]. The problem is that the original ASCEND flow
had low degrees of automation. Albeit it had the capability of automatically dimensioning
transistors, it had no support for automatic layout generation or cell characterization. In this
way, cell design still required a large design effort. The second original contribution of this
Thesis, which helped overcoming that limitation, was the design of a new tool for automatic
electrical characterization of cells. The tool was called Library Characterization Environment
(LiIChEn) [MOCO13]. All cells of the library have passed through LiChEn.

The next step was to provide a solution for automatic cell layout generation. To do
so, the author integrated the ASTRAN [ZR14] tool in the ASCEND flow [ZRM*14a, ZRM*14b].
Thus another contribution of this Thesis was the design of a set of scripts that enabled a
smooth integration of LIChEn and ASTRAN in the ASCEnD flow, automating the process.
This new version of the flow was called ASCEnD-A. Its use allowed to produces larger set of
cells, as reference [MAZ*14b] discusses. In fact, all cells of the library developed here were
designed (in some cases re-designed) using this flow, which enabled meeting the specific
objective 2 from Section 1.4.

The framework for automatic cell generation above enables a multitude of ex-
periments in producing cells for asynchronous design. As a result, a variety of original
contributions were produced. Significant advances regard transistor level optimizations of
asynchronous cells (cells used for asynchronous circuits design), as references [MMC14,
MOMC12, MAMC15, MHBC15, HHS*15, SMT*15, ZHM*15] discuss. Disturbances in the
electrical behavior of the cells caused by phenomena like charge sharing, PVT variations and
radiation effects were also studied, as discussed in [MOMC13, GHMC14, MAGC14, MC13],
which enabled defining guidelines for cell libraries design considering such effects. More-
over, guidelines for designing cells for voltage scaling applications were also defined, as
presented in [MC13, MAGC14]. Most of these works propose optimizations to existing cells
for asynchronous design, as well as suggest new cells, and helped meeting specific objec-
tives 1 and 4 from Section 1.4.

As ASCEND gets enriched with new components, specific objective 4 can be fur-
ther pursued, by exploring optimizations in asynchronous logic at the architectural level. This
Thesis brought several contributions in this context as well. These include the proposition of
new asynchronous templates, as presented in [MGC12b, MGC12a, MGHC14, MOPC13Db,
MPC14, MTMC14, HMH*15, HHC*15], and a new technique for automatically mapping
asynchronous designs to cells available in the ASCEND library [MNM*14].

Given this set of contributions, this Thesis provides a next step towards better EDA
support for asynchronous design. Its originality can be divided in the following items:
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» A set of novel components for asynchronous circuits design: As we explored asyn-
chronous components with the ASCEnD flow, we optimized some of them and pro-
posed new ones. This is a step forward in the support of asynchronous circuits design
because it provides more options to the designer. Furthermore, as this Thesis explore,
the proposed optimizations and novel components allow better exploring power, delay
and area trade offs.

» A completely automated design flow for devising cells for asynchronous design and
a case study cell library: The ASCEnD-A flow is one of the most important contribu-
tions of this Thesis, because it allows a completely automated approach for designing
components for building asynchronous circuits. As this document describes, we val-
idated the flow with extensive components design as we explored different manners
of implementing asynchronous circuits. We also provide a freely available library de-
signed with the flow, with the only restriction being that the requester has access to the
target technology. This library supports the implementation of asynchronous circuits
targeting different templates, as this Thesis explores.

» New templates that allow better design space exploration and higher degrees of au-
tomation for logic optimizations and technology mapping: The proposition of new tem-
plates for asynchronous design brought new possibilities for asynchronous designers
enabling better design space exploration. Moreover, the development of an automated
method for mapping asynchronous cells in our target template and performing logic
optimizations is an unforeseen possibility for this type of circuits.

1.6 Document Structure

The rest of this Thesis is organized in 5 Chapters. Chapter 2 presents basic con-
cepts on semi-custom design approaches and asynchronous circuits. This chapter also
defines a basic terminology that is used throughout this document. Next, Chapter 3 ex-
plores our innovations in asynchronous components design. Chapter 4 explores the design
of asynchronous cell libraries, presenting our automated design flow and a case study li-
brary. Chapter 5 presents a set of new design templates proposed in this work and explores
their usage in a set of case study. Lastly, Chapter 6 presents the final considerations of this
work and discusses future work. Note that each chapter of this Thesis presents a revision of
the state-of-the-art relative to its content.
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2. CELL-BASED AND ASYNCHRONOUS CIRCUITS DESIGN

This Chapter explores concepts that serve as basis for the work developed in this
Thesis. It starts bringing an overview of design styles for digital ICs in Section 2.1. The focus
here is on cell-based design, exploring well defined concepts that are widely employed in
contemporary VLSI circuits. Next, it discusses the asynchronous paradigm in Section 2.2,
focusing on asynchronous digital IC design, and scrutinizes different approaches to design
an asynchronous circuit. Alongside the discussion, the Chapter establishes a precise termi-
nology employed throughout the rest of the document.

2.1 Cell-Based Design

VLSI applications have different requirements, mainly high performance, low power
and high density. Applications such as supercomputing prioritize high performance, while
battery-based applications have tighter power and area constraints and will trade off per-
formance, area and power, which typically conflict in IC design [RCNO03]. These applica-
tions are also usually constrained by two major factors: (i) design and fabrication cost; and
(i) time-to-market issues. Unfortunately optimizing ICs for performance, power and area
increases these factors and designers need to trade off the optimization process with de-
sign time and cost. To alleviate the problem, and to meet different requirements, through
the development of the semiconductor market, different design methods, or design styles,
appeared to devise an IC. This section explores some of these methods, focusing on the
cell-based semi-custom design style.

2.1.1 IC Design Styles

Contemporary IC design styles trade off time to market, non-recurring engineer-
ing (NRE) costs, production cost per part and performance, area and energy efficiency
[WH10, RCNO3, Mic94]. As Figure 2.1 shows, these design styles are often classified into
full-custom and semi-custom approaches [RCNO3]. In the former, all the aspects of an IC
are handcrafted and the application is literally manually designed, from functional to physical
level. This means that every transistor is individually sized and laid out, involving detailed
manipulation of physical and electrical characteristics of these devices. A good example of
a full-custom IC is the Intel 4004 microprocessor, which layout is showed in Figure 2.2. This
IC was designed in the early 70s and counted with roughly 2,300 transistors, all manually
placed. As a result, the layout is compact and optimized through all levels, from transis-
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Figure 2.1 — A taxonomy for IC design styles, adapted from [RCNO3].

tors placement to nets routing. Such approach leads to designs optimized to excellence.
However, the drawback is that doing so implies in a labor-intensive large engineering ef-
fort, incurring in larger NRE costs and design time. According to Rabaey et al. [RCNO03], a
full-custom approach is only justified under the following reasons:

» The (full-)custom block can be reused many times, as in IP designs such as cells of a
cell library;

» The design cost can be amortized over a large volume of fabricated parts, as is the
case with microprocessors and memories;

» Cost and design time are not the prime design criteria, as in supercomputers.

The increasing complexity of contemporary ICs, added to strict time-to-market con-
straints has confined full-custom design techniques to specific cases, where the extremely
costly effort pays off. To overcome full-custom limitations, a wide variety of semi-custom
approaches have been proposed in the last decades, aiming to reduce design time by par-
tially automating the process of designing an IC. However, such automation comes at the
price of reduced density and power efficiency, as well as losses in performance figures.
Generically speaking, the shorter the design time, the larger the penalty in area, power and
performance. As Figure 2.1 shows, semi-custom design is subdivided in two main families:
cell-based and array-based. Array-based approaches encompass prediffused and prewired
arrays that can even completely avoid the designer to get involved in the fabrication process,
as in the case of field programmable gate arrays (FPGAs) [WH10, RCN03, Mic94]. Accord-
ingly, these approaches have the advantage of having reduced NRE costs and are attractive
for applications that will require a relatively small volume of parts sold. Obviously, a trade
off exists and array-based approaches may incur in severe penalties in performance, density
and power efficiency. Furthermore, they mostly support synchronous design, and vendors of
array-based solutions do not support asynchronous circuits design easily. For example, the
only vendor that does implement asynchronous logic for FPGAs currently is Achronix [Ach].
However, their solution starts from a synchronous description of the circuit. Also, it is not
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Figure 2.2 — Layout of the Intel 4004 microprocessor [Int].

clear how much the asynchronous logic can be optimized using array-based approaches.
Given all these restrictions, array-based design is kept out of the scope of this Thesis.

Cell-based design assumes the use of pre-designed and pre-verified basic blocks,
called cells, to compose an IC. Cells are designed at the layout level and implement basic
logic functions, including combinational and sequential logic. Note that cells are organized in
libraries, which can contain hundreds or thousands of them and the quality of a semi-custom
design is a direct function of the quality of the library used to compose it. The idea behind the
cell-based approach is that a design is captured as a schematic composed only by the cells
available in a specific library and the layout of this design is then constructed using these
cells. In other words, this design style increases the grain size of design to logic gates,
in contrast to designing each transistor, as in a full-custom style. For instance, Figure 2.3
shows an example of a contemporary design, the Intel Ivy Bridge 3C. With over 1 billion
transistors, it is simply impossible to design such an IC using a full-custom design approach
and respect time to market and cost constraints. In fact, as the regularity in the layout of this
design indicates, virtually all portions are designed using semi-custom approaches. Only
the the most critical modules, such as phase-locked loops, are designed manually [WH10].



Figure 2.3 — Layout of the Intel Ivy Bridge 3C [Int].

2.1.2  Cell-Based Design Flow

A cell-based design starts with three key definitions: (i) the specification of the
circuit to be designed; (ii) the target technology; and (iii) the cell libraries to use. Definition
(i) entails describing the functionality and the constraints the circuit need to respect, typically
in a document written in human language (which can include algorithm descriptions). This
document specifies how the circuit is to behave from a functional point of view, depicting the
expected output values for each set of input values and defining temporal characteristics.
It also defines performance figures and physical and electrical constraints that the designer
must use to guide the implementation of the circuit. Performance figures specify the speed
at which the circuit will operate, measured in metrics such as throughput, clock frequency
and latency. They also tell how much power the circuit should/could dissipate, which can be
given as total power figures or as more specific definitions, like energy per operation.

Definition (ii) specifies the target technology and is critical. One reason for that is
because it chooses the fabrication technology, which is the fundamental factor for deriving
the performance figures of devices used in the design [Tay13]. Although most designs still
target bulk complementary metal-oxide-semicodunctor (CMOS) processes, there is a grow-
ing market for silicon on insulator (SOI) and multigate devices (like Intel’s FinFETs). More-
over, some authors describe advantages of using other fabrication technologies, like GaAs
[Har07]. However, these are typically not widely supported by semiconductor foundries. An-
other important aspect of definition (ii) is the choice for a target technology node and foundry.
This is particularly important for cell-based design because it can limit definition (iii), given
that IP vendors can target specific technology/library vendor combinations. In other words,
definition (ii) must be carried on bearing in mind which cell libraries will be used in the design
and what vendors support the fabrication technology.



44

While it is true that some design houses can have cell libraries designed on de-
mand, not all companies share this privilege, as such libraries require full-custom design
and can thus be very expensive to develop. In fact, in cell-based design it is more com-
mon to use third-party cell libraries that contain sets of cells optimized for different aspects,
targeting a specific technology. Such aspects include high speed, low power, high density
and high robustness, which the designer needs to trade off to meet the defined constraints.
Furthermore, there are even libraries especially designed for projecting specific parts of a
digital IC, like clock distribution circuitry or test infrastructures. Recall that defining the target
technology is strictly related to what libraries will be available, that is why definitions (ii) and
(iii) are typically carried out together. Also, albeit this discussion is limited to cell libraries,
cell-based designers can also employ third-party IP macro blocks [RCNO3, Mic94] for regular
circuits like memories, register files and arithmetic units.

Once the circuit is specified and the target technology and cell libraries are defined,
it is possible to start the circuit design process. One of the advantages of cell-based IC
design is that it counts with extensive support of EDA tools, which can automate most parts
of the design process. To employ these tools on the design of an IC, designers rely on flows
like the one depicted in Figure 2.4. Note that this flow is organized to highlight issues related
to cell-based design. The first step is the design of the HDL [Vah10] source code, which
must describe the behavior of the circuit and fulfill its specification. One of the reasons for the
popularity of HDL in IC design is the fact that it allows describing the functionality of a digital
circuit using a textual description. In this way, designers can write expressions, statements
and control structures in a language that is similar to human language. Furthermore, HDLs
are technology independent and allow performing verification steps in early stages of the
design flow. They also enable higher degrees of modularity and reuse, besides largely
allowing technology independent design. In fact, because HDLs are typically employed, the
target technology and cell libraries are not required in the first stages of cell-based design
flows, as Figure 2.4 shows, and the decision on these can be postponed to latter design
stages.

HDL design capture most often use the Verilog or/and the VHDL language [RCNO3,
Vah10], albeit other languages, like SystemVerilog have also been employed [BOF10]. To
verify the correct functionality of an HDL description, and to verify the design before pro-
ceeding to synthesis, designers typically rely on testbenches (which are also often built
using HDLs), and functional simulation of these. Testbenches reproduce the behavior of the
environment where the design will be employed, providing realistic stimuli and collecting the
resultant data generated by the design under verification (DUV). Functional simulation allows
verifying the behavior of the designed circuit regardless of most implementation details. In
other words, it assumes that the DUV is a module described using some HDL and verifies
the functionality of this module as a set of input-output relations [RCNO03]. Furthermore, at
this stage, it is usually assumed that there is no delay in the components of the DUV, al-
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Figure 2.4 — Basic cell-based IC design flow.

beit HDLs typically allow designers to specify input-output delays. The reason for using a
zero-delay model is mainly to speed-up simulation time. If during functional simulation the
designer detects a misbehavior of the DUV, i.e. its functionality differs from that defined in
the circuit specification, the HDL code needs to be revised so that the design performs as
expected. Popular functional simulators are Cadence NC-Sim [Cad] and Mentor Graphics
Modelsim [Men].

Once the design is validated through functional simulation, it proceeds to the logic
synthesis stage. At this stage, the hardware description will be synthesized to generate a
netlist, a set of cells interconnected by wires. It is important to highlight, though, that this is a
very complex task, particularly for modern designs that can take up thousands or millions of
cell instances. Hence, designers typically rely on the support of EDA tools, in particular logic
synthesis tools that, said simply, translate HDL code to a gate netlist. The first step of a syn-
thesis tool is usually a generic synthesis, and consists in the process of translating an HDL
code to a generic set of modules, usually technology independent blocks like registers and
combinational gates like ANDs, ORs and XORs. After the generic synthesis, the next step is
to perform a step called technology mapping. This step generates a netlist that implements
the same functionality as the HDL source code, but formed exclusively by instances of cells
available in the target cell library. To perform this task, as Figure 2.4 depicts, these tools re-
quire models that describe the electrical characteristics of the target cells (commonly called
timing and power models). These models describe the timing and power characteristics of
each single library cell, which are used to compute the timing and power characteristics of
the design using methods like static timing analysis (STA) [RCNO03]. Timing and power mod-
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els are typically described in the OpenSource Liberty Format [Lib] proposed by Synopsys
[Syn].

STA is a method for computing the expected delay of paths in a circuit without
relying on its simulation. It is widely employed in EDA Frameworks for IC design. STA tools
statically analyze the delay of the logic paths, which consist of sequences of cells connected
in series, using the provided timing and power models. Using STA synthesis tools are able
to optimize the circuit with cells that are more suited to each logic path in some sense. Also,
note that the tool thus requires the definition of a set of constraints that states the conditions
under which the final design is to operate. These constraints guide the process of selecting
cells and are provided by the designer, based on the initial circuit specification. The most
common format for describing constraints that guide a synthesis tool is the Synopsys Design
Constraints (SDC), widely supported by IC design frameworks.

Because different approaches can be used for optimizing a design, like employing
wider or narrower logic paths or using larger or smaller cells, the process of technology
mapping is iterative and can require several rounds [Mic94]. At each round, the designer
will need to adjust the constraint settings to help the synthesis tool meeting the specified
constraints using the defined cell libraries. It is also during logic synthesis that test circuitry
is added to the design, which is usually done using automated tools like Cadence Encounter
DFT Architect [Cad]. This work does not address test circuits in detail, a good reference to
the interested reader is [ABF94]. Once the circuit is synthesized, mapped to the target cell
library and optimized to have all its constraints met, it is verified using a logic equivalence
checking (LEC) tool. This tool enables a formal verification of the circuit, ensuring that the
generated netlist implements the same logic described in the HDL code. In other words
it ensures that the process of mapping the circuit to a target cell library did not corrupt
the functionality specified by the designer. The most used frameworks for logic synthesis
nowadays are Cadence Encounter [Cad] and Synopsys Design Compiler [Syn]. Note that
these frameworks encompass a set of tools to perform the various tasks described here.
Also, during the logic synthesis process, issues that were not detected during functional
simulation may be identified, requiring a revision of the HDL source code. These issues are
typically related to the structure of the described hardware and the available components in
the cell library, because this is the first step where the designer can have a glimpse of the
final implementation. Another important point is that during logic synthesis, different reports
can be generated, like power and timing reports, which will guide the subsequent steps in
the design flow.

After logic synthesis, designers need to verify that the generated netlist implements
the same functionality of its description using HDL in the same environment described in its
testbench. A common approach to do so is to perform gate-level simulation of the resulting
netlist with annotated gate delays. As explained before, the netlist is a schematic composed
by a set of components, exclusively those available in the target library, interconnected by
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wires. It is usually described in Verilog, although it can be described using other HDLs.
Gate delays are annotated from the power and timing models and are usually exported to a
Standard Delay Format (SDF) file, a standard defined by IEEE [IEE] and widely supported
by EDA vendors. Furthermore, synthesis tools can also calculate the expected interconnect
delays using wire models and capacitance tables, to approximate wire delays based on
aspects like design area and cell count. However, in modern technologies the precision of
these methods is questionable and synthesis tools are adopting more elaborated strategies
like performing a rough physical synthesis to estimate interconnect delays [KeyO01].

Gate level simulation is somewhat similar to functional simulation. In fact, the same
simulation tools can be employed here. The difference is that in gate level simulation the
simulator relies on the cells as the primitives for evaluating the behavior of the circuit. In other
words, instead of evaluating the behavior of the DUV as a set of its input-output relations
only, it accounts for the input-output relations of each of the cells that compose the design.
To do so, gate level simulation requires a set of behavioral models for such cells. Behavioral
models are descriptions, typically in some HDL, that define the cell behavior for all states and
corresponding transition arcs. These models describe the values on the cell outputs for each
combination of input values as well as the transitions on outputs generated by transitions in
the inputs. This is typically achieved with user defined primitives (UDPs) in Verilog, which
allow to describe behavior using truth tables with special symbols that indicate static values
and transitions.

Because it allows evaluating the behavior and delay characteristics of each cell of
the circuit with the stimuli provided by the testbench, gate level simulation allows identifying
problems that can emerge from the logic synthesis process. In fact, albeit formal verification
enables ensuring that the netlist implements the specified functionality, it does not allow to
explore issues related to the timing of the synthesized circuit. At this stage, issues identified
in the design may require the designer to rerun logic synthesis steps and perform optimiza-
tions or even revise the HDL source code. Once the netlist has its correct functionality
verified through gate level simulation, physical synthesis can take place.

Physical synthesis is, in essence, the process of transforming the synthesized
netlist in a layout that can be sent to a foundry for fabrication. lts starting point is the mapped
netlist generated by the logic synthesis. From there, a physical tool set generates the layout
of the design using a set of models that describe technology specific parameters, and char-
acteristics of the employed cells (physical, timing and power). A layout is a set of polygons
that represent the different layers (or materials) used for the fabrication of the IC design.
These layers include, but are not limited to: polysilicon, diffusion, different dopings, different
levels of metal, contacts and vias. Polysilicon, diffusion and doping layers are typically em-
ployed for creating transistors (and other basic devices like diodes). Metal layers are used
to route such devices and modern technologies can have as many as 13 different levels
of metal. These metal layers are stacked during fabrication and interconnected using vias.
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Contacts allow connecting the first level of metal to diffusion layers, i.e. to the terminals of
transistors.

To generate the layout, the following major steps are typically performed [RCNO3]:

* Floorplanning: The first step in the physical design of an IC is the floorplanning. This
step is where sub-modules of the design are spatially distributed by the designer, or-
ganizing the layout. The idea is to keep modules that are connected closer to each
other. Furthermore, sub-modules that are connected to the primary inputs/outputs of
the design should be positioned in the periphery of the design. Note that, in designs
that employ macro blocks, this is also the step where they are positioned in the layout.
It is also during the floorplanning that the power distribution in the layout of the design
is organized, i.e. power rails are created and distributed along the layout. Furthermore,
in deep sub-micron technologies this step also counts with the insertion of tap cells,
which connect the power rails to the body to adjust body voltage.

» Placement: With the sub-modules of the design distributed and the layout organized,
the next step is to place the cells. This process defines the precise position of each
cell in the layout and is guided by the floorplan. To do so, the physical synthesis tool
requires a physical model that describes aspects like width and height of the cells and
identifies where their input and output pins are placed. These models are known as
abstract views and are extracted from the layout of the cells. A common format for
abstract views is the library exchange format (LEF) from Cadence [Cad]. Abstract
views are useful because they help saving computational resources, by providing only
the information that the placement tool needs to use the cells, reducing memory usage
during the design process. It is also during this step that the clock (and other global
signals, like reset) has the circuitry for its distribution synthesized.

« Routing: The next step is to connect the input and output pins of the placed cells (and
macro blocks), i.e. route the interconnections to reproduce the logical netlist patterns.
To do so, the physical synthesis tool relies on abstract models, to locate the pins of
the cells, and on technology specific parameters, such as metal width. Note that the
tool may require to place extra cells, typically buffers, for ensuring signal integrity in
long wires. In fact, the process of generating the interconnections in a large IC design
is very complex, because the generated wires add capacitance and resistance to the
nodes that connect cells.

» Place & Route Optimization: The placement and the routing of cells does affect local
delay characteristics, modifying the logic synthesis output design timing. Furthermore,
the delay of wires, which may have been overlooked during logic synthesis, can now
cause a big impact in the IC performance [HMHO1]. In this way, to ensure that the
design continues to meet the defined constraints, several rounds of placement of cells
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and routing of interconnects may be required. At each round, the physical synthesis
tool computes the delay of logic paths using STA. To measure gate delays, timing and
power models are used, and to measure wire delays the tool relies on technology
specific information provided by the designer.

« Verification: Another important step, that can also be iterative is the verification of the
generated layout. First, the designer can perform a LEC using tools similar to those
available during the logic synthesis steps. This verification ensures that the resultant
netlist, after place and route, still represents a logic equivalent to that of the input HDL
code. The importance of performing such verification after the layout generation comes
from the fact that, during place & route optimization, the netlist may have changed
in order to accommodate wire delays in the defined constraints. Such modification
can change the logic functionality of the circuit. Next, the designer needs to ensure
that the layout respects design rules specified by the technology vendor, which, at
this point, typically encompass only interconnecting layers, metal layers and vias, to
reduce verification complexity. These include verifying and fixing antennas [RCNO3]
and maximum transition and capacitance values. Note that problems identified during
the verification steps may require further optimization iterations.

* Fillers generation and extraction: Once the design is verified, filler cells and metal
layers should be placed. They will ensure that design and minimum density rules are
respected. The design can then be extracted from the IC layout, generating a netlist
and the equivalent capacitance and resistance of interconnecting wires. Note that, at
this point, the layout contains only abstract views in it, i.e., only those layers required
for place and route tasks. Using these values, EDA tools can export the delays of the
circuit, now including wire delays, to a new SDF file, for performing a more precise
gate-level simulation. These can also generate a transistor level netlists, to perform
transistor-level analog simulation. The physical synthesis layout can be exported to
a format compatible with other EDA tools and technology vendors, usually using the
Graphic Database System (GDSII) format.

Once the physical synthesis is complete, the design can undergo a set of final
verification steps. These can include a complete verification of the design rules with all layers
of the layout, gate-level simulation, voltage drop analysis and transistor-level simulation.
A complete verification of all layers of the layout is possible when the designer has full
access to the cell layouts. Such verification is done importing the physical synthesis layout
to a layout editor like Cadence Virtuoso [Cad], and allows ensuring that the design can be
fabricated in the target technology. However, this is not the case in all semi-custom designs,
as IPs and even cell libraries are usually provided by third party vendors, which may not
disclose all the information of their products. In this case, designers usually have to send
their physical synthesis layout, composed of abstract views only, to a third party that has
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access to all views of the IPs, which will import all layers, generate the full layout and verify
it. If the design complies with the defined technology rules, the layout is sent for fabrication.
Otherwise, it is sent back to the designer with a detailed report for revision. This kind of
intermediate verification is typically conducted by specialized enterprises, as in the case
multi-project wafer services like MOSIS [MOS] or the french CMP [CMP], which serve low
volume productions for private firms, research laboratories and universities.

Gate-level simulation can be performed similarly to the verification steps of logic
synthesis and ensures that the post-layout design still implements the correct functionality in
the implemented testbench. The difference is that, after physical synthesis, wire delays are
already known and are also annotated for simulation purposes. Voltage drop analysis allows
verifying that the power planning was well done and the power rails are sufficiently wide to
distribute current across the chip. This analysis is particularly important for synchronous
design, because given the fact that the clock signal controls all registers, at each clock edge
there will be a high demand for current chip wide. In this way, the designer needs to ensure
this worst case scenario is accounted for by the design.

After the layout generation phase is complete, the extracted layout can also be
exported to Spice, which allows modeling the fundamental discrete components in VLSI de-
sign: transistors, capacitors, resistors, diodes and inductors [WH10]. With a Spice netlist, the
designer can perform analog transistor-level simulation, which is the closest an IC designer
can get to the real IC behavior in the design phase. Note that this simulation can require a lot
of computational resources, as modern ICs can count with billions of transistors. In this way,
it is common to simulate only specific logic paths using transistor-level simulation to speed-
up verification. For instance, in synchronous designs, designers will usually simulate critical
paths using analog simulators, as these are the ones that require careful handling, given the
constrained nature of the synchronous paradigm. Analog simulation can take place using
open source Spice simulators like Ngspice [Ngs], or tools provided by vendors, like Synop-
sys HSpice [Syn] or Cadence Spectre [Cad]. Also, these simulators require models for the
devices used in Spice descriptions, for transistors, diodes, etc. These models are provided
by the technology vendor, usually the foundry itself.

During physical synthesis and verification, issues that could not be identified in the
previous design steps can now be detected. These issues can require running more opti-
mization iterations in the physical synthesis, some times even some full custom adjustments
may take place, or they can be more severe and require going back to the logic synthesis
phase. In fact, in some extreme cases, even revision of the input HDL may be required.
A common problem is the extra delays added by real wires, which were ignored in the first
synthesis steps, which are called parasitic effects [RCN03, WH10]. All these final checks are
usually referred to as signoff checks, as they are a check list before sending the design to
fabrication. Once the design satisfactorily passes all these tests, the IC design can proceed
to the foundry, where it is fabricated in wafers and cut into individual dies [WH10, RCNO3].
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Dies are then packaged and sent back to the designer, who will test them before shipping
it for use in final products. This discussion is limited to the most common signoff checks.
However, there are other verification steps that companies may perform before signing off,
like signal integrity analysis and electromigration checks [RCNO3].

2.1.3  Cell Library Design

As Section 2.1.2 described, a cell is a basic building block used for semi-custom
IC design styles. They are circuits with input and output pins and a set of semiconductor
devices connected by wires, and which implement basic logic functions. Cells can be com-
binational or sequential, which means that they can rely only in the values of their inputs
to compute the value in their outputs or can also rely on internally stored values to do so.
Furthermore, albeit the design of a cell can require analog design knowledge, the behavior
of cells outside of their interface boundaries (input and output pins) is most often purely dig-
ital. Accordingly, cell-based design avoids the need for transistor-level design and raises the
design abstraction level by enabling to consider cells as black boxes with a logic behavior.
However, to do so, a set of models is required so that designers, or EDA tools can employ
these black boxes to compose an IC. The models comprise information of each cell logic
behavior as well as electrical and physical parameters. Figure 2.5 depicts a basic flow to
generate these models. As the Figure shows, the process of designing a cell starts from a
specification, which defines its basic aspects, i.e.:

» The cell logical behavior, which provides the logic function the cell will implement. For
instance, as reported by Rabaey et al. [RCNO03], libraries need different logic func-
tions. Accordingly, cells from a library will implement at least the basic combinational
functions, such as inversion, AND/NAND, OR/NOR, XOR/XNOR, and also some se-
quential logic behavors, such as the functionality of latches and flip-flops. Furthermore,
libraries can also provide more complex cells, like generic sums of products, products
of sums, multiplexers, demultiplexers, encoders, decoders and bit slices for arithmetic
blocks, such as adders and subtractors.

» The cell electrical requirements, which can provide power and delay constraints asso-
ciated to the cell. Because cells are used in semi-custom design, it is not known in
advance what will be connected in their outputs; therefore, the load that they will need
to drive (charge/discharge) is unknown. Bear in mind, though, that this load will have a
significant impact in the performance of the cell [WH10]. Hence, libraries often present
different versions of each cell, where each version has a different size (in fact, some
of its transistors have different sizes) and is capable of driving a different amount of
load in given period of time. Different cell sizes correspond to cells with differing driv-
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Figure 2.5 — Basic design flow for the design of a cell.

ing strengths, also called just the drive of the cell. Each of these versions is typically
designed to be able drive a capacitance 4 times bigger than its input capacitance, a
metric known as fanout of 4 (FO4). Note that, the bigger the driving strength, the big-
ger the load that the cell can drive, but also the more power hungry the cell is. In this
context, electrical requirements furnish parameters to dimension the cell.

Using the specified logical behavior, behavioral models are captured. These mod-
els are usually HDL descriptions in Verilog or VHDL, and are employed in digital simulation
with gate-level simulators for verification purposes. The logical behavior is also used to
generate a schematic that put together semiconductor devices of a target technology and
connect these with wires to implement the specified function. The devices are arranged
and sized to meet the electrical requirements, according to analytic approaches or by itera-
tive simulation approaches, which trade off design time and quality [RCNO3, WH10]. After
the cell has its schematic appropriately sized, it is laid out. The layout process consists of
arranging polygons that represent the different layers used to fabricate an IC in a specific
technology. This is typically done using a layout editor tool, like Virtuoso from Cadence
[Cad].

An important aspect to keep in mind during cell-based design is the fact that EDA
tools are used from the front end to back end tasks and to make it possible for automated
tools to place and connect cells, rules are needed. Thinking about Lego blocks, the reason
why one can build bigger structures with them is that all of these bricks can connect to each
other in a standard way. Moreover, all blocks have standard sizes and standard places for
the connection bumps. In order to design a standard-cell library, it is necessary that all cell
respect the same set of rules [SS02]. In this way, the gates will fit together in predictable
patterns and it is easier to automate the process of generating circuit layouts from abstract
descriptions, such as RTL descriptions. Figure 2.6 shows a typical set of rules used to de-
sign standard-cell libraries, also called the cell architecture. Note that this architecture can
vary depending on the technology. For instance, the one showed here does not include bulk
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Figure 2.6 — Typical architectural rules for a cell from a standard-cell library, adapted from
[Mor10]. “A” is the cell pitch (or routing grid pitch), “B” is the cell height, “C” is the cell width
(which can vary), “D” is the power rails width and “E”, “F” and “G” are the height of implant
layers [RCNO3, SS02, SS04].

contacts. That is because these are not usual in cell libraries targeting recent technologies,
which rather use special cells called tap cells for controlling bulk voltage. For older technol-
ogy nodes, though, the designer should include the position of bulk connections in the cell
architecture specification.

The most fundamental rule in a cell architecture is the cell pitch or routing grid pitch,
“A”in Figure 2.6. This pitch is typically defined as the metal pitch of the target technology and
establishes the minimum step that a cell can grow in width and height and is used by back
end tools to perform power planning, place and route steps. In fact, a place and route tool
is typically used to build a cell-based circuit from the cells provided by the library and does
it by placing the cells side by side and then connecting the pins of these cells according to a
synthesized netlist. Having a fixed cell height (“B” in Figure 2.6) reduces design complexity
and helps the automation of the IC design process, as it facilitates the arrangement of power
and other long or global lines/wires. Note that this height must be multiple of the cell pitch “A”.
The cell width, however (depicted as “C” in the example architecture), can vary, because the
transistor count varies from cell to cell and transistors are added horizontally in a cell layout.
However, the width must also respect the cell pitch, i.e. “C” must always be a multiple of “A”.
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Figure 2.7 — The basic set of DRC rule classes [RCN03, SS02, SS04].

Another standardized dimension is the height of the implant layers, depicted in this example
as “E”, “F” and “G”, due to the fact that the cells are usually placed side by side.

Another important aspect in the design of a full-custom design, in this case each
library cell, is the manufacturing grid, which defines the metric unit to design a layout. For in-
stance, if the manufacturing grid is 0.010 nm, every measure in the layout must be a multiple
of 0.010 nm in both axes, horizontal (X) and vertical (Y), in order to have a manufacturable
layout. Furthermore, to guarantee that a layout is manufacturable, the designed layers must
respect some design rules stated by the semiconductor foundry. According to Rabaey et
al. and Saint et al. [RCNO03, SS02, SS04], the basic rule classes for layers are spacing,
width, enclosure and extension rules, all illustrated in Figure 2.7. From these classes it is
possible to define a vast set of rules, specifying relations between different layers, between
different structures in the same layer, or even rules to define how to draw a structure in a
given layer. This makes the task of designing a layout harder, as technology complexity in-
creases. Accordingly, sub-micron technologies from the early 2000s had a few hundreds of
design rules, while the latest nanometric technologies encompass thousands of rules [ITR].
To ensure that a given layout respects all the rules for a specific process, it is necessary to
use a design rule check (DRC) tool, like Calibore DRC from Mentor [Men]. This tool verifies
if the generated layout can be properly manufactured in a specific foundry and technology
process.

Ensuring that the circuit can be correctly implemented in silicon does not neces-
sarily mean that it will operate correctly. To ensure that the layout implements the speci-
fied logic, a layout versus schematic (LVS) check must be performed through an LVS tool,
which compares the schematic with the layout and checks if the circuits are equivalent, i.e.
have the same transistor arrangement and interconnections. To do so, LVS tools extract the
equivalent schematic from a layout and compare it to a golden model, typically a schematic
furnished by the designer. These tools identify issues like incorrect logic behavior, miss-
ing/extra pins and nodes and incorrect pins and nodes labels. A tool commonly employed
for this purpose is Calibre LVS from Mentor [Men].
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Figure 2.8 — Physical model of a planar bulk NMOS transistor, extracted from [DENBO05].

Once a cell is laid out and fully verified, its abstract view can be generated. This
view is a high-level representation of a layout and is generated based on the extraction
of the physical layout of a cell for a given technology [Cad07]. An abstract view contains
only the metal layers of a layout with its terminals and boundaries, which is crucial for IC
assembly automation. Specifically, this view is used in place and route tasks, as it provides
the necessary information to place each gate and connect its terminals. There are two basic
types of metal layers in an abstract view, blockage and net layers. The former defines metal
layers employed for the internal routing of a cell and identify the boundaries for the route
tool to place the interconnects during physical synthesis. The latter defines metal layers
that are connected to input and output pins of the cell and help the place and route tool to
identify where to connect metal layers for the routing of the IC during physical synthesis.
Also, because it contains only metal layers it avoids the overhead of all the layers that are
required for fabrication but not for place and route, reducing the usage of computational
resources during physical synthesis. The most adopted format for abstract views is the
library exchange format (LEF), by Cadence [Cad].

Following the abstract view generation step, a parasitics extraction tool must be
used to scan the different layers of the physical design and reconstruct the circuit schematic
from this geometrical description. The generated circuit contains not only the transistors
that implement the logic of the gate, but also every parasitic element, like the capacitance
between the terminals of a transistor and the resistance of these terminals. This allows a
more accurate model of the devices that compose an IC, enabling more precise simulation
and analysis of the designed circuit. Figure 2.8 shows parasitic elements for a physical
implementation of an NMOS transistor. Note that a bulk CMOS transistor is showed here,
albeit there are similar models for newer technologies like SOl and multi-gate devices. A
widely employed tool for prasitics extraction is Calibre PEX from Mentor [Men].
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As Figure 2.5 shows, the last model required by cell-based design comprises timing
and power characteristics of each cell of a library. The generation of these models is known
as electrical characterization and the quality of a cell-based design depends strongly on the
quality of the characterization of the cells employed. This is because the models generated
in this process guide the tools employed in the design flow, from logic to physical synthesis.
Moreover, due to variations in the fabrication process, cells must be characterized at different
manufacturing corners, which will reflect their real behavior for different fabrication process
conditions. In this way, it is possible to verify that a design will operate correctly and perform
to its required timing specification, even under worst case conditions. In addition, there is
also the influence of operating conditions, like temperature and voltage, which can make the
delay of the cells vary as well. Hence, a cell library needs to be characterized for the several
PVT variations it is expected to face, to ensure a robust design flow. Fortunately, there are
tools that automate the task of exhaustively simulating all necessary conditions to ensure
the reliability of a characterization process. The most adopted ones are Cadence ELC [Cad]
and Synopsys NCX [Syn].

2.2 Asynchronous Design

The synchronous paradigm is very attractive for designing digital circuits mostly
due to its simplicity. The clock signal provides a temporal reference for event sequencing
and synchronization, which simplifies the design process. The asynchronous paradigm,
on the other hand, assumes no global or, in some cases, not even regional clock sig-
nals for control and sequencing of events. Instead, asynchronous modules use handshake
protocols between their sequential components to synchronize, communicate and operate
[MyeO1, SF01a, BOF10]. This means that each pair of registers communicates by explicitly
signaling sending and receiving data. In “synchronous terms”, the resulting behavior cor-
responds to registers clocked only when and where needed. Such characteristic presents
several advantages over the use of a global clock signal in modern technologies, as al-
ready discussed in Section 1.2. This section explores basic concepts behind asynchronous
design, which are part of the foundation of this Thesis.

2.21 Channels and Handshake Protocols

The most basic and intuitive manner of implementing asynchronous communica-
tion consists in using two control signals in opposite directions, request and acknowledge
(usually shortened to req and ack). As Figure 2.9 shows, one protocol consists in an active
element sending a request to synchronize with a passive element, which issues an acknowl-
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edgement when it is ready to communicate. As the Figure shows, this is done through an
asynchronous channel (or just channel), which can be formed by connecting the ports of
an active and a passive element. Moreover, according to Beerel et al. [BOF10], a channel
also requires the definition of a protocol for synchronizing computation and communicating
data between elements. Such protocols are typically based on 2- or 4-phase handshaking,
or transition signaling and level signaling protocols [SFO1a]. Hence, a channel is defined
as a communication link, a set of wires, and a protocol for synchronizing computation and
communication [BOF10].

For instance, Figure 2.10(a) shows an example of a 4-phase handshake commu-
nication. In this example, the active element starts with a requisition to communicate, rising
the req signal. The passive element reads, processes the request and asserts the ack signal.
When the active element reads the acknowledgement, it sets the req signal to low, which
the passive element acknowledges by lowering the ack signal as well. After that, a new
communication can take place at any subsequent moment. The transition signaling proto-
col reduces transitions to half of the former. In this protocol, illustrates in Figure 2.10(b),
the active element starts with a request, switching the logic value of the req signal. When
the passive element reads the request, it sends an acknowledgement by switching the logic
value of the ack signal.

req

Active Passive
ack

Figure 2.9 — Example of pure control communication through handshaking.
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Figure 2.10 — Operation of handshake protocols: (a) 4-phase and (b) 2-phase.
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Figure 2.11 — Example of a BD channel.
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Figure 2.12 — Example of (a) 4-phase and (b) 2-phase bundled-data communication.

2.2.2 Bundled-Data Channels

Channels can serve for control purposes only, like in the example showed in Fig-
ure 2.9. However, if data is to be transferred asynchronously, designers require data ports
to be included in communicating elements and channels. The most intuitive manner to do
so is to add a single rail data bus to the scheme showed in Figure 2.9, which is somewhat
similar to synchronous design. In fact, as in synchronous design, data validity is signaled
by an explicit control signal (typically called req), equivalent to the clock signal. The differ-
ence is that data capturing must also be signalled by an explicit control signal (typically ack,
as handshake protocols mandate. Asynchronous channels relying on single rail represen-
tation of data and explicit control signals for request and acknowledge are typically called
single-rail, or bundled-data (BD), channels [BOF10].

Figure 2.11 shows an example where the active element sends data to the passive
element through a channel, composed of the data bus data and the control wires req and ack.
Beside the channel structure, it is necessary the definition of a handshake protocol to follow.
Figure 2.12(a) shows an example of a 4-phase BD channel. First, information is inserted in
the data channel, filling the data bus. After data stabilizes, the req wire is set to 1, indicating
a communication request. This request is acknowledged by the ack signal going to 1. Next,
the req signal must switch back to 0, which must be followed by the ack signal also switching
back to 0. From this point on, a new communication can take place.
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As Figure 2.12 shows, in BD channels there is an assumption that the control sig-
nal that identifies the validity of data will always be issued after the data in such bus is valid
and stable. In this way, an explicit relationship between the delay of data and control sig-
nals exists. To ensure that this assumption holds true, a delay element (DE) [BOF10], see
Figure 2.11, is typically employed and must match the worst case delay of the data bus, to
ensure that the receiver obtains always correct data values from the channel. Delays are
typically adjusted using a pair number of inverters or any number of non-inverting buffers.
The drawback of the approach is that the assumption of bundled control signals requires
extra care with the computation of timing constraints between data and control signals and
implementations that respect these.

Figure 2.12(b), in turn, shows an example of a 2-phase BD channel. After data
is stable in the data bus, a request is signaled by switching the logic value of req. When
the acknowledgement is issued, i.e. after the ack signal has its logic value switched, a new
communication can begin. Note that in this example there is no data transformation between
the elements. However in logic circuits, there may be a combinational block computing the
data and the DE on the request signal must match the worst case delay of this block. Fur-
thermore, the channels depicted in the examples, where two handshaking elements transfer
data from the active to the passive, are called push channels. Another configuration is to use
pull channels [BOF10], where control signals flow in the same senses as before, but data
flows instead from the passive to the active element. A discussion similar to that of push
channels applies to pull channels, mutatis mutandis.

2.2.3  Delay-Insensitive Channels

Another possibility for organizing asynchronous computations is the codification of
the request/acknowledge signal within the data channel. This is the strategy adopted by
delay-insensitive (DI) channels. In these channels data can also be transmitted through
either push or pull channels. For the former, the request signal is encoded within the data,
while for the later the encoded signal is the acknowledge. To encode data, a DI channel
requires the choice for a handshaking protocol and a DI code to represent data. An excellent
approach of the principles behind delay insensitivity and an exploration of several different
DI codes was provided by Verhoeff in [Ver88].

According to Verhoeff, a code is a pair (/,C), where [ is a finite set and C is a set
of subsets of /. The length of a code is defined as the size of / and the size of the code is
defined as the size of C. In other words, the length of the code is the number of wires that will
be used to represent data (the size of /) and the size of the code is the number of different
messages that can be sent using that code. Note that because Boolean representations are
assumed, the size of a code can be at most two to the power of the length of the code. A
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codeword is an element of C, and its cardinality is also called its weight. A code (/,C) is DI
when
(Vx,y:xe CANye CAXCy:x=Y) (2.1)

In other words, for a code to be DI, no codeword can be contained in another codeword.
Such characteristic enables a receiver to perceive unambiguously the transmission of a
codeword. For instance, if C had two distinct codewords a and b, such that a € b, the
receiver could temporarily perceive a when either a or b was sent. However, in that case,
the receiver cannot correctly detect the codeword whenever the sender transmits a.

Using the Verhoeff definition a wide variety of DI codes can be devised for use
in DI channels. In fact, different works proposed a variety of DI channels in the past, as
reported in [PCV12, BTEF03, AN12, PVT15]. Yet, according to Martin and Nystrém, 4-
phase handshaking coupled to 1-of-n DI codes is the most practical and employed scheme,
because in general it allows reducing design complexity [MNO6]. Hence, the discussion on
DI channels presented here will be limited to these choices. In 1-of-n DI codes (also called
one-hot codes), valid data is represented using nwires and data validity is signaled by setting
exactly one wire to 1, leading to codes with exactly n distinct values. This is equivalent to
rising the request/acknowledge (for push/pull channels) signal in 4-phase BD circuits. In
addition, absence of data (also called spacer) is signaled by setting all wires to 0, equivalent
to lowering the request/acknowledge signal in 4-phase BD. By doing so, it is ensured that
Equation 2.1 holds true, because each valid data codeword sets a different wire to 1 and the
spacer is the only codeword where all wires are set to 0.

For instance, in a 4-phase 1-of-2 quasi-delay-insensitive (QDI, for a definition, see
Section 2.2.4) template using push channels, the request signal is encoded into the data
signals making use of two wires per data bit (d.7 and d.0 are example names for the two
distinct wires). These channels are also called dual-rail, because they employ two wires
(rails) per bit of data. As Table 2.1 shows, in dual-rail channels, a valid 0 is represented
by a low d.7 and a high d.0, while valid 1 uses an opposite encoding. Hence, data validity
corresponds to d.7 and d.0 having different logical values. To signal a spacer, the absence
of data, both d.0 and d.7 are set to 0. Figure 2.13 shows an example of a 4-phase dual-rail
data transmission through a push channel. Communication starts with all data wires at 0,
indicating absence of data (a spacer). Next, the sender puts valid data, in this case a valid
0, in the channel. The receiver then computes the request (by observing a valid combination
in d.1 and d.0) and acknowledges the data, setting the ack signal high. When the sender
receives the acknowledgement, it transmits a spacer to finish the transmission. The receiver
computes the spacer and sets ack low. The sender can then start a new transmission. In
this example it sends a valid 1. Note that because between each transmission all wires must
be at 0, this protocol is also known as return-to-zero (RTZ) protocol. A similar analysis holds
true for the variety of 1-of-n codes available for push and pull DI channels.
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Table 2.1 — 4-phase 1-0f-2 RTZ encoding for one data bit.
| Value | d.1]d.0]

Spacer | 0 0
Valid0 || 0 1
Valid 1 1 0
Invalid 1 1

2.2.4  Asynchronous Circuits Templates
Asynchronous channels are useful means for expressing asynchronous commu-
nication. Coupled to synchronizers and/or converter interfaces, these channels can al-

leviate IP based design complexity using approaches like globally-asynchronous locally-
synchronous (GALS) design [Cha84]. However, channels alone are not sufficient for de-
signing asynchronous logic, which requires another definition. To do so, the definition of
an asynchronous template is required. As Figure 2.14 shows, an asynchronous template is
characterized by the choice of an asynchronous channel type and a specific design style.
A design style is defined as a specific set of components and an architecture. The former
is an important definition because it typically comprehend components different from those
available in conventional libraries, as they are not required for implementing synchronous
logic. Moreover, these components are typically designed at transistor level as cells of cell
libraries, which defines an asynchronous template as a semi-custom design approach. The
architecture defines the structure of the circuit, specifying how control and logic blocks are
designed and arranged. Note that architectures are usually specified by defining a pipeline
structure, as pipelining is a fundamental technique to increase concurrency, widely used in
digital design. Hence, the definition of an asynchronous template enables a precise spec-

valid 0 valid 1
d.0 g
encoded data
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------- ack
ack
N spacer spacer spacer
(a) (b)

Figure 2.13 — Example of 4-phase 1-of-2 RTZ DI channel for 1 bit: (a) block diagram of two

communicating elements and (b) example waveform for the transmission of two values.
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ification of how data is encoded and transmitted across the circuit and how logic blocks,
sequential and combinational, are designed.

Templates are an important definition in asynchronous circuits design because they
make clear one of the major differences from the traditional synchronous paradigm. Accord-
ingly, synchronous designers rely on a single template for implementing ICs, where a clock
controls all sequential components [RCNO03]. Furthermore, consolidated libraries are used
for synthesizing a circuit from an HDL description and clock distribution circuitry and cells
are used for ensuring that timing constraints are respected. For asynchronous circuits de-
sign, there are no such libraries easily accessible and no clear definitions on how to build
combinational and sequential logic, because circuits can rely on different types of channels
for communication. Hence, the definition of an asynchronous template enables a precise
specification of how data is encoded and transmitted across the circuit and how sequential
and combinational logic blocks are designed.

Asynchronous circuit templates that use BD channels are also called BD tem-
plates. Sutherland developed a seminal work where he proposes a BD template called
micropipelines [Sut89]. According to Nowick and Singh [NS11], this template was the start-
ing point for the development of several more advanced templates like Mousetrap [SNO07]
and GasP [SF01b], both devised for high performance digital asynchronous design. One of
the major advantages of BD templates is that they can be enable to allow the usage of con-
ventional EDA tools and libraries. As described in [Gib13, GMC15], commercial synthesis
tools originally devised for synchronous design can be employed to design BD circuits using
a set of scripts and a specifically engineered design flow. Furthermore, design styles for BD
templates make wide usage of conventional cell libraries, partly because BD channels rely
on single-rail data representation, as in synchronous design. In fact, several works propose
design flows that start from a synchronous specification of an IC and generate its BD version
using conventional EDA tools and some scripts, as in [CKLS06].

Figure 2.15 shows a generic example of circuit architecture for BD templates.
These architectures are typically specified as pipeline stages that detail the design of se-
quential and combinational logic as well as control circuitry. The major differences between

Asynchronous Circuit Template

Design Style Channel
—_—
Set of Commqnication
Components Link

Figure 2.14 — Asynchronous circuits template definition.

Architecture Protocol
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different BD architectures are typically on control blocks (Cont.) and in the employed regis-
ters (Reg). Control blocks can be specified as asynchronous finite state machines (AFSMs),
like in Blade [HMH*15], or as explicit circuit blocks, as in Mousetrap [SNO7]. Registers can be
typical latches or flip-flops [NS11] or more sofisticated circuits, as the capture-pass latches
proposed by Sutherland [Sut89]. In asynchronous templates, logic blocks between registers
must be compatible with the channels they are connected to. In BD templates, this is not
usually a concern, because these blocks are generally realized as conventional single-rail
Boolean logic, given the nature of BD channels. An important aspect of the architectures of
BD templates, though, is the specification of where DEs are placed and how they relate to
control and logic circuitry. Accordingly, they must always respect the definitions of Section
2.2.2, and data validity can only be signalled after computation is completed and information
in the data bus is stable and valid.

One of the major drawbacks of BD templates is related to the constrained nature of
BD channels. The problem is that the timing constraints imposed by these channels can be
strict, depending on the design and on the target technology, as in synchronous circuits. This
is problematic because it makes more challenging for designers to ensure timing closure
during synthesis steps. Moreover, because these circuits are sensitive to delay variations,
they usually suffer performance and power-efficiency penalties from the required addition of
timing and voltage margins to take variations into account. As in synchronous design, these
margins need to be added to ensure that the request signal is always slower than the worst
case delay of logic paths. Furthermore, according to Martin and Nystrém in [MNO6], the
constrained nature of BD templates makes them as challenging as synchronous design and
the required margins can wave off the advantages of asynchronous circuits.

A more robust alternative is to employ DI channels, which do not rely on timing
constraints for signalling data validity as BD channels do. This is because DI channels
encode data validity information within the data itself, as explained in Section 2.2.3. The
problem though is how to implement logic blocks that do not compromise the characteristics
of these channels. In fact, in 1990 Martin proved that it is not practical to build purely DI circuit
templates [Mar90]. Martin proved that in order to build useful circuits using DI channels,

Stage ...,
> req . DE ) ! >
Cont.[ ack = : Cont.

I__“:> Reg data @ Reg :>

Figure 2.15 — Generic example of circuit architecture for BD templates.
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Figure 2.16 — Generic example of circuit architecture for QDI templates.

designers need to compromise the delay-insensitivity of circuits and proposes another class
of circuits (a new design style) called quasi-delay-insensitive (QDI). This design style enables
designers to ignore the delay of all gates and wires, due to the use of DI codes, except for a
set of specific wire forks called isochronic forks. Practically speaking, the timing assumption
in isochronic forks is that the delay from the input to one of the fork ends is smaller than the
delay from the input to the other end (the constraining path). The purpose of this assumption
is to ensure the ordering of transitions in the circuits, typically control paths, and it can be
usually easily fulfilled because the constraining path is typically long, as explored in detail in
[Mar90, MNO6, BOF10].

Templates relying on DI channels and QDI design styles are called QDI templates.
Classically, their architecture is specified similarly to those of BD templates, as Figure 2.16
shows. The main difference is that the control block is merged with the register. This is due
to the fact that these components are usually design style-specific and are not conventional
sequential components like latches of flip-flops. In these design styles, the components
and methods required to build logic blocks must also be precisely specified, as they must
compute data that is encoded using DI codes. Furthermore, these logic blocks cannot com-
promise the protocol employed in the choice of a DI channel. The components required for
designing circuits targeting QDI templates are often specially specified for the target tem-
plate and are rarely available in conventional cell libraries. In fact, QDI architectures usually
have a set of components specifically designed for supporting them.

One of the most basic QDI templates is based on delay-insensitive minterm syn-
thesis (DIMS) [SFO1a]. From this basic template, several more sophisticated approaches
were proposed in the last decades, like null convention logic (NCL) [FB96]. Furthermore,
some QDI templates evolved to even avoid the separate definition of registers and combina-
tional blocks. In these templates pipeline stages are reduced to communicating logic blocks,
as in precharged half buffer (PCHB) design [Lin98]. This is possible because these blocks
have sequential and control circuitry implemented within them. Unfortunately, the design
of circuits targeting such templates requires deep knowledge of asynchronous design and
microelectronics. This is because these components are usually full-custom, i.e. designers
need to build their own cell libraries for each different QDI template. In fact, this is one of
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the major drawbacks of these templates and one of the reasons why they do not look as
appealing as BD templates.

Contemporary literature has the availability of different flavors of QDI and BD tem-
plates. The works presented in [NS11, NS15a, NS15b, BOF10] provide a solid overview
of these template options. Due to their orthogonal advantages, BD and QDI templates di-
vide asynchronous design in two clearly distinct fields. As a consequence, there is also a
division in the interests of the asynchronous circuits research community. A good survey
of QDI templates can be found in [MNO6] and a nice summary of the advantages of BD
design is available in [NS15a]. To summarize, BD templates have the advantage of relying
on conventional cell libraries and tools, while QDI templates typically require special com-
ponents in their design. The problem is that these special components are not compatible
with conventional tools [SGY*09], which can compromise design automation. Furthermore,
in comparison to QDI templates, BD templates can provide better power efficiency, due to
the use of single rail channels with explicit control channels. This is because this approach
can reduce switching activity, which is directly related to power overheads. QDI templates
on the other hand can provide high speed design, as discussed in [DLD*14], while BD de-
sign can get over-constrained by margins, as argued in [MNO6]. In fact, QDI templates can
easily accomodate delay discrepancies, which make them good candidates for IC design in
environments susceptible to a high degree of variability, as in modern technologies or when
using near- or sub-threshold operation to obtain extrem savings in power [LOMOQ7]. In this
way, in essence, BD and QDI templates trade off design complexity and robustness.
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3. INNOVATIONS IN ASYNCHRONOUS COMPONENTS DESIGN

An asynchronous template, as defined in Section 2.2.4 relies on a set of basic
components for its specification. These components are basic circuits that implement spe-
cific functionalities to allow the use of semi-custom approaches to reduce complexity, costs
and risk associated to full-custom design approaches. In this way, the quality of an asyn-
chronous circuit designed for a specific template is a function of the quality of the com-
ponents that compose this template. The quality of such components, as basic circuits, is
typically measured by their electrical and physical characteristics such as static and dynamic
power, propagation and transition delay and area. Note that at this level one cannot consider
architectural optimizations, because, recalling Figure 2.14, these are provided by the archi-
tecture definition of the asynchronous template rather than the set of components. Hence,
the optimization of the set of cells that compose a given target asynchronous template is an
important step in the design of an asynchronous circuit.

With this in mind, the optimization of asynchronous components was one of the first
tasks of this work. In fact, the first set of contributions of this Thesis is described as a set
of innovations in asynchronous components design. We firstly selected a basic set of com-
ponents that support different asynchronous templates and explored optimization in these
circuits. Then, as the work advanced, we proposed new components for existing templates
and for templates that we devised, as explored in the next Sections. This chapter is divided
in four major sections, starting with a revision in the state-of-the-art in asynchronous com-
ponents. The next two sections explore the novelty brought by this work on C-elements and
NCL gates. Finally we discuss the impact of our innovations in asynchronous components
design.

3.1 State-of-the-Art in Asynchronous Components Design

This section addresses the state-of-the-art in asynchronous components design.
Note that our focus here is on the components used in the templates explored in this Thesis.

3.1.1 The Mutual Exclusion Element

The Mutual Exclusion Element (MUTEX) is a basic component for asynchronous
design and is a common requirement in the set of components of asynchronous templates. It
is typically employed to construct arbiters in control blocks of asynchronous circuits, although
it is not an usual component in synchronous design. In fact, the discrete notion of time in



67

Figure 3.1 — General scheme for a simple MUTEX. It is composed by two cross-coupled
NANDs and a metastability filter (MF), [ZHM*15].

synchronous systems enables avoiding the need for such a component. Having a global
clock signal that dictates how time advances makes arbitration between competing requests
to shared resources a relatively simple task. If two requests arrive during the same clock
cycle, one can be given priority as defined by a given arbitration policy implemented using
standard combinational logic.

In asynchronous circuits, on the other hand, arbitration works quite differently. This
is because they employ a continuous time model. Determining who arrives first in the con-
tinuous time domain can be challenging when requests are close in time. This is where
special components like the MUTEX are required. Resolving which request arrives first is
so difficult that the time for any MUTEX implementation to make this decision is unbounded
[Kin08, YGO08, BOF10]. In particular, decisions rely on MUTEX internal non-digital behavior
to determine which request to grant first. Moreover, before the decision, one or more inter-
nal signals can remain in a metastable state [BOF10]. For this reason, a MUTEX includes
specialized metastability filters (MFs) that ensure outputs do not switch until the component
takes a decision. These filters are expected to guarantee that metastable states do not
propagate to downstream logic, which could lead to unpredictable and irreversible effects.

As Figure 3.1 shows, the simplest MUTEX has two request inputs (RO and R17)
and two grant outputs (GO and G7). lts internal organization usually comprises two cross-
coupled NANDs (U7 and U2) that receive the input requests, and its outputs are filtered by
MFs. Figure 3.2 shows the discrete behavior of the MUTEX using a state diagram. In this
diagram, state representation involves primary inputs and outputs in the order ROR1:GOG1.
Also, solid edges represent input transitions while dashed edges represent the MUTEX be-
havior due to the corresponding input changes.

Assuming a start state where RO and R7 are at 0, U7 and U2 write a 1 on their
outputs (RON and R1N). When the MFs have 1s on their inputs RON and R1N, they set their
outputs GO and G7 to 0, represented by the state 00:00 in Figure 3.2. For a transition on
a single input RO/R1, with the other input remaining at 0, one of gates U1/U2 respectively
writes 0 in RON/R1N. Whenever one of the inputs of an MF (RON/R1N) goes to 0, the MF
writes 1 in the corresponding output (GO/G1). This appears, for instance, in the sequence
of transitions 00:00— 10:00— 10:10. Once one output is at 1, a new low-to-high transition
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Figure 3.2 — State diagram of a MUTEX, using the state order ROR1:G0OG1. Solid lines
correspond to primary input transitions, while dotted lines stand for primary output transitions
[ZHM*15].

on the other input of the MUTEX will not affect any of the outputs. This occurs because at
these states RON/R1N is at 0, which masks low-to-high transitions on R1/R0. This happens
for example, in states 77:10 and 11:01, where a state transition will only occur if either RO
or R1 switch to 0, in which case the MUTEX releases the asserted output, switching it back
to 0.

Separate events on RO and R1 are easily treated by the cross-coupled NAND
gates. However, if both inputs switch within a time window sufficiently small, this creates
a condition where both U7 and U2 are trying to switch their outputs to 0. Under such condi-
tion, the NANDs can be viewed as a loop of two inverters where both RON and R1N will be
lowered to a voltage close to Veo/2 until one of them overpowers the other completely, switch-
ing RON/R1N to 0, and R1N/RON to 1. The problem is that RON and R1N can stay at a
metastable voltage for an unbounded period of time, until the NANDs resolve their outputs.
If this metastability propagates to other circuits it can have unpredictable effects. This is
where the MF plays a fundamental role. This component ensures that the metastable states
do not propagate to the outputs of the MUTEX. In other words, it keeps GO and G1 low until
RON and R1N settle to valid logic level voltages. The dashed state 77:00 marked in red in
Figure 3.2 shows this last scenario. After RON and R1N settle, either GO or G1 will switch to
1. Note thus that the state diagram represents the non-determinism of a MUTEX behavior.

3.1.2 The C-element

Another popular component in asynchronous templates is the Muller C-element
[MB57]. In fact, it is a fundamental component in asynchronous circuits design and dif-
ferent asynchronous templates report requiring only C-elements other than MUTEXes as
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Table 3.1 — Basic 2-input C-element truth table.

AlB] Q|
0|0 0
0|1 Qi_4
110 Qi_1
111 1

Figure 3.3 — Basic 2-input C-element state diagram.

specialized components [SFO1a]. Among these templates, we highlight the BD template
Mousetrap [SNO7] and the QDI template dual-rail RTZ WCHB/DIMS [MNO06], the latter is
explored in detail in Section 5.1.1. Its properties make the C-element crucial in the imple-
mentation of asynchronous circuits control and it is typically employed for synchronization
of events in asynchronous design. Table 3.1 shows the simplest possible truth table of a
2-input C-element, while Figure 3.3 depicts the associated behavioral diagram. When inputs
A and B have the same value, the C-element output Q assumes this same value. However,
when the inputs are different, the output keeps its previous logic value.

C-elements are typically handcrafted by asynchronous designers and can assume
different transistors topologies. Figure 3.4 shows the basic symbol usually associated to this
component and three different topologies for implementing it. One simple implementation
is the semi-static topology, or Martin’s weak feedback C-element, as addressed in some
works available in the literature, Figure 3.4 (c). This implementation consists of pull-down
and pull-up networks that generate the conditions where the inputs drive the output and a
memory scheme for maintaining the output value when the input combination should not
drive the output. When both inputs are 1, the pull-down network is activated, writing a 0 in
the internal node and, consequently, a 1 in the output. Similarly, when both inputs are 0, the
pull-up network is the one activated, and writes 1 in the internal node and a 0 in the output.
Whenever the inputs have different values, no value is driven in the internal node, and the
previous output value is kept by the loop of inverters.

The other two implementations are: the static topology, or Sutherland’s pull-up pull-
down, in Figure 3.4 (a); and the symmetric topology, or van Berkel’'s C-element, in Figure 3.4
(b). The former was proposed by Sutherland in [Sut89] and employed in his Micropipeline
template. The latter was proposed by van Berkel in [Ber92]. These topologies have a similar
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Figure 3.4 — Three classic implementations of the C-element: (a) static (Sutherland), (b)
symmetric (van Berkel), (c) semi-static (Martin). Adapted from [MOMC12].

property of switching off their memory scheme while the C-element is switching its output.
For example assume that both inputs of the C-element are at 0, the internal node is at 1 and
the output is also at 0. In this case, both topologies will have their memory schemes keeping
the internal node at 1, through transistors SK0O, SK71 and SK2 in the static C-element and
through transistors ILFO, ILF1, ILF4, ILF5 and SKO in the symmetric C-element. As soon
as the inputs switch to 1, the C-elements will start to write a 0 in the internal node, which
will push the output to 1, at the same time the memory schemes are disabled. In the static
C-element, this happens because when both inputs are at 1, transistors SKO and SK1 are
turned off, avoiding the memory scheme to keep writing a 1 in the internal node. In the
symmetric C-element, this happens because when both inputs are at 1, transistors ILFO,
ILF1, ILF2 and ILF3 are turned off, avoiding the memory scheme to keep writing a 1 in the
internal node.

Using these topologies, different arrangements of the basic C-element can be de-
vised, including multiple functional inputs and control set and reset inputs. A reset input
sets the output to low regardless the value of the other inputs, while the set input sets it to
high. Moreover, it can have some variations concerning to the symmetry of its functional
inputs. Such properties can be used for constructing logic blocks of specific templates, as
discussed in [YRO06]. However, they are not explored here, because these templates are out
of the context of this Thesis.
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3.1.3 NCL Gates

NCL gates are the building blocks of the NCL template, proposed by Fant and
Brandt in [FB96], as described in Section 5.1.2. These components are often called thresh-
old gates, but this is imprecise because they do not exactly implement threshold logic func-
tions (TLFs) [Hur69], as in threshold gates. Rather, they implement modifications of TLFs
coupled to specific mechanisms to ensure completeness of input criteria [FB96]. Before
defining TLFs and NCL gates, we need to be precise about the notion of unateness [BSVMH84],
as all TLFs are by definition unate functions [Hur69].

Definition 1. A logic function f(xg, X1, ..., Xn_1) IS Said to be positive unate in x;, for some
isuchthatO < i < n—1,if f(Xo,.ory Xiz1, 1, Xis1y s Xn—1) > f(Xo, --ey Xi—1, 0, Xiz1, -y Xn_1), fOr
all possible combinations of values of x; with j # i. Similarly, a logic function is said to be
negative unate in x; if f(Xo, ..., Xi—1, 0, Xis1, ..oy Xn—1) > (X0, .oy Xiz1, 1, Xig1, ..o, Xn—1), for all x;,
with i # j. If a logic function is neither positive nor negative unate in x;, it must necessarily
be binate in x;. Moreover, if a function is positive or negative unate in all its variables it
is called a unate function. A unate function that is positive (resp. negative) unate in all its
variables is simply called a positive (resp. negative) unate function. Also, throughout this
Thesis those gates that implement positive (negative) unate functions will be called positive
(resp. negative) unate gates.

It is now possible to define a TLF.

Definition 2. A threshold logic function or TLF t(xo, X1, ..., X,_1) iS an n-variable unate func-
tion defined by a threshold value T and specific integer weights w; assigned to each variable

X; such that:
1, Wi X; Z T
t= { = (3.1)

7
L

o

S -
—_

0, wixi< T
i=0

Also, according to [Hur69, Mur71], all TLFs are unate functions, but not all unate functions
are TLFs. In this way, TLFs cannot be binate functions.

Based on these definitions, an NCL gate can now be defined as:

Definition 3. An NCL gate is an n-input logic gate with a threshold T € N*, a specific
weight w; € N* assigned to each Boolean input x;, and a hysteresis mechanism to ensure a
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Figure 3.5 — Symbology for NCL gates: (a) generic NCL symbol; (b) symbol of an example
NCL gate with 3 inputs, threshold T=3, and weights w0=2, wi=1 and w2=1. Note that the
implicit ordering of inputs in the symbol is from top to bottom, associated with the list of

weights from left to right.

Table 3.2 — Truth table of an example NCL gate with 3 inputs with threshold 3 and weights

2, 1 and 1. Note that / denotes the current instant of time.
Xo [Xi[x || Q|

0/0]O 0
00| 1| Qs
0110 | Q_q
01111 Q_q
110 |0 | Q4
1101 1
1111]0 1
1111 1

sequential behavior, such that its output Q; at each instant of time i is given by:

T
L

1, wxj > T
j=0
n—1
Q=4 0 wjx; =0 (3.2)
j=0
n—1
Q_1, 0<> wx<T
j=0

Note that the portions of Equation 3.2 that set the output to 0 and 1 are usually known as
reset and set functions, respectively.

Figure 3.5(b) shows the basic NCL gate symbol, where n is the number of inputs
of a gate, T is the threshold of the underlying TLF of the gate and each input has a weight
w;. If a weight is omitted, w;=1 is assumed. Weights always come after the W specifier.
For example, Figure 3.5(b) shows the symbol of a 3-input NCL gate with threshold 3 and
respective weights 2, 1 and 1. Table 3.2 shows the truth table for the gate in question,
computed from Equation (3.2). Accordingly, the output of the gate will only switch to 0 when
all inputs are at 0. Also, because xy has weight 2, x; and x. have weight 1 and the threshold
is 3, the gate will only switch to 1 when X, is at 1 and at least one of the other inputs is at 1.
In all other cases the output remains unchanged.
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Figure 3.6 — NCL topologies: (a) semi-static and (b) static. Adapted from [MAGC14].

For implementing NCL gates at circuit level most works rely on the static and the
semi-static C-element topologies presented in Section 3.1.2, because they can be adapted
to the design of such gates. The difference is that the topologies are typically called static
and semi-static, respectively. In the classic semi-static topology, presented in Figure 3.6(a),
the reset and set functions correspond to pull-up (RESET) and pull-down (SET) networks,
followed by an output inverter. RESET detects when all n inputs are 0, corresponding to
a series of n PMOS transistors. Note that the output Q is then inverted by output inverter
composed by PO and NO. SET depends on the gate threshold T. Also, to ensure delay
insensitivity, the gate keeps its output value when neither RESET nor SET functions are true.
Since these are not complementary, the static gate requires a feedback inverter, composed
by P1and N1.

The static topology, presented in Figure 3.6(b) is similar to the semi-static one.
However, its feedback inverter is controlled by pull-up (HOLDO) and pull-down (HOLDY)
networks. The former is the complement network of SET and the latter is the complement
network of RESET. This allows avoiding that the feedback inverter interferes during output
switching.

Note that C-elements are actually a special case of NCL gates where the threshold
is the same number of inputs and all inputs have weight 1. Furthermore, as described by
different authors, sometimes it is useful to implement special functions in NCL gates, other
than threshold functions. In these cases, the ON-set of the gate is substituted by such
special function. A case for special functions is the ANDOR function, which is basically a
product of the sums of two pairs of inputs, i.e. the sum of A and B with C and D.
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3.1.4 Discussion

There is a vast diversity of templates for asynchronous design in the state-of-the-
art. This Thesis focuses mainly on a specific set of QDI templates, as it will be explored in
Chapter 5. In this way, we limit our exploration of components to those that are required by
the addressed templates. Among the other sets of components available in contemporary
literature, we highlight the following for their relevance in asynchronous design: (i) PCHB
gates [Lin98], used in PCHB designs in industry [DLD*14] and academia [BDL11]; (ii) single-
track full buffer (STFB) gates [Fer04], used in practical applications and validated on silicon;
(iii) Toggle [Sut89], used in the classic Micropipelines, which was the inspiration for many
of the recent BD templates [NS11]; (iv) and Q-modules [RMCF88], a set of components
proposed in the late 1980s, with the potential of allowing metastable free operation and
testability in asynchronous design, recently used in a new BD template.

Another C-element topology that we do not consider in this work is the dynamic
C-element [BOF10]. The reason why we decided to discard it is due to its dynamic behavior
that imposes timing constraints that are not suitable to the templates we address. These
constraints are due to the fact that it does not contain static storage and when inputs have
different logic values it cannot keep its state for unbounded periods of time. As for NCL
gates design, besides the classic static and semi-static topologies, a recent work, presented
in [PS12b], proposes adapting the symmetric C-element topology to be used in NCL gates
design. However, just a small portion of NCL gates can be implemented using this topology
and cannot be generalized, requiring gate specific schematic implementation. In this way,
we discard this topology in this work, as it does not present a general schematic and requires
gate specific designs. We also discarded the multi-threshold topology proposed in [BDSMO08]
because they target a QDI template that is out of the scope of this Thesis.

Albeit there are different manners of constructing the components that we address
here, there is no consensus on contemporary literature on what is the best way to build them.
In our exploration on asynchronous design, the first step was to build such components, so
that we can use them in more complex systems. In this way, before adopting a specific
template for constructing these components, we performed a comprehensive analysis of
their performance metrics. From these analyses we derive a set of guidelines for building
sets of components that support the design of asynchronous cell libraries, as explored in
Chapter 4. Note that we included an explanation of MUTEX components here because they
are in the composition of the library presented in Section 4.3. However we did not explore
optimizations for these components in the context of this Thesis.
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Figure 3.7 — Example physical layout at the cell level of the designed C-elements: (a) static,
(b) symmetric, (c) semi-static. Adapted from [MOMC12].

3.2 C-elements Design

We start exploring the design of C-elements, classic components that are required
in the majority of asynchronous circuits design templates. This section explores area, power
and delay trade offs between different topologies for building these components and their
suitability to low voltage operation.

3.2.1 Area, Power and Delay Trade Offs

To efficiently implement C-elements, the first step is to understand their electri-
cal characteristics. To do so, each of the three classic implementations of the C-element,
showed in Figure 3.4 was designed at transistor level. We employed general purpose stan-
dard threshold transistors for the 65nm STMicroelectronics CMOS technology. The gen-
erated designs were automatically implemented with an in-house design flow that will be
explored in Chapter 4. To ensure a fair analysis, the designs are able to drive the same load
with the same speed, a maximum of 270 fF in 1 ns. In other words, the driving strength
of each implementation is normalized, in order to precisely compare performance and area
efficiency in a fair manner. Figure 3.7 shows an example layout for each of the designed
standard cells.

The silicon areas required by each C-element design appear in Table 3.3. The de-
sign that requires less area is the semi-static C-element. Table 3.3 also shows the resultant
internal parasitic after RC extraction. As expected, the symmetric design, implementation
that requires more silicon area, presented highest parasitic capacitance, over two times the
parasitic of the semi-static C-element.

After electrical extraction, each cell was characterized for a typical fabrication pro-
cess corner, with typical delay for the NMOS and PMOS transistors, for an operational con-
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Table 3.3 — Area, parasitic capacitance, input capacitance and average dynamic and leakage

power of the C-element implementations. Adapted from [MOMC12].

In. Cap. (fF) || Avg. Dyn. Pwr. (fW)
A [ B Rise | Fall

Topology || Cell Area (xm?) || Par. Cap. (fF) Avg. Leak. Pwr. (nW)

Static 6.24 6.066 4.565 | 4.410 || 1.316 12.454 20.447
Symmetric 7.28 9.383 3.113 | 3.081 || 1.190 12.871 17.628
Semi-static 5.72 4.469 5.633 | 5.849 || 4.889 21.930 30.591

dition of 25 degrees Celsius and 1 V power supply. Table 3.3 also shows electrical results
obtained through the electrical characterization. The semi-static design presents the highest
capacitance on its inputs. In fact, in comparison with the symmetric implementation, which
presents lower input capacitance, it shows an overhead of 85%. That is due to the fact
that, albeit the symmetric implementation is the most area consuming, due to the elevated
number of required transistors, the semi-static C-element is the one that employs larger
transistors, as Figure 3.7 shows. As for the dynamic power, the static and the symmetric im-
plementations are equivalent for rise and fall transitions. The former consumes slightly less,
roughly 2% in average. Moreover, the semi-static design presents an overhead of roughly
300% for the dynamic power for rise transitions and almost 100% for fall transitions. As
expected, semi-static implementations have the highest leakage power, when compared to
the others. This is also a consequence of transistor size.

The average propagation delay of each design, was also obtained through electrical
characterization. Figure 3.8 shows the obtained results for two scenarios. In Figure 3.8(a),
the input slope was fixed in 1.2 ps and the output load varied from 0.001 pF to 0.15 pF. The
time required for the static and the symmetric implementations to switch their respective out-
puts is equivalent, as illustrated by the overlapping values. Moreover, the semi-static design
presents equivalent propagation delay for small output loads (from 0.001 pF to 0.015 pF).
However, the higher the load gets, the worse its propagation delay is, in comparison to the
other implementations. This behavior shows that the semi-static is also the implementation
most sensitive to output load variations.

Figure 3.8(b) shows the electrical behavior of each implementation when the output
load is fixed in 1 fF and the input slope varied from 0.0012 ns to 0.180 ns. In this scenario, the
fastest implementation is the symmetric, followed by the static and next the semi-static. The
obtained results show that for small input slopes (0.0012 ns to 0.0132 ns), the speed of static
and semi-static C-elements is equivalent. However, as the input slope gets more significant,
the propagation delay of the semi-static C-element gets worse. In this way, the semi-static
implementation is, also, the most sensitive to input slope variations. As Figure 3.8(b) shows,
the delay of this implementation grows at a much higher rate as the input slope grows,
while the other two implementations see their delay grow more linearly. The symmetric
implementation displays the smallest propagation delay, regardless of input slope variations.
Therefore, we can consider the symmetric C-element the most robust implementation for
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Figure 3.8 — Propagation delay of the designed C-elements after electrical extraction, as a
function of the (a) output load capacitance and (b) input slope. In (a), results were obtained
by fixing the input slope in 1.2 ps and varying the output load from 0.001 pF to 0.15 pF. In
(b), results were obtained by fixing the output load in 1 fF and varying the input slope load
from 0.0012 ns to 0.180 ns. Adapted from [MOMC12].

both input slope and output load variations. The drawback, though, is that this topology is
not scalable to multi-output cells, where the static C-element is the most suited topology.

As an initial comparison of the impact of each C-element implementation on asyn-
chronous circuits, a low complexity circuit was described in the Spice language, an oscillator
ring. As Figure 3.9 shows, the circuit is composed by a NAND and 10 C-elements. Exten-
sive simulation defined the number of C-elements in the ring (10) as an amount sufficient
to normalize the effect of the NAND and allow correct evaluation of the C-elements. The
NAND is required to keep the circuit static, when the IN pin is set to 0, and to make the
circuit oscillate, when the IN pin is switched to 1. In this way, static and dynamic power and
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Figure 3.9 — Oscillator ring employed for an initial comparison of the impact of each C-
element implementation in an asynchronous circuit. Adapted from [MOMC12].

Table 3.4 — Performance figures of the oscillator rings. Adapted from [MOMC12].
| Topology || Frequency (GHz) | Leak. Power (1W) | Dyn. Pwr (uW) |

Static 0.865 0.17 74.41
Symmetric 1.148 0.13 74.33
Semi-static 0.808 0.28 119.20

operational frequency can be precisely measured. Three oscillator rings were generated,
one for each implementation of the C-element after RC extraction.

After simulating each oscillator ring, power and operational frequency, were ob-
tained through the Spice .measure function, as Table 3.4 shows. Leakage power was mea-
sured as the voltage multiplied by the average current in the power source while the circuit
was quiescent. The dynamic power was measured as the operating voltage multiplied by
the average current in the source when the ring is oscillating. The frequency is measured as
the inverse of the period between two similar edges in any node of the ring (in this case nb).

As Table 3.4 shows, the conducted experiment confirms the results obtained through
the electrical characterization of the C-elements. The symmetric implementation presents
the lowest leakage power, while its dynamic power is equivalent to the static C-element.
The semi-static implementation presents higher dynamic and leakage power, as expected.
Power figures enforce the statement that the semi-static is the most power consuming and
the static and symmetric present similar power figures.

It would be expected that at least two of the rings, the ones composed by the static
and the symmetric implementation, presented equivalent operating frequency. However, the
one generated with symmetric C-elements operates roughly 32% and 42% faster than the
one composed by static and semi-static C-elements, respectively. As Table 3.3 shows, the
sum of the pin capacitances of the static C-element is 8.975 fF, while for the symmetric
implementation it is only 6.194 fF. In other words, each cell of the ring in static implemen-
tations, except the one that drives the NAND, must drive a load roughly 44% bigger than
that of the symmetric C-elements ring. Both implementations showed to be equivalently
sensitive to output load variations. However, these variations interfere in the transition time
of their output, which feeds the next cell in the ring. Thus, the slope in the input of the next
cell increases. In this case, the resulting input slope generated in the inputs of each static
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C-element, after the circuit stabilizes its oscillating frequency, is roughly 0.06ns. Considering
that the static C-element is more sensitive to input slope variations, it is clear why the rings
operate at different frequencies ranges.

For the semi-static C-element, the operational frequency range is even worse. That
is due to the fact that this implementation presents not only higher input capacitance, which
contributes for an elevated slope in the input of each cell of the ring, but it is also much more
sensitive to input slope variations than the static C-element. lts performance would be yet
worsened if, for instance, each C-element was required to drive a load bigger than 0.015 pF.
See Figure 3.8(a), where the delay of the semi-static implementation starts to get worse
than the other two. In this case, the sum of its input pins, load that each cell (except the one
that drives the NAND) must drive, is 11.482 fF.

A more realistic comparison of the impact of the C-elements implementation was
conducted through the design of a 32 bit RSA cryptographic core. The circuit was described
in the Balsa language [Bar98] and synthesized through the Teak System [BTE09]. Teak
automatically maps the Balsa description into a specific set of components, C-elements
and conventional OR gates, generating asynchronous QDI circuits. Three versions of the
asynchronous RSA cryptographic core were generated using Teak, each one employing
exclusively one distinct C-element type implementation on its schematic. The OR gates
were extracted from the core library available in the target design kit of STMicroelectronics.
The choice for the RSA function was due to the fact that its algorithm employs arithmetic
operations as well as control functions.

The total number of cells employed in all designs, without taking into account phys-
ical cells, was 57,168. Physical cells are the cells used to connect the power lines to the
substrate, tap cells, and the filler cells employed in the core. The circuits had the same
number of logic cells due to the fact that the only difference between them is the choice
of C-element implementation and Teak does not optimize cells dimensions and employs a
direct translation mapping approach. From the total cells, 22,063 were C-elements. This
means that, for our case studies, roughly 40% of the cells were C-elements.

Table 3.5 shows the physical characteristics of the generated RSA cryptographic
cores, obtained after place and route. The design implemented with semi-static C-elements
requires less silicon area, while the ones implemented with symmetric and static C-elements
were the largest. The area overhead imposed by both in comparison with the semi-static is
roughly 12% and 7%, respectively. Therefore, the semi-static C-element is the most effi-
cient implementation for high density designs and the symmetric C-element is the most area
and wire consuming implementation. These results are in agreement with the information
obtained at layout level.

The RSA netlists’ delay of the paths generated after place and route were anno-

tated and served as input to a set of simulations. These comprised multiple cryptographic
operations for each netlist, collecting performance results. Employed operational conditions
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Table 3.5 — Area and power results for the three asynchronous RSA cryptographic core
implementations after place and route. Adapted from [MOMC12].

| Metric | Static | Symmetric | Semi-static |

Number of Cells 92,922 94,015 91,276
Cell Area (mm?) 0.295 0.311 0.276
Cell Area - Phys. Cells (mm?3) || 0.244 0.258 0.228
C-elements Cell Area (mm?) 0.161 0.175 0.145
Internal Power (mW) 1.878 2.161 4.361

Switching Power (mW) 1.581 1.433 1.342
Leakage Power (mW) 1.729 1.639 2.162
Total Power (mW) 5.188 5.233 7.865

were 25°C, 1V supply for a typical fabrication process corner. The average delay to perform
a cryptographic operation for the semi-static, the static and the symmetric C-element based
implementations were 104.311 us, 83.96 us and 73.241 us, respectively. These results are
in agreement with the information obtained in the simulation of an oscillator ring. The sym-
metric implementation presented higher operating speed, due to the fact that it is the less
sensitive implementation to input slope and output load variations and Teak synthesis is not
able to optimize dimensioning of the selected cells. In other words, every cell employed in
the circuit has the same output driving strength and input capacitance, some of these ending
up overloaded. This is a limitation of the tool, which leads to slower designs mostly when
employing static or semi-static C-elements, since these present higher delay for high output
loads and input slopes.

From the simulations, the switching activity in the nets of each circuit was annotated
for a period of 3 ms and served as input to evaluate power. Table 3.5 shows the information
obtained for the three netlists. Employing static or symmetric C-elements generated circuits
with similar power. Comparing these implementations, the latter consumed less leakage
power, roughly 5%, while the former presented lower dynamic power, roughly 4%. The
circuit generated with static C-elements presents slightly less total power. This is due to the
fact that the power consumed while the circuit is quiescent represents a smaller portion of
the total power than the dynamic power. Notably, semi-static was the less power efficient
implementation.

These results are in agreement with those obtained at layout level and in the sim-
ulation of an oscillator ring, except for the dynamic power of the static C-element. In the
first case study, this presented worse dynamic power consumption than the symmetric C-
element. However, in that case, each cell was driving a single two-input cell, while in the
circuit generated by Teak, the cells were required to drive multiple nets and, consequently,
higher loads. In this scenery, the symmetric dynamic power efficiency was compromised.

Figure 3.10 details the power of the C-elements from the total power of the placed
and routed netlists. The total power for the static, the semi-static and the symmetric C-
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Figure 3.10 — C-elements power consumption for each asynchronous RSA cryptographic
core implementation. Adapted from [MOMC12].

elements, in their respective netlists, was 2.803 mW (54%), 5.722 mW (73%) and 2.815 mW
(54%), respectively. These results show that, in a realistic application, the reason for the
static C-element to consume less power than the symmetric is because the internal power
in the latter is more significant. One aspect that worsens internal power is the amount of
transistors in short circuit when switching the symmetric C-element output logical value.
Moreover, the bigger the input slope is, the bigger is the period of time that the transistors
are in short circuit when switching the output of the C-element.

These results show that, in summary, albeit the symmetric C-element appears as
the lowest static power implementation, it presents more dynamic power than the static C-
element for bigger input slopes. In this way, there is a trade off between these two topologies
in terms of static and dynamic power. The semi-static presented the worst propagation
delay, regardless output load or input slope variations. Moreover, the symmetric and the
static C-elements proved to be equally robust to output load variations. However, the static
implementation presented higher propagation delay for high input slopes. Therefore, the
symmetric C-element appears as the most speed efficient implementation. The results on
required area for each C-element, showed that the symmetric implementation is the most
silicon area consuming, while the semi-static is the most area efficient. Hence, the latter is
the most suitable for high density designs.

3.2.2 Low Voltage Operation

Given the relevance of C-elements in asynchronous design, a next step was to eval-
uate their behavior under low voltage operation, as explored in [MC13]. To do so, we relied
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on the three topologies evaluated in Section 3.2.1. We designed them targeting the same
technology with 5 different driving strengths: X2, X4, X7, X9 and X13. All the experiments
reported here are based on RC layout extracted views for a typical process.

Table 3.6 — Minimum voltage for maintaining correct functionality of the semi-static C-element
for different driving strengths at varying temperatures . Adapted from [MC13].
\ H125C\1OOC\75C\50C\250\OC -25C -500\

X2 0.15 | 015 [ 0.15| 0.2 | 0.5 | 0.6 | 0.65 | 0.65
X4 0.15 | 015 | 0.15] 0.2 | 0.5 | 0.6 | 0.65 @ 0.7
X7 0.15 | 015 [ 0.15| 0.2 | 045|055 | 0.6 | 0.65
X9 0.15 | 015 | 0.15| 0.2 | 0.2 |0.35| 0.5 0.6
X131 0.15 | 015 | 015 | 0.2 | 0.2 | 025 045 | 0.5

Table 3.7 — Minimum voltage for maintaining correct functionality of the static C-element for
different driving strengths at varying temperatures . Adapted from [MC13].
| [125C [100C [75C [50C [25C [0C [-25C [ -50C |

X2 0.15 | 0.15 | 0.15|0.15 ] 0.2 | 0.2 | 0.25 | 0.25
X4 0.15 | 0.15 | 0.15|0.15] 0.2 | 0.2 | 0.25 | 0.25
X7 0.15 015 | 015|015 | 0.2 | 0.2 | 0.25 | 0.25
X9 0.15 015 | 015|015 | 0.2 | 0.2 | 0.25 | 0.25
X13 || 0.15 015 | 015|015 | 0.2 | 0.2 | 0.25 | 0.25

Table 3.8 — Minimum voltage for maintaining correct functionality of the symmetric C-element
for different driving strengths at varying temperatures . Adapted from [MC13].
| [125C | 100C [75C |[50C |[25C[0C |-25C | -50 C |

X2 0.15 | 0.15 | 0.15|0.15 ] 0.2 | 0.2 | 0.25 | 0.25
X4 0.15 | 0.15 | 0.15|0.15] 0.2 | 0.2 | 0.25 | 0.25
X7 0.15 | 0.15 | 0.15|0.15| 0.2 | 0.2 | 0.25 | 0.25
X9 0.15 | 0.15 | 0.15|0.15| 0.2 | 0.2 | 0.25 | 0.25
X13 0.2 015 | 015|015 | 0.2 | 0.2 | 0.25 | 0.25

The first experiment detected the minimum voltages that can be applied to each C-
element without interfering in their correct behavior. The experiment investigated scenarios
for varying temperatures and a fixed FO4 output load. Minimum voltages were estimated
by simulating all transition arcs of each C-element for each temperature/voltage scenario.
When at least one arc does not generate the correct output or a static state is not able to
maintain correct functionality, the scenario is defined as not functional. Also, the generated
signals must have voltages respecting noise margins, for logic 1 (from 90% to 100% of the
power supply) or for logic 0 (from 0% to 10% the power supply). If a signal presents a
voltage level in the undefined region (from 10% to 90%), the scenario is also defined as not
functional. In summary, the minimum voltage is defined as the lowest voltage at which the
C-elements can operate without jeopardizing their correct logical/electrical behavior. The
obtained results are summarized in Tables 3.6, 3.7 and 3.8, where six drives are analyzed.
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Clearly, the higher the temperature is, the lower is the minimum operating voltage.
Results suggest that the static and the symmetric C-elements are typically preferable for op-
erating with low voltage supply, as they tolerate lower voltages than the semi-static. These
results can be explained analyzing the transistors arrangement of each C-element imple-
mentation. Recalling Figure 3.4, in the semi-static C-element, there is a conflict-solving
situation for every output transition. For instance, suppose that inputs A and B are at 0. In
this case, transistors ILFO and ILF1 are conducting and transistors ILF2 and ILF3 are turned
off, generating a direct path the connects internal nodes nd0 and Vdd. Thus, the output in-
verter (ODO0 and OD1) is writing 0 to the output Q and the feedback inverter (SK0O and SK7)
is maintaining the output value stable, writing 1 to the internal node through the direct path
to Vdd created by SKO.

Now, assume that input B switches to 1. At this point, there is no connection from
the internal node to Vdd or Gnd, because ILF1 and ILF3 are both cut off. Then, the value
is kept by the feedback inverter. Next, assume that input A also switches to 1, making ILF3
conduct and creating a direct path from the internal node to Gnd. However, there is also
a direct path from the internal node to Vdd that is still active (through SK0). There is thus
an instantaneous short circuit, caused by the path from Vdd to Gnd through conducting
transistors ILF2, ILF3 and SKO. In this case, the C-element operates correctly when the
resistivity of the path composed by the NMOS transistors, ILF2 and ILF3, is smaller than
the path crossing the PMOS, SK0. Similarly, to ensure correct behavior when the output
switches to 0, the path formed by /LFO and ILF1 must have smaller resistivity than the path
crossing SK1.

Typically, transistors of the feedback inverter are designed with minimum size, to
reduce their interference in the functionality of the C-element, while transistors ILF0-3 are
larger, to drive the output inverter. The bigger the driving strength is the bigger these tran-
sistors need to be. The transistors of the semi-static C-elements in this case study were
designed to guarantee the correct behavior at typical voltages. Given the strict relationship
between the dimensions of the transistors of this topology, operating parameters, like voltage
and temperature, have a strong influence on the behavior of the design. As Table 3.6 shows,
at room temperature (25 C) the minimum voltage for X2 and X4 drives is 0.5 V, for the X7 it
is 0.45 V and for the X9 and X13 it is 0.2 V. Note that as the driving strength is increased,
the design can operate at lower voltages. This is because larger driving strengths employ
larger ILFO-3 transistors, while maintaining the feedback inverter minimum sized.

The static and symmetric C-elements are not susceptible to this strict sizing rela-
tionship that arises in the semi-static C-element. This is because when these C-elements
are switching their respective outputs, the feedback inverter is cut-off, see Section 3.1.2. In
fact, as Tables 3.7 and 3.8 show, these topologies can typically tolerate lower voltages and
wider ranges of temperature variation. Furthermore, the drive does not have the same effect
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Figure 3.11 — Average EPT for varying voltage supplies for each drive of the three C-
elements: (a) semi-static, (b) static and (c) symmetric. Adapted from [MC13].

in static and symmetric as in semi-static. Thus, the former are better for semi-custom low
voltage design.

Another experiment measured the energy consumption and the propagation delay
for each transition arc of the C-elements. Leakage power was also measured considering for
all static states. In this case we assumed a fixed temperature of 25 C, as other temperatures
do not change the results qualitatively, only quantitatively. Figure 3.11 shows the measured
energy per transition (EPT) for each drive of each C-element implementation varying the
supply voltage. We present EPT as the average of the energy consumed by all arcs of
each implementation. For the semi-static C-element, in drives X2, X4 and X7, the lowest
operational voltage presents very high EPT. This is due to the conflict condition. Albeit the
resistivity of the paths is balanced well enough to provide correct functionality, it keeps the
conflict for a relatively long period, which leads to excessive energy consumption. Fine grain
optimizations in transistor dimensions could improve the obtained results. However, this
complicates cell design as it compromises its behavior at higher voltages.

By analyzing the charts of Figure 3.11, we observe that the static and symmetric
C-elements present lower EPT than the semi-static for a same drive in all cases, roughly
20%. Again this is dues to their mechanism for cutting off the feedback during output tran-
sition arcs. Also, the symmetric designs present EPT values slightly lower than the static
ones. Similarly, the measured average leakage power for all static states appears in Figure
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Figure 3.12 — Average leakage power for varying voltage supplies for each drive of the three
C-elements: (a) semi-static, (b) static and (c) symmetric. Adapted from [MC13].

3.12, for each C-element. As the charts show, the semi-static implementation is the one
that presents larger leakage power values, while static and symmetric C-elements present
equivalent results. These results are a reflection of the size of transistors in each imple-
mentation. Because of the conflict during transition arcs, the semi-static C-element requires
larger transistors, which leads to its excessive leakage power. In this way, the obtained re-
sults suggest that the static and symmetric C-elements can lead to better energy and power
characteristics, regardless the operating voltage.

The average number of Giga transitions per second (GTPS) serves here to define
the relative speed of the explored C-element designs. The measurement of these values
depends on the average propagation delay of all C-elements transition arcs. Figure 3.13
presents the results obtained for the three topologies. As the charts show, the measured
GTPS for the semi-static and the static C-elements are similar, while for symmetric it is
roughly 20% larger. This is due to the arrangement of transistors in the latter. When a
symmetric C-element switches the output, two paths connect the internal node to Vdd or
Gnd in parallel, see Figure 3.4. In semi-static and static topologies, this connection occurs
through a single path.

Another perspective of the obtained results shows a fairer comparison of C-elements.
Three cost-benefit functions were defined to evaluate speed, leakage, energy and area trade
offs: speed-energy, speed-leakage and speed-area. The ratio between the measured GTPS
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Figure 3.13 — Average GTPS for varying voltage supplies for each drive of the three C-
elements: (a) semi-static, (b) static and (c) symmetric. Adapted from [MC13].

and EPT defines the speed-energy efficiency function. Using this, it is possible to evaluate
the speed of the C-elements without overlooking the associated energy consumption. Figure
3.14 shows the speed-energy efficiency values, in GTPS/EPT, measured for all C-elements.
As the charts show, the symmetric C-element is the one that presents highest GTPS/EPT
values, followed by the static. The semi-static topology presented the worst speed-energy
cost-benefit. The symmetric achieves optimizations of roughly 82%, in the best case, 46% in
average and 11% in the worst case, when compared to static. In comparison to semi-static,
these values are 700%, 240% and 75%, respectively.

Also, semi-static C-elements, in lower driving strengths (X2-X7), reach the mea-
sured optimum GTPS/EPT when operating at roughly 0.85 V. For higher driving strengths
(X9 and X13), the optimum occurs at roughly 0.75 V. However, static and symmetric C-
elements reach optimum power efficiency when supplied with 0.55 V, for all driving strengths.
Moreover, as the charts in Figure 3.14 show, the lower the drive of the C-element is the best
is its speed-energy efficiency. In this way, results suggest that energy optimizations can be
achieved by employing low drive C-elements whenever feasible.

The ratio between the measured GTPS and leakage power (LKP) produces the
speed-leakage efficiency function definition. With this function it is possible to evaluate the
speed of C-elements without overlooking the associated leakage power. Figure 3.15 shows
the speed-power efficiency values, in GTPS/LKP, measured for all C-elements considered
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Figure 3.14 — Speed-energy efficiency for varying voltage supplies for each drive of the three
C-elements: (a) semi-static, (b) static and (c) symmetric. Adapted from [MC13].

here. As the charts show, the symmetric C-element is again the best, since it presents
highest GTPS/LKP, followed by the static. The semi-static implementation presents the worst
speed-leakage cost-benefit. The symmetric design displays optimizations of roughly 51%,
in the best case, 32% in average and 15% in the worst case, when compared to the static.
In comparison to the semi-static, these values are 256%, 92% and 28%, respectively.

As Figure 3.15(a) shows, optimum efficiency for the semi-static C-element can be
obtained at 0.7 V for lower driving strengths and at 0.6 V for higher driving strengths. Also,
as Figure 3.15(b) and Figure 3.15(c) show, for static and symmetric, optimum efficiency is
obtained at 0.55 V. In addition, similarly to the speed-energy efficiency, the lower is the drive
of the C-element, the best is its speed-leakage efficiency, suggesting that improvements in
the static power of circuits can again be obtained by employing low drive C-elements. The
speed-area efficiency function allows evaluating the obtained speed for each implementa-
tion without ignoring silicon area. The ratio between GTPS and the total silicon area of each
C-element defines this last evaluated function. Figure 3.16 shows the area of each imple-
mentation. As the chart shows, the higher the drive is the larger is the required area. The
speed-area function was defined as the ratio between the GTPS and these area results for
each C-element.

Figure 3.17 shows the obtained results. As the charts show, small drive semi-static
C-elements are the ones that present best GTPS/Area values. This is expected, given their
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Figure 3.15 — Speed-leakage efficiency for varying voltage supplies for each drive of the
three C-elements: (a) semi-static, (b) static and (c) symmetric. Adapted from [MC13].
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Figure 3.16 — C-elements area for each drive. Adapted from [MC13].

low area, as Figure 3.16 makes clear. However, albeit the symmetric C-element requires
more silicon area in all cases compared to the static C-element, it still presents the best
speed-area efficiency. This is due to the higher GTPS provided by the symmetric design, as
Figure 3.13 shows, meaning that although the static topology provides area reduction, these

are not as substantial as the GTPS improvements provided by the symmetric C-element.

The main suggestion here is that the symmetric topology is the most adequate one
for low voltage applications. Although it has slightly worse speed-area efficiency (yet, note
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Figure 3.17 — Speed-area efficiency for varying voltage supplies for each drive of the three
C-elements: (a) semi-static, (b) static and (c) symmetric. Adapted from [MC13].

that for high drives, it is actually better), it provides the highest speed-energy and speed-
leakage efficiency in all cases. Thus, its use for low power applications using voltage scaling
techniques is strongly recommended. Besides, results suggest that the best speed-energy
and speed-leakage efficiency are obtained when operating at voltages near the threshold.
These results help designers using C-elements, as they enable another operation mode:
best cost benefit considering speed, energy and leakage. This can be used for coping with
many contemporary problems such as battery-based systems, low power budgets and green
computing challenges. Finally, as Figure 3.13 and Figure 3.15 show, further optimizations
can be achieved by employing low drive C-elements, enabling a better design space ex-
ploration for low power application. This occurs because these C-elements present better
efficiency than higher drives ones.

3.3 NCL Gates Design

As explored in Section 3.1.3, NCL gates are typically designed using semi-static or
static topologies. These topologies are a generalization of the same semi-static and static
topologies employed for C-elements design explored in Section 3.2. Hence, the same re-
sults obtained for the C-element topologies analyses apply to NCL gates. In this way, we
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limit our experiments with NCL gates to the static topology only, as it is the one that presents
best overall trade offs, including area, power, energy and delay. In our first experiments with
NCL gates design we designed a basic set of gates, as explored in [MOPC13a], employing
the classic static topology. During the design of these gates we noticed that they were sus-
ceptible to charge sharing effects [RCN03, CH87] and proposed a methodology to overcome
this issue. We then proposed a new topology for NCL components, that is also useful for the
design of C-elements. This Section explores these innovations.

3.3.1 Charge Sharing Aware Design

When two electric equipotential regions at different initial voltages are connected
together [RCNO3, CH87], they share charges to reach a new global potential value, causing
voltage variations on both regions due to charge redistribution. Such voltage changes in,
e.g., nodes of a transistor circuit are effects of charge sharing. Also, it is possible to discern
two kinds of charge sharing: pure charge sharing and charge sharing with a driven path
[CH87]. In NCL, the latter is not problematic, as it will only interfere in the output of a gate
during output switching, which is the expected behavior. Pure charge sharing, on the other
hand, can be hazardous. This phenomenon occurs when, e. g., two non-driven RC subnets
are connected through a switch that is closed. Classically, in dynamic synchronous circuits,
like domino logic, charge sharing arises when either charge flows from a gate output to inter-
nal nodes capacitances previously discharged, or when charge flows from initially charged
internal nodes parasitic capacitances to the output. These phenomena cause glitches on the
outputs that, depending on the scenario, may trigger adjacent gates erroneously, producing
SETs that can be latched and cause SEUs.

In asynchronous circuits, glitches caused by charge sharing effects can have irre-
versible consequences [BOF10]. These circuits rely on complex handshake communication
protocols that can stall in the presence of a soft error, causing the whole circuit to halt. Also,
in asynchronous circuits, SETs are hardly masked [KH04]. This is due to the fact that there
is no temporal assumption and, consequently, no temporal masking. Additionally, logic and
electrical masking are very restricted. This is because the majority of asynchronous tem-
plates make extensive use of sequential components, which limit the depth of logic paths
and of signal regeneration effects and increase the possibility of SETs to be latched and
generate SEUs. Hence, an important characteristic in asynchronous components design is
robustness against phenomena that can cause SETs and SEUs.

With this in mind, we conducted an extensive analysis on NCL gates design to
understand their analog behavior and susceptibility to charge sharing effects [MOMC13].
Recalling Section 3.1.3 static NCL gates employ, as usual in static logic, series and parallel
transistor connections. Depending on the threshold and on the number of inputs, more tran-
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Figure 3.18 — A0 CMOS schematic for the 3-of-5 example NCL gate. Adapted from
[MOMC13].

sistors can be required. Complexity may lead to routing congestion due to the existence of
many internal nodes when implemented on silicon, which in turn increases parasitic capac-
itances of the internal nodes of the gate. Also, transistors of the logic stack are usually big,
because they are required to drive the output inverter. In this way, their drain and source
areas are made larger, which also increases parasitic capacitances. With larger internal
parasitic capacitances, the gate is more susceptible to problems caused by charge sharing,
as bigger glitches can be generated, increasing the possibility of these glitches to be latched
and to SEUs.

As an example, and without loss of generality, we will use a static 3-of-5 NCL
threshold gate as a case study for our analysis. Figure 3.18 shows a first schematic of this
gate, called Arrangement 0 (A0). The choice of this gate as case study is justified for its
extensive use in fundamental blocks usually found in QDI circuits, like adders and for being
a critical case for the analysis herein. All transistors in the experiments are assumed to be
general purpose standard threshold devices.

As Figure 3.18 shows, the PMOS transistors in the logic stack of the 3-of-5 gate
(P0O-P4) can only be arranged in series, to guarantee that all inputs at 0 drive the output
to 0. The capacitances of nodes n00-n03, that connect these transistors, are usually not
increased by parasitics inherent to metal wiring after layout design. This is because such
transistors are likely to be connected by abutting the diffusion of their respective drains and
sources. In this way, it is not expected that charge sharing effects caused by these capaci-
tances generate relevant hazardous glitches.
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Table 3.9 — Input sequence for observing charge sharing effects in a 3-of-5 gate. Adapted
from [MOMC13].

Inputs Time instant
0[1/2[3[4[5[6[7]8
A o0/0j0(O0O|O0O|O|O|0O]1
B o0/{1/1(1]0(0(0|0|0
C o0/0|1{1]1]0(0|0|0
D 0/0j|O0(1T]1]|1]|0|0/0
E 0/0j0(O0O|O|O|O|1]1

The NMOS transistors of the logic stack, on the other hand, can be arranged in
many different forms. Each form can contribute differently to increase glitches caused by
charge sharing in the pull-down region. Arrangement AO, specifically, is a worst case. For
instance, assume the scenario presented in Table 3.9. Initially, all inputs are at 0. In this way,
nodes n00-n03 and O are charged and the output is set to 0 through the output inverter. This
is the typical scenario of the beginning of data transmission in QDI circuits. Next, say that
inputs B, C and D are set to 1, one at a time (time instants 1-3). In this way, nodes O
and n11-n16 are discharged and the output is switched to 1. This represents data being
propagated through the circuit.

Now say that all inputs are set back to 0, one at a time, starting with B, then C
and then D (time instants 4-6), to avoid capacitance coupling of the initially charged nodes
n00-n03 and the discharged nodes n17-n16. In this stage, node O is charged and all nodes
n11-n16 are kept discharged. This is an initial setup for the analysis of the charge sharing
problem. Finally, say that inputs E and A switch to 1, in this order (time instants 7-8). The
effect is that when input E switches, capacitance of the following pairs of nodes are coupled:
ni1and n12, n13 and n14 and O and n15. At this point, a glitch occurs in node O as part of
its charge is absorbed by node n15. However, a larger glitch occurs when input A switches,
because, in this case, the charge stored in O is partially absorbed by capacitances of nodes
ni11-n14 and n16, which represent a much bigger value. In such a scenario, this glitch can be
more easily latched, generating an SEU. This scenario is very common in NCL applications.
From our own experience, in adders this exact situation or an equivalent one always happens
during the computation of each single bit. Additionally, even worse scenarios may occur, if
more inputs are assumed to switch, which is also realistic in applications implemented in
NCL.

Given the input sequence of Table 3.9, we propose another arrangement for the
3-of-5 NCL threshold gate, namely Arrangement 1 (A7). Figure 3.19 shows its CMOS
schematic. The difference from AQ is that the NMOS transistors of the logic stack were
redistributed. Note the transistor parallel is now closer to node O. In this way, at each input
switch, the charge stored in node O is slightly absorbed. This helps avoiding that bigger
capacitances accumulate before coupling with node O, like in A0. For instance, assume that
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Figure 3.19 — A1 CMOS schematic for the 3-of-5 example NCL gate. Adapted from
[MOMC13].

A1 is submitted to the same initial setup as A0 (instants of time 0-6). At this point, if any
input switches to 1, less parasitic capacitances will be accumulating, since critical nodes of
parallel transistors will have their capacitances coupled to node O. For the example scenario,
in the next instant of time (7), when input E switches to logical 1, capacitance of node n11
is coupled to O, absorbing part of its charge. In last instant of time, when input A switches,
less capacitance accumulates and smaller glitches are expected.

This implementation alleviates glitches generated by charge sharing effects. A big-
ger capacitance in node O would provide further improvements. However, a bigger capaci-
tance in this node can drastically impact the gate performance. In other words, a bigger load
would take longer to be charged/ discharged or bigger transistors, which would display big-
ger power figures. In this context, we propose Arrangement 2 (A2), showed in Figure 3.20.
In A2 the capacitance of node O is only increased when the cell is not switching. This is
done by placing parallel PMOS transistors of the feedback group closer to P20. Here, when
the output is at 0 and is not switching, capacitance of node O is coupled with capacitance
of node n10, which has an increased parasitic capacitance in A2, due to the larger number
of transistors connected to it. Also, depending on the combination of inputs set to 0, bigger
loads are coupled, as nodes n04-n09 can be connected to node n10. When the cell is to
switch its output to 1, the connection of nodes n04-n10 to power is cut off, and their charge
is drained through the direct connection to ground provided by the NMOS transistors of the
logic stack.

For instance, say that A2 is submitted to the initial setup of Table 3.9. When input
E switches to 1, at the time instant 7, there is a bigger capacitance coupled to node O,
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Figure 3.20 — A2 CMOS schematic for the 3-of-5 example NCL gate. Adapted from
[MOMC13].

and the generated glitch is alleviated. When input A switches, at the next time instant, the
same effect is observed. However, as soon as another input switches to 1, the connection
of feedback group nodes to power source is cut off, lowering their interference in node O
switching.

To analyze the analog behavior of arrangements A0, A1 and A2, each arrange-
ment was described in Spice using the 65nm STMicroelectronics general purpose standard
threshold models. Each of the four arrangements was designed for six different driving
strengths, X2, X4, X7, X9, X13 and X18, for a total of 3*6=18 different designs. The tran-
sistors of the output inverter had the same size of those of an equivalent drive inverter of
the core library of the target technology. Transistors of the feedback group are minimum
size, a classical approach for designing static components for asynchronous circuits and
the transistors of the logic stack had their size calculated according to the flow presented in
Chapter 4.

As explained before, SEUs in NCL gates caused by charge sharing are directly
related to internal parasitic capacitances. In this way, an experiment was performed to define
hazardous parasitic capacitance values. Note that no layout information is available in this
phase. The schematic of all designed gates was simulated assuming no wire parasitics,
only drain and source diffusion and gate capacitances, to isolate and evaluate the impact
of the parasitics on nodes n117-n16 that could be extracted after layout design. Simulations
were performed inserting varying values of capacitances on these nodes and on node O,
to define safe parasitic combinations limits. Capacitances were varied from 0 fF to 4 fF
in 0.05 fF steps. In this way, a total of 80*80=6400 scenarios of parasitic capacitances
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Figure 3.21 — Maximum negative peak values (in Volts) of glitches caused in node O due to
charge sharing effects for (a) A0, (b) A1 and (c) A2. Adapted from [MOMC13].

combinations were simulated. All designs had 50 ps input slopes, equivalent to an average
size inverter, and output loads equivalent to four inverters of the same driving strength, FO4.
The input sequence scenario is that in Table 3.9. During simulations, the peak of the glitch,
lowest voltage value, in node O was measured after time instant 8 (remember glitches here
are from high to low voltage, i.e. negative peaks). Results used typical process models
operating at typical conditions (1 V and 252 C). The choice simulator was Cadence Spectre.

Figure 3.21 summarizes the results obtained for the X2 drive version of each ar-
rangement. In the charts, PU Cap is the parasitic capacitance in node O and PD Cap is the
parasitic capacitance in each node of the pull down network of the logic stack (n17-n16). As
Figure 3.21(a) shows, for A0, considering no parasitic capacitance in node O (PU Cap=0),
PD Cap values bigger than 0.6 fF, generate SEUs. The abrupt fall towards 0 V in the chart
represents the critical points, where if bigger PD Caps are present, the glitch generated in
node O is sufficiently big to cause it to be latched in the memory scheme, switching the
output value to 1 and the value of node O to 0.

In other words, for the bottom of the chart (0 V), the glitch generated by charge
sharing effects was sufficiently large to be latched and generate an SEU. PD Cap values
that are lower than those in the critical point also generate glitches. However such glitches
are not high enough to cause an SEU. For instance, for a PU and PD Cap of 0, the peak of
the glitch measured in node O is of 0.67 V, a glitch of 33% of VDD. However, maintaining the
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Figure 3.22 — Critical PU and PD Cap for the X2 drive cells for a typical process and typical
operating conditions. Adapted from [MOMC13].

PU Cap of 0, for a PD Cap of exactly 0.6 fF, just before the critical point, the glitch peak is
0.36 V, which is much more critical (64% of VDD) but not enough to be latched. Note that PD
Caps of 0 are impossible in practice, especially because node O is used for interconnecting
many transistor branches. The problem is that, even if PU Cap is raised to 3 fF, or even 4 fF,
values of PD Cap close to 1 fF can generate SEUs, which is 3 or 4 times lower than PU Cap.

The values measured for A7, showed in Figure 3.21(b), move the step that rep-
resents the critical point to larger values of PD Cap. In this way, more PD Cap parasitics
are required to cause SEUs. In fact, in average, for the same PU Cap values, PD Cap
parasitics in A7 must be 45% bigger than those in A0. Also, glitches for similar PD Caps,
and lower than those of the critical point, are roughly 22% smaller in A7 when compared to
AO0. As Figure 3.21(c) shows, for A2, these values are improved even more. For the same
PU Cap values, PD Cap parasitics in A2 must be in average 92% bigger than those in A0
to cause SEUs and glitches for similar PD Caps are roughly 36% smaller. Another analy-
sis of the same simulation results appears in Figure 3.22. In the chart, critical points (the
highest value of PD Cap for each PU Cap before causing an SEU) were isolated for each
arrangement. In this way, A2 is almost twice as robust as A0.

After analyzing the results obtained for all driving strengths, we noticed that bigger
drive cells are more susceptible to charge sharing problems, depending on the arrangement.
The difference on the results for different drives is just quantitative, not qualitative. Thus,
only the worst case, X18 is analyzed here. Figure 3.23 shows critical PU and PD Cap
combinations for this drive for the same scenario above. It is clear that the improvements
are much bigger. For instance, in worst case, PD Caps of 0.25 fF are required to generate
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Figure 3.23 — Critical PU and PD Cap for the X18 drive cells for a typical process and typical
operating conditions. Adapted from [MOMC13].

SEUs for A0, while for A1 and A2, this value is of 1.3 fF, 1.5 fF and 1.45 fF, respectively. This
means arrangements 5.2 and 6 times more robust than A0, respectively.

The reason why bigger drives are more susceptible to charge sharing effects is
the elevated diffusion capacitances of NMOS transistors of the logic stack that contribute to
internal parasitics, making lower interconnection parasitics required for causing SEUs. Also
these transistors are bigger and discharge node O at faster rates. The presented results
are all based on typical fabrication processes. However, as variations get critical in current
technology nodes, this can be an overoptimistic approach. Accordingly, we simulated all the
circuits for the same scenario for a worst case fabrication process variation: slow PMOS
transistors and fast NMOS transistors. Thus, bigger glitches are generated in node O and
less glitches are filtered by the output inverter.

Figure 3.24 presents the results obtained for the most critical case, namely the X18
drive cells. As observable in the Figure, for A0 no interconnection parasitics are needed
to cause SEUs. However, the proposed optimizations push critical PD Cap values to over
0.65 fF. In this way, it is expected that 3-of-5 NCL gates designed according to A0 for an
X18 driving strength generate SEUs when under the scenario shown in Table 3.9. In fact,
we detected that this problem starts at driving strengths larger than X7. The degradation
in robustness of NCL gates as their driving strength get bigger observed for A0 is undesir-
able. In fact, the quality of cell-based logic synthesis relies on the availability of gates with
different functionalities and driving capabilities. From a functional point of view, the more
gates available to implement logic functions, the more optimizations are possible. However
optimizations in power, area and speed require different driving strengths for each gate dur-
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process and typical operating conditions. Adapted from [MOMC13].

ing physical synthesis. Thus, it is essential that NCL gates maintain their robustness for
increased driving strengths, in order to provide quality standard-cell-based design.

Another perspective on the obtained results shows the observed degradation. Fig-
ure 3.25(a) shows the critical PU and PD Cap combinations for each driving strength. The
chart is a steep ramp where results get worse as the driving strength increases. There is
a small deviation, in drive X13, which presents slightly better robustness than X9. However
this effect is due to transistor sizing effects. Transistors of the logic stack in these drives
were set to similar dimensions, while transistors of their output inverter are different; in X13
they are bigger. A bigger output inverter leads to a bigger capacitance in O for X13 while
maintaining the same logic stack nodes capacitance, generating a slightly more robust cell.
More interestingly, though, the steep ramp problem is not observed in the proposed opti-
mizations. As charts of Figure 3.25(b) and 3.25(c) show, A1 and A2, present very similar
robustness no matter the driving strength. For these arrangements, the ramp observed in
A0 is turned into flatter surfaces, which indicates that these arrangements are suited for in-
creasing the robustness of NCL-based logic, while maintaining the advantages of using a
cell-based approach for circuit design.

3.3.2  New Topology

The exploration of the existing topologies for designing NCL gates allowed a better
understanding of the trade offs of different transistor arrangements. This in turn enabled us
to propose a new topology targeting low voltage operation, as explored in [MAGC14]. Fig-
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Figure 3.25 — Robustness of arrangements (a) A0, (b) A1 and (c) A2. Adapted from
[MOMC13].

ure 3.26 presents the basic schematic for this topology. As the Figure shows, the output Q
switches to 1 or 0, according to the set and reset transistors PO and NO, respectively. Di-
mensioning of these follows a process similar to that of the output inverter for the previously
explored topologies. The same RESET and SET networks control these transistors. How-
ever, such transistors are also controled by the complements of these networks, HOLD1 and
HOLDO. Accordingly, the PO and NO driving transistors are both turned off by a hold state in-
put combination. This state uses transistors P7-P3 and N7-N3 to maintain the output stable.
All these are minimum-sized and the mechanism employs a loop of two inverters, where the
driving inverter (P3-N3) is controlled by HOLD1/RESET or by HOLDO/SET (through P2 and
N2). Note that HOLDO and HOLD1 transistors are also minimum size and transistors used
for SET and RESET are dimensioned for driving PO and NO input capacitance loads. Also,
since C-elements are special cases of NCL gates, the new scheme is also a new topology
for C-elements.

The new scheme guarantees that PO and NO will never be ON simultaneously,
since the RESET network is ON only when all inputs are 0, while SET requires that at least
one input be 1. Practical SET functions for this topology require at least 2 inputs to be 1.
Albeit it is true that some SET functions can require only 1 input to be 1 in NCL design,
these functions do not require a memory mechanism and avoid the need for the proposed
topology or the classic static and semi-static topologies. This renders the proposed topology
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Figure 3.26 — Proposed topology for designing NCL gates. Adapted from [MAGC14].

even more interesting, because momentary shorts present in the output inverter of the static
topology are avoided. In fact, before making either PO or NO ON, both transistors are always
turned off, because as soon as SET and RESET are OFF, their complements HOLDO or
HOLD1 will be ON, and a minimum of two inputs are required to switch from an ON SET
network to an ON RESET network and vice-versa. Also, because input capacitances of
PO and NO are decoupled, contrary to what happens in the classical static and semi-static
topologies, SET and RESET networks need to drive smaller capacitances to switch the
output. In this way, better power and delay trade offs are expected as characteristics of the
new topology.

In order to compare the proposed topology with the static one, 3 different NCL
functionalities were implemented to the layout level for 3 different driving strengths (X2, X7
and X13). This produced a total of 2*3*3=18 case study gates. The target technology
was the STMicroelectronics 65nm bulk CMOS and gate design followed the procedure pre-
sented in Chapter 4. The selected functionalities were: 2-of-2 (M=2, N=2 and weights=1 1);
ANDOR2-0f-4 (special AND-OR function); and 3W22-0f-4 (M=3, N=4 and weights=22 1 1).
This choice allows evaluating trade offs of topologies for low (2-0f-2), medium (ANDOR2-of-
4) and high (3W22-0f-4) complexity gates. Also, in our experience these functionalities are
commonly used in NCL designs. After layout extraction, analog simulation allowed evaluat-
ing the case study gates. All results presented herein are based on worst case RC para-
sitics extraction. Tables 3.10, 3.11 and 3.12 present a general comparison of five relevant
parameters for all designs: area, input capacitance, parasitic capacitance, speed-to-energy
efficiency and speed-to-leakage efficiency. Regarding area, it is clear that for small driving
strengths, the proposed topology displays substantial area overhead. In fact, for a 2-of-2
gate of drive X2 and X7, it requires 1.4 times the area required by a static topology. This
area overhead for small driving strengths is a consequence of the fixed overhead of four
transistors. In fact, as the driving strength increases, the overhead decreases. Therefore,
the bigger the driving strength is, the lower is the area overhead. Besides, as gate complex-
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Table 3.10 — Area, input and parasitic capacitances, speed-energy and speed-leakage trade-
offs for the 2-of-2 case study gates. Adapted from [MAGC14].
| Drive | Topology | Area (um?) | Inp. Cap. (fF) | Para. Cap. (fF) | GTPS/EPT | GTPS/LP |

X2 Static 5.20 0.60 3.084 5.87 0.13
Proposed 7.28 0.61 3.760 5.74 0.12
X7 Static 5.20 0.66 3.400 2.86 0.06
Proposed 7.28 0.62 3.662 3.82 0.08
X13 Static 6.76 0.69 3.821 1.52 0.03
Proposed 8.32 0.78 4.980 2.19 0.05

Table 3.11 — Area, input and parasitic capacitances, speed-energy and speed-leakage trade-
offs for the 3W22-0f-4 case study gates. Adapted from [MAGC14].
| Drive | Topology || Area (um?) | Inp. Cap. (fF) | Para. Cap. (fF) | GTPS/EPT | GTPS/LP |

X2 Static 9.36 1.34 7.986 3.33 0.47
Proposed 11.44 1.20 7.190 3.36 0.31
X7 Static 9.36 1.53 8.440 1.80 0.28
Proposed 11.44 1.18 7.723 2.30 0.25
X13 Static 10.92 1.20 8.700 0.99 0.16
Proposed 13.00 0.93 8.657 1.36 0.17

Table 3.12 — Area, input and parasitic capacitances, speed-energy and speed-leakage trade-
offs for the AO2-of-4 case study gates. Adapted from [MAGC14].
| Drive | Topology || Area (um?) | Inp. Cap. (fF) | Para. Cap. (fF) | GTPS/EPT | GTPS/LP |

X2 Static 8.32 0.94 6.344 3.21 0.49
Proposed 8.84 0.77 5.754 3.43 0.35
X7 Static 8.84 0.91 6.240 1.68 0.28
Proposed 9.36 0.77 5.938 2.56 0.30
X13 Static 9.36 0.97 6.938 0.94 0.16
Proposed 10.40 0.76 6.730 1.61 0.20

ity grows, the cost is also amortized. This can be noticed by analyzing the area results for
3W22-0f-4 and ANDOR2-0f-4 gates. For the latter, the area required by the static topology
is never less than 90% the area of the new topology.

Regarding the input capacitance data, the tables present results obtained after
layout extraction. Values correspond to the worst case among capacitances for all inputs in
each cell. The static topology presents an input capacitance which is always bigger than the
new topology for the more complex gates (3W22-0f-4 and ANDORZ2-0f-4). In the worst case,
it presents an overhead of almost 30%. For the 2-o0f-2 case study, the input capacitance is
quite similar to that obtained for the proposed topology. The justification for this is because
the new topology typically requires smaller transistors in the SET and RESET networks,
leading to reduced gate capacitance. This indicates that the new topology is suited for
cell-based design, as input capacitance is crucial in technology mapping and optimization
steps. In fact, smaller capacitances enable better speed, energy and power trade offs at
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the system level. As for parasitics, compared to the static topology the proposed topology
presents lower parasitics in all cases, except for the lowest complexity gate (2-of-2). This
indicates the suitability of the new topology to produce complex NCL gates.

For speed, energy and leakage power figures simulations employed typical fabrica-
tion process corners and operating conditions (1 V and 25 C) and all gates had a fixed, FO4,
output load. For each case study gate, all transition arcs for each input/output pair were
simulated and, for each arc, propagation delay was measured as the time a transition in an
input takes to cause an output switching. The energy consumed for switching the output was
also measured for each arc. The energy was measured as the integral of the current in the
power supply during the time the cell is switching, multiplied by the operating voltage. Also,
we simulated all static states of each case study gate and we measured leakage power as
the average current in the power source during each state, multiplied by the operating volt-
age. From these results we obtained the number of times the cell is capable of switching
its output per second, measured in GTPS. The GTPS value considers the average between
all obtained propagation delays, for each case study. EPT was measured as the average
energy consumed for switching the output of each design.

Since each topology can present varying propagation delay, energy and leakage
power figures, even for a same driving strength, a fair comparison is not possible by analyz-
ing just these figures. Accordingly, the expression of results employs cost-benefit functions.
The sixth column of each table presents the GTPS/EPT results. The ratio between the mea-
sured GTPS and EPT values defines the speed-energy efficiency function. This enables
evaluating the speed of the gates without overlooking the associated energy consumption.
The proposed topology presents bigger GTPS/EPT figures in all cases but for the 2-of-2
gate with a driving strength of X2, where its results are very close to the ones obtained for
the static topology. This means that in general the new topology is capable of making more
transitions than the static and semi-static topologies for a given amount of consumed energy.

Note that the bigger the driving strength is the bigger is the gain in delay-energy
efficiency of the proposed topology. In the best case, an improvement of over 150% is
observed when compared to the static topology. E.g., for the ANDOR2-0f-4 gate, the static
topology has a value of GTPS/EPT that is just 39.9% of the new topology value. This is
justified by the fact that the new topology has typically lower capacitances to drive when
switching the output. Note that in this topology the gate capacitances of the PMOS and
NMOS transistors of the output inverter (see Figure 3.26, PO and NO) are decoupled. In this
way, the proposed topology is suited for energy-efficient applications. Also, the proposed
topology is well suited for cell-based design, as its speed-energy efficiency does not decay
as in the static topology, as driving strength increases. This allows design optimizations to
take place without compromising low power operation.

The Tables also show speed-leakage efficiency results. GTPS/Average Leakage
was measured as the obtained GTPS for each gate, divided by the average leakage power.
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This creates a cost function to evaluate speed-leakage trade offs and enables analyzing the
speed of the gates without overlooking leakage power. In this case, improvements were not
as substantial as in delay-energy trade offs. In fact, for X2 gates, our topology presented
worse GTPS/Average Leakage trade offs in all cases. However, as the driving strength
increases, our topology proves to be more efficient in terms of the speed-leakage power
trade off. In the best case, improvements are above 70%. This corroborates the previous
results, indicating the suitability of the topology for cell-based design.

Another desirable feature for contemporary integrated circuits is increased toler-
ance to PVT variations. In fact, process variations are a critical problem in current tech-
nologies. A second set of experiments enabled to measure the variability in the observed
performance figures for the case study gates while varying operating voltage, temperature
and process fabrication parameters. Note that leakage variations were not significant and
there were little discrepancies among the analyzed gates. Hence, they were omitted in this
analysis.

Firstly, we submitted the gates to variations in operating voltage and temperature.
We simulated these for a range from 90% to 110% of the nominal values (1V and 25C)
in steps of 1%, combining all possible values. This means 21 distinct voltages and tem-
peratures that combined lead to 21*21=441 simulation scenarios for each design. Figure
3.27 shows the variations observed in measured energy per transition (EPT). In the Figure,
the case study gates are distributed along the horizontal axis. A PR prefix indicates the
gate employs the proposed topology, while ST and SS prefixes indicate the cell employs
the static and semi-static topologies, respectively. Also, 22 stands for a 2-of-2 gate, 3W22
is a 3W22-of-4 gate and AO24 is an ANDOR2-of-4 gate. Gate names were abbreviated to
allow a more compact representation in the charts. In these, variations can be either positive
or negative and they are measured from the base value obtained for nominal voltage and
temperature, represented by the 0 value in the vertical axis in the charts. Note that in most
cases the proposed topology presents smaller amplitude in energy per transition variations,
when compared to the static topology. Also, as driving strength increases, susceptibility to
voltage and temperature variations is worsened in all topologies. However, for the proposed
topology, the increase is not as substantial as in for the static and semi-static topologies.

Concerning variations in propagation delay, Figure 3.28 shows that the topologies
present similar susceptibility to voltage and temperature variations. However, for the biggest
simulated driving strength, the proposed topology always presents smaller variations. In this
way, charts of Figure 3.27 and Figure 3.28 confirm the suitability of the proposed topology
for cell-based design.

A second set of simulations allowed evaluating the effect of process variations in
gate performance figures. To do this, we proceeded to a mismatch Monte Carlo analysis with
5000 samples and measured energy per transition and average propagation delay for each
simulated scenario. The charts in Figure 3.29 and Figure 3.30 summarize the results. As
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the charts show the proposed topology presents smaller variations in energy per transition
for X7 and X13 driving strengths. For X2, the results observed are comparable to those of
the static topology. As for the observed propagation delay variations, the proposed topology
presents values comparable to the ones observed for the static topology in most cases.
Hence, in general, the proposed topology is the most robust against PVT variations.

Another very important aspect for contemporary technologies is the ability to oper-
ate at voltage levels lower than the nominal. In fact, according to Hanson et al. [HZB*06],
voltage scaling is the most effective solution to cope with increasing power constraints. Ac-
cordingly, we performed a set of experiments to evaluate the impact of voltage scaling in the
case study gates. The first experiment detected the minimum voltages that can be applied
to each gate without interfering in their correct behavior. The experiment investigated sce-



105

3 Energy Variation IIDistrihuti(Im (f1)

PR22X2 |
5T22X2
ST22X7 |
5522X7

$53W22)2
PRIW22X7
STIW22X7 |
$53W22X7 |
PRIW22X13 |
PRAO24X2
STAO24X2 |
| S5A0200  m—
PRAD24X7 w [T
STAO24X7 |
SSAQ24XT |
CPrao2ax13 | | [ [ Tw [T

ST3W22X2 |

§522X13

ST22X13 |
PR3W22X2

PR22X13 |

SS3W22X13
STAO24X13
SSAD24X13

ST3W22X13

Figure 3.29 — Energy variation distribution observed from Monte Carlo analysis. Data were
divided into 10 sets (5 positive and 5 negative). Each color represents a quintile of positive
sets (in red) and negative sets (in blue), where darker colors represent lower quintiles and
brighter colors represent upper quintiles. Adapted from [MAGC14].

Propagatlion Delay Variation Distribtl.ltl'on (ps)

20

10

-10

-20

-30

RNy 1. /0 PR N . N ey

PR22X2
sT22%2 |
5522%2 |
PR22X7
ST22X7 |

PR22X13
ST22X13 |
5322X13 |

PRIW22X2

ST3W22X2
| ssaw22x2 |
PRIW22X7 |
STIW22X7 |
$S3IW22X7 |
PRIW22X13 |
STaw22x13 |
$53W22X13 |
PRAO24X2 |
STAO24X2 |
55A024X2 |
PRAO24X7 |
STAO24X7 |
SSAD24X7 |
PRAO24X13
STAD24X13 |
$SA024X13 |
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quintiles and brighter colors represent upper quintiles. Adapted from [MAGC14].

narios for varying temperatures and an FO4 output load. Minimum voltages were estimated
similarly to what we did in a previous Section, by simulating all transition arcs and static
states of each gate for each temperature/voltage scenario. When at least one arc does not
generate the correct output or a static state is not able to maintain correct functionality, the
scenario is defined as not functional. Tables 3.13, 3.14 and 3.15 summarize the obtained
results. As the Tables show, the proposed and the static topologies tolerate voltages as low
as 0.15V and 0.1V, respectively. In fact, the obtained results for these topologies are quite
similar and, therefore, they are both suited for semi-custom low voltage design.

A second experiment allowed us to compare speed-energy and speed-leakage
trade offs for the static and the proposed topologies under varying supply voltages. Fig-
ures 3.31 and 3.32 show the speed-energy efficiency values, in GTPS/EPT. As the charts
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Table 3.13 — Observed minimum operating voltage for different versions of the 2-of-2 case
study. Darker case values are worse than light case values. Adapted from [MAGC14].

| Topology | Drive | 125C | 100C | 75C [50C [25C |0C |-25C | -50C |
X2 020 |0.15 |0.15]0.15|0.15 | 0.15| 0.15 | 0.20
Proposed | X7 020 |[0.20 |0.15]0.15|0.15 | 0.15|0.20 | 0.20
X13 (025 |0.20 |0.20 | 0.20 | 0.15 | 0.15|0.20 | 0.20

X2 0.15 |0.15 |0.15 | 0.15 | 0.20 | 0.20 | 0.25 | 0.25

Static X7 0.15 | 0.15 |0.15 | 0.15 | 0.20 | 0.20 | 0.25 | 0.25
X13 | 015 |0.15 |0.15 | 0.15 | 0.20 | 0.20 | 0.25 | 0.25

Table 3.14 — Observed minimum operating voltage for different versions of the 3W22-o0f-4
case study. Darker case values are worse than light case values. Adapted from [MAGC14].
| Topology | Drive | 125C | 100C | 75C [50C [25C |0C |-25C | -50C |
X2 0.20 |0.15 |0.15]0.15 | 0.15 | 0.15| 0.20 | 0.20
Proposed | X7 0.20 |0.20 |0.15|0.15 |0.15 | 0.15|0.20 | 0.20
X13 0.25 0.20 0.20 | 0.20 | 0.15 | 0.15 | 0.20 | 0.25

X2 0.15 |0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.20 | 0.25

Static X7 0.15 |0.15 | 0.15 | 0.15 | 0.15 | 0.15 ] 0.20 | 0.25
X13 0.15 |0.15 | 0.15 | 0.15 | 0.15 | 0.20 | 0.20 | 0.25

show, the proposed topology is the one that presents highest GTPS/EPT values for all case
study gates. In fact, the proposed topology achieves optimizations of roughly 50%, in av-
erage when compared to the static one. Also, both topologies reach optimum power effi-
ciency when supplied with near-threshold voltages (between 0.5 V and 0.6 V), for all driving
strengths. Note that for minimum operating voltages the proposed topology presents GTP-
S/EPT values that are in average 37% better than the same values for the static topology.

Figures 3.33 and 3.34 show the speed-leakage efficiency values, in GTPS/Avg.
Leak., measured for all gates considered here. As the charts show, in this case, the static
topology is the best for lower driving strengths. However, as the driving strength is increased,
the proposed topology becomes advantageous. This confirms previous results. As the
charts show, optimum speed-leakage efficiency is also obtained in the near-threshold volt-
ages. Moreover, for minimum operating voltages, the differences in the observed GPS/Avg.
Leak. between the proposed and the static topologies were negligible. In view of the ob-
tained results, we understand that in general the proposed topology presents better speed,
energy and leakage power trade offs for different voltage levels. Therefore, we consider that
the topology is suited for low voltage operation.

Single event effects (SEEs) can cause the output of an NC