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INTEGRATING ROBOT CONTROL INTO THE AGENTSPEAK(L)
PROGRAMMING LANGUAGE

ABSTRACT

Developing programs responsible for controlling mobile robots is not a trivial task. This led
to the creation of several robot development frameworks to simplify this task. For each new rational
behavior added to the robot, the number of events that the robot has to handle grows. Therefore,
the development of the rational behaviors by using the frameworks may result in a source code which
has more identifiers and large blocks of conditional statements, making difficult modularization and
code reuse. This work presents a mechanism to program rational behaviors for mobile robots through
the use of an agent programming language. This allows the robots programmer to develop rational
behaviors using a higher level of abstraction in a modular fashion, resulting in simpler development
and smaller, more readable and reusable code.

Keywords: robots, agents, rational behaviors, Jason, Cartago, ROS.





INTEGRAÇÃO DE CONTROLE DE ROBÔ NA LINGUAGEM DE
PROGRAMAÇÃO AGENTSPEAK(L)

RESUMO

O desenvolvimento de programas para controle de robôs móveis não é uma tarefa trivial.
Isso motivou a criação de vários frameworks para facilitar essa tarefa. Para cada novo comportamento
racional adicionado ao robô, cresce o número de eventos que o robô tem de lidar, e desenvolver esses
comportamentos racionais através do uso dos frameworks pode resultar em um código com mais
identificadores e grandes blocos de condicionais, dificultando a modularização e reuso de código.
Este trabalho apresenta uma forma de programar comportamentos racionais para robôs móveis
através do uso de uma linguagem de programação de agentes. Isto permite ao programador de
robôs o desenvolvimento de comportamentos racionais usando um nível de abstração mais alto e de
forma modular, resultando em um desenvolvimento mais simples, e códigos mais legíveis, menores
e reutilizáveis.

Palavras Chave: robôs , agentes, comportamentos racionais, Jason, Cartago, ROS.





LIST OF ACRONYMS

2APL – A Practical Agent Programming Language
3APL – Artificial Autonomous Agents Programming Language
AI – Artificial Intelligence
AMR – Autonomous Mobile Robots
AOP – Agent Oriented Programming
APL – Agent Programming Language
BDI – Beliefs Desires and Intentions
CARMEN – Carnegie Mellon Robot Navigation Toolkit
CARTAGO – Common Artifacts for Agents Open infrastructure
CCD – Charge-coupled device
CMOS – Complementary Metal-oxide Semiconductor
DMARS – Distributed Multi-Agent Reasoning System
FIPA – Foundation for Intelligent Physical Agents
GPS – Global Positioning System
ICE – Internet Communications Engine
IPC – Inter-Process Communication
JAL – Jack Agent Language
JADE – Java Agent DEvelopment Framework
JVM – Java Virtual Machines
LOC – Lines of code
MAS – Multi-Agent Systems
MOOS – Mission Orientated Operating Suite
MRPT – Mobile Robot Programming Toolkit
MVC – Model View Controller
OOP – Object Oriented Programming
ORCA – Organic Robot Control Architecture
PADI – Player Abstract Device Interface
PRS – Procedural Reasoning System
RADAR – Radio Detecting and Ranging
RMI – Remote Method Invocation
ROS – Robot Operating System
RDF – Robot Development Framework



SLAM – Simultaneous Localization and Mapping
SONAR – Sound Navigation and Ranging
UMVS – Marine Multivehicle Simulator



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1 CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2 PUBLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 MOBILE ROBOTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 POWER SUPPLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 LOCOMOTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 PERCEPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 ROBOT DEVELOPMENT FRAMEWORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 ROBOT OPERATING SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 CARNEGIE MELLON ROBOT NAVIGATION TOOLKIT . . . . . . . . . . . . . . . . . . . . . 23
3.3 MISSION ORIENTATED OPERATING SUITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 ORGANIC ROBOT CONTROL ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 PLAYER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6 CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 RATIONAL AGENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 AGENT ARCHITECTURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 BELIEF-DESIRE-INTENTION MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 AGENT PROGRAMMING LANGUAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 AGENT-ORIENTED PROGRAMMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 AGENTSPEAK(L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.1 INTRODUCING THE AGENTSPEAK(L) PROGRAMMING LANGUAGE . . . . . . . . . 32
5.2.2 INTERPRETER CYCLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.3 JASON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 OTHER AGENT PROGRAMMING LANGUAGES . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.1 3APL AND 2APL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.2 JACK AGENT LANGUAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.3 JADE AND JADEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 MULTI-AGENT ENVIRONMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5 CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



6 JACAROS: THE INTEGRATION OF JASON AND ROS . . . . . . . . . . . . . . . . 41

6.1 INTEGRATION REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 INTEGRATION ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 JACAROS ARTIFACTS ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.1 CODE DEVELOPMENT USING JACAROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 JACAROS ARTIFACTS IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2.1 BASIC PROPERTIES OF A ROS ARTIFACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.2.2 SUBSCRIBER ARTIFACT - VERBOSE MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2.3 SUBSCRIBER ARTIFACT - ON DEMAND MODE . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2.4 PUBLISHER ARTIFACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2.5 CLIENT ARTIFACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8 EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8.1 EXPERIMENTAL DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.2 EXPERIMENTAL DEVELOPMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.2.1 THE TIME-BASED OUT-AND-BACK SCENARIO . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.2.2 NAVIGATING A SQUARE SCENARIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.2.3 THE FAKE BATTERY SIMULATOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.2.4 THE PATROL ROBOT SCENARIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.2.5 THE HOUSE CLEANING ROBOT SCENARIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.3 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

10 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

APPENDIX A – Jason Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

APPENDIX B – Artifacts Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

APPENDIX C – Python Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

APPENDIX D – Turtlebot and the Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



15

1. INTRODUCTION

The development of technology allowed machines to replace humans in several tasks.
From repetitive tasks at factory assembly lines, where pre-programmed robots operate in a simple,
controlled environment; to hazardous tasks, such as work in mines, exploration in the deep sea
where the pressure cannot sustain human life, and exploration in space, such as the Mars rover.
Indeed, these machines became so popular nowadays that they are used for simple tasks, such as
floor cleaning. These machines are called robots.

Various robot development frameworks (RDF) were created with the aim of facilitating the
development of robotic behavior. These frameworks simplify the development of programs for robots
kits, sensors and actuators. However, there are situations where to control the robot’s hardware
is not enough: in order to achieve a given goal, a robot may need to perform rational behaviors.
For example: what should a housekeeper robot do first: answer the ringing phone or answer the
knocking on the door? In order to allow the robot to have reasoning capabilities, such as choosing
between the phone or the door, we need a computational analogy for the human reasoning and
rational agents [37] have been successfully used in situations where modeling the human reasoning
is necessary [10].

A rational agent is something that acts to achieve the best outcome or, at least, the best
expected outcome, operating autonomously, perceiving its environment, persisting over a prolonged
time period, adapting itself to changes, creating and pursuing goals [41]. To facilitate the develop-
ment of agents, we have agent programming languages (APL) in which we are able to create agents
that has some characteristics, such as reactivity : intelligent agents are able to perceive their envi-
ronment, and respond in a timely fashion to changes that occur in it in order to satisfy their design
objectives; pro-activeness: intelligent agents are able to exhibit goal-directed behavior by taking the
initiative in order to satisfy their design objectives; and social ability : intelligent agents are capable
of interacting with other agents, or even humans, in order to satisfy their design objectives [55].

The development of rational behaviors using robot development frameworks may result
in source code “polluted” by large blocks of if-then-else statements, jeopardizing modularization
and code reuse. The motivation of this work is to simplify the modeling of complex behaviors in
robots, allowing the development of mobile robots at a higher level of abstraction, through the use
of agent programming languages. Thus, APL features can be explored to simplify the way robots
are programmed, resulting in simpler development and smaller, more readable and reusable code.

There are two main advantages of choosing APLs to program mobile robots. First, the
development process of any software using a higher abstraction level is simpler, faster, has better
readability, better maintenance and more productivity comparing to the use of a low-level program-
ming languages. Second, these languages follow the Beliefs-Desires-Intentions (BDI) architecture,
based on the theory of human practical reasoning, developed by Michael Bratman [6]. Such model
simplifies the development of rational behaviors, helping developers to program agents skilled to
sense, reason and act in an autonomous way.
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Our work integrates an agent programming language with a robot development framework
through the use of an architecture responsible for connecting and communicating both technologies.
The basic requirements of our architecture are:

• to program autonomous robots using a higher-level abstraction;
• to leverage agent behavior implementations into robots; and
• to simplify the development of complex behaviors on robots in a practical, extensible and

scalable way;

1.1 Contributions

The main contributions of this work are first, we expanded Jason beyond the development
of multi-agent systems, improving it to a high level mobile robot programming language; second,
we simplify the development of rational behaviors by using a language that supports the BDI model,
resulting in a simpler way of development programs for robots and improving code readability; and
finally, a third contribution of our architecture is to improve code reuse and code modularization
since our methods and classes are designed in a modular fashion way.

1.2 Publications

Part of this work resulted in a short paper and has been published as:
[51] Rodrigo Wesz and Felipe Meneguzzi. Integrating Robot Control into the AgentSpeak(L) Pro-
gramming Language. Proceedings of the Eighth Workshop-School Agent Systems, their environ-
ments and applications, pages 197–203, 2014.

1.3 Structure

This work is organized as follows: Chapter 2 presents the basis of mobile robots, loco-
motion and perception; Chapter 3 introduces robot development frameworks commonly used by
academic community to program mobile robots; Chapter 4 briefly introduces the concepts of ratio-
nal agents; and finishing the theoretical background, the Chapter 5 shows the most common agent
programming languages used to develop intelligent agents; Chapter 6 presents our integration ar-
chitecture; Chapter 7 presents how the integration is implemented and how to develop our artifacts;
Chapter 8 presents and discusses a set of experiments, comparing the use of our architecture with a
non-agent programming language; Chapter 9 shows related work; and Finally, Chapter 10 presents
the conclusions of our work and future work.
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2. MOBILE ROBOTS

Autonomous Mobile Robots (AMR) are devices able to move autonomously through an
environment, possibly performing previously programmed goal-oriented tasks. Autonomy means that
the system can decide which action to take for itself independently [2]. In order to reach autonomy,
the mobile robots need a set of characteristics [12] [2], and among these characteristics, those we
consider most important are the following:

Mobility : the mobile robot must be able to choose and move to specific destinations in
the environment without human direct external input [12] [2];

Adaptivity : AMRs will be confronted with situations which have not been specified before,
and they need to adapt itself to these unknown situations [2];

Perception of the environment: the mobile robot must be able to retrieve information from
the environment in order to infer the environment changes and take action based on these changes,
such as navigate avoiding (or overcoming) obstacles [12] [2];

Knowledge acquisition: the mobile robot must have the ability to transform perception
into knowledge while operating [2];

Real-time processing : all the previous features require an architecture able to handle the
continual input, process and output of data. The data requests should be dealt quickly enough to
enable the robot to take immediate action when needed [2];

To be able to move through the environment and to perceive the environment, basic
requirements are needed at the physical hardware perspective. The architecture should include at
least: a power source to be carried along with the mobile robot; actuators to make the mobile
robot able to move through its environment; and a collection of sensors which the robot collects
information from the environment [12]. In the following sections, we briefly review key concepts
regarding power supply, locomotion and perception.

2.1 Power Supply

Without a power supply, a robot is nothing more than a piece of static hardware. Mo-
bile robots commonly use electric batteries as power source, in which chemical reactions generate
electrical energy for a certain amount of time. Mobile robots use motors to convert the electrical
energy obtained from the batteries to mechanical energy in order to move themselves. Batteries get
discharged gradually while in use, but they can be recharged by providing an electrical current to
it. Eventually, batteries achieve a point at which they cannot be recharged, and must be replaced
[12]. Alternatively, the power may be supplied by fuel cells (chemical reaction by the combination
of hydrogen and oxygen to produce electricity), compressed gases, gasoline or other fuels. [44]
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The power supply must provide the amount of required power for all the robot’s compo-
nents at all times, but different components require different voltages and most batteries are never at
a constant voltage [12]. A battery may be over its nominal voltage when fully charged and may drop
to 50% of its nominal voltage when drained, depending on its chemistry [26], this variability may
generate problems in components that are sensitive to the input voltage, such as microcontrollers
restart due to lack of power or erroneous sensors readings. To avoid such kind of problems, fuses,
capacitors, voltage regulators and switching regulators are used in the power supply regulation [26].

2.2 Locomotion

Locomotion is the process by which an autonomous robot moves. In order to produce
motion, forces must be applied by the mobile robot [12]. To model the motion solution, we must
consider two aspects: kinematics and dynamics.

Kinematics is the study of motion without considering the cause of the motion. It does
not regard the forces that affect the motion, but just the motion mathematics1 [12]. Also known as
geometry of motion, kinematics studies the motion of points, lines, objects, groups of objects and
properties such as velocity and acceleration [20]. For wheeled robots, kinematics is enough to cover
locomotion tactics. This kind of robot takes advantage of the ground contact and friction to move
from one place to another. They can use wheels, tracks or limbs. The wheel is the oldest and most
popular locomotion mechanism in general man-made vehicles, as well as in mobile robots [45].

Dynamics is the study of forces2 and torques, their effect on the motion, the energy and
the speed required by the motion and the causes of motion. For legged, aquatic and aerial robots,
consider the dynamics is usually necessary to cover locomotion tactics [12]. Aquatic robots take
advantage of the surrounding water to make the propulsion needed to move from one place to
another while aerial robots use the same aerodynamics used by planes and helicopters to make
movement [45].

2.3 Perception

Perception is the process by which an autonomous robot acquires knowledge about itself
and its environment. In order to perceive, the robot must extract meaningful information from
sensor measurements [12]. A sensor is a device that detects or measures a physical property and
converts it into human-readable display or into a signal which can be read and further processed [20].
Sensor attributes must be considered when modeling the architecture of a given mobile robot project:
sensors are noisy, return an incomplete description of the environment and cannot reconstruct the
real world in all its fidelity [12]. According to Siegwart et al. [45] there are characteristics which

1Kinematics can be abstracted into mathematical functions such as planar algebra and unit circle [12].
2Isaac Newton [31] defines force as an exertion or pressure which can cause an object to move [20].
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determine how close to reality the information coming from the sensors are and these characteristics
are the following:

• Dynamic range: are used to measure the difference between the upper and lower limits of the
sensor input values [22]. This helps to define how the sensor reacts when exposed to input
values above or below its working range [45].

• Linearity : is related to the behavior of the sensor’s output signal as the input signal varies.
There is a function that can be used to predicts the expected output from the sensor, given
the input from the environment. The measurement ratio must be constant with the function
results [45].

• Frequency : is the speed at which a given sensor can perform a stream of readings [22].
Commonly, the number of measurements per second is defined in hertz [45].

• Sensitivity : is the measure of the degree to which a change in the input signal outcomes in
a change in the output signal [45]. In other words, it is the minimum input signal magnitude
needed to generate a distinct output signal [22].

• Cross-sensitivity : is an undesirable characteristic on which a sensor detects a physical property
that it is not interested in. It happens when the sensor gather a property from the environment
that are orthogonal to its target property [45].

• Resolution: is the smallest change detectable by a sensor in a given measuring unit [22]. In
other words, it is the minimum difference between two values that a sensor can gather from
the environment [45]. It is not the same as sensitivity, since resolution is related to the ability
of distinguish between closely adjacent values of a certain measuring unit.

• Accuracy : is the degree of conformity between what is gather from the environment by the
sensor and the true value from the environment [22]. In other words, it is the degree of
closeness between the measured value and the true value [45].

• Precision: is not the same as accuracy. It is related to the reproducibility of the sensor results
when the measure is made on the same input [45]. Thus, when repeated measurements under
the same conditions generate the same results, we have a precise sensor [22].

Depending on the environment, distinct problems need to be handled. For example, af-
ter the operational environment is chosen, robot’s kinematics and dynamics need to be modeled.
Problems such as the relation between the velocity of the wheels, the robot movement and wheels
slippage needs to be addressed when the environment is overland. On any kind of environment,
problems such noise and incomplete information from the sensors need to be considered in order to
avoid obstacles.
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3. ROBOT DEVELOPMENT FRAMEWORKS

The development of algorithms able to control mobile robots is not a trivial task and, as
presented in Section 2, a set of ordinary requirements are needed and distinct problems must to be
handled: for each requirement and problem, we need to develop a algorithm (or a set of algorithms)
responsible for handling with it. Such characteristics motivated the development of many software
systems and frameworks which make robot programming easier. This chapter presents a brief
introduction about the development frameworks commonly used by the academic community to
program mobile robots.

3.1 Robot Operating System

The Robot Operating System (ROS) [34] is not an operational system in the traditional
sense - despite what the name suggests - but a framework created with the objective of helping
software developers to create applications for robots. ROS provides hardware drivers, simulators,
inter-process communication and allows code reuse. The fundamental concepts of ROS implemen-
tation are nodes, messages, topics, and services:

Nodes are processes that perform some kind of computation. Namely, a node is an instance
of an executable which may communicate with each other by passing messages or through the use
of a service. ROS is designed to be modular at a fine-grained scale and in this context, the term
node is interchangeable with software module [34]. Nodes can connect to each other directly or find
other nodes to communicate using a lookup service provided by a special ROS node called Master.
Thus, nodes can declare themselves to the Master node, which acts as a name service and makes
the nodes able to find each other, exchange messages or invoke services.

A Topic is a data transport system, based on the publisher-subscriber pattern [13]. Nodes
send messages by publishing on a topic and nodes receive messages by subscribing to a topic.
There may be multiple concurrent publishers and subscribers for a single topic as shown in Figure
3.1. Although the topic-based publish-subscribe model is a flexible communication paradigm, its
broadcast routing scheme is not viable for synchronous transactions, which can simplify the design
of a given node [34]. Synchronous transactions can be obtained through the use of services.

A Message is simply a data structure. It can be composed of other messages, and arrays
of other messages, nested arbitrarily deep [34]. A node sends a message by publishing it on a given
topic and a node that is interested in a certain kind of data subscribes to the appropriate topic. For
example, a node representing a robot servo motor may publish its status on a topic with a message
containing an integer field representing the position of the motor, a floating point field representing
its speed and any other additional information relevant for its functionality.

A Service is the synchronous communication method used in ROS. It is analogous to web
services, which are defined by URLs and have request and response messages of well-defined types
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[34]. Note that, unlike topics, only one node can advertise a service of any particular name: there
can only be one service called get_image, for example, just as there can only be one web service
at any given URI.

ServiceNode

Topic
Node

Node

Node

Node

Message
 (Subscription)

Message
 (Publication)

Message (Request)

Message (Response)

Figure 3.1 – Base concepts of ROS [14].

Figure 3.2 illustrates an example of the ROS communication mechanism: in this example,
there are three nodes: the ROS Master node, a Camera node and an Image viewer node. The
ROS Master node provides naming and registration services to the rest of the nodes in the ROS
system. It tracks publishers and subscribers to topics as well as services. The role of ROS Master
node is to enable individual ROS nodes to locate one another [47]; the Camera node is responsible
for publishing images on a topic; and the Image viewer node needs to receive the information from
the camera. On this example, these nodes are using a topic called images.

On step 1, the Camera node notifies ROS Master node that it wants to publish images
on the images topic. After ROS Master node recognizes the Camera node, it may publish images
to the images topic, but there are no clients subscribing to that topic yet, thus no data is actually
sent. On step 2, Image viewer node wants to subscribe to the images topic in order to gather
information from the camera, thus it notifies ROS Master node that it wants to receive images
from images topic. On step 3, the images topic has both a publisher and a subscriber, thus ROS
Master node notifies Camera node and Image viewer node about each other’s existence, then
Camera node can start transferring images to the images topic (red bubble 1) and Image viewer
node starts receiving images from the topic (red bubble 2).
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Figure 3.2 – ROS communication mechanism example [47].
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3.2 Carnegie Mellon Robot Navigation Toolkit

The Carnegie Mellon Robot Navigation Toolkit (Carmen) is a repository of algorithms, li-
braries and applications for mobile robot control and a set of simulators for mobile robots platforms
[29] maintained by Carnegie Mellon University. The project’s objective is to facilitate the develop-
ment and sharing of algorithms between different research institutions, in addition to establishing
good programming practices. To reach these objectives, Carmen was designed with each component
being implemented as a separate module. Each module is responsible for one task, avoiding multiple
features into a single module, making the code maintenance easier and taking advance of flexibility,
extensibility and reliability performed by the use of modularization. Native modules can be replaced
by third-party modules and the modules can be executed remotely instead of on-board the robot.
Carmen is written in C and has a three-tiered architecture: The lowest layer controls hardware
interaction (sensors and actuators); the second layer handles the navigation in the environment:
including motion planning and barrier search, detection and avoidance; and the third layer is the
interface with the user.

Carmen uses the model-view-controller (MVC) design pattern [13], which separates the
data from the user interface, in this way, all the process communication is done by interfaces. If a
maintenance or upgrade is needed on the communication protocol, only the code in the outbound
and inbound interface libraries must be changed, preserving the core code unchanged. Carmen stores
the parameters used in the modules in a single place: the Centralized Repository, thereby ensuring
that all modules have the same information avoiding conflicts that may occur when parameters are
loaded from different locations.

The Carmen’s module communication is performed by a version of Inter-Process Commu-
nication (IPC) [46] developed at Carnegie Mellon University. This IPC version is a publish/subscribe
model: a process needs to subscribe to receive messages from an event or from another process,
or to receive messages of a certain type. All subscribers asynchronously receive a copy of a certain
message. IPC uses a central server to route and log the messages. This server keeps information
about all the system. The processes must connect to the server in order to send or receive messages.

In order to navigate, Carmen uses a navigation function to generate a gradient field that
represents the optimal (lowest-cost) path to the goal at every point in the workspace by continuously
calculating an optimal path to a goal. The Carmen navigation is accomplished by tracking differences
between actual scans (performed by the planner) and expected laser scans (from the maps repository)
given the most likely position of the robot at every time-step in a non-static or incompletely known
environment. This function is called gradient descent planner [24].
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3.3 Mission Orientated Operating Suite

Mission Orientated Operating Suite (MOOS) [30] is an extensible C++ middleware for
mobile robotics research designed by the department of Ocean Engineering at Massachusetts Institute
of Technology. It has been designed in a modular way, allowing developers to keep coding their own
application independently of all other source code, thus code change in one domain cannot cause
compilation failures in another domain [30]. It is composed of two parts: a set of libraries and
applications to control a field robot in sub-sea and land domains and a simulator called Marine
Multivehicle Simulator (uMVS) which allows the simulation of an environment with any number of
vehicles. The features of this simulator are vehicle dynamics simulation, center of gravity simulation,
acoustic simulation and velocity dependent drag [30].

MOOS has a star topology: each application (called MOOSApp) has a connection to a
single MOOS Database (called MOOSDB) thus, all communication happens via this central server
application; there is no app to app communication. The database never makes an unsolicited
attempt to contact an app, therefore all communication between the client and server is tempted
by the client and a given client does not need to know that another client exists [30].

There are three kinds of communication mechanisms on MOOS: data publishing from
an app, registering for notifications and notifications collecting. Publish data is the simplest way
a MOOSApp has to transmit its data. I works as the following: MOOSApp data is sent to the
MOOSDB and MOOSDB is responsible for delivering the message (if needed); The registration
mechanism is used by a MOOSApp to register its interest in a certain data. It works like a sub-
scription, in which the client receives a collection of messages describing each and every change
notification issued on a given data; And the mechanism of collect notifications is used by the
MOOSApp to inquire whether it has received any new notifications from the MOOSDB.

MOOS has two types of navigation: manual, controlled by a module called iRemote and
automatic, controlled by pHelm and pNav modules. In the manual navigation, the iRemote method
allows the remote control of the vehicle’s actuators. Each actuator has a specific keyboard’s key
responsible for activating it [30]. For example, to move the vehicle left or right, the pilot must
press N or M keys respectively; and in the auto navigation, the pHelm method is responsible for
deciding the most suitable actuation command to be executed and the pNav method is responsible
for moving the vehicle, controlling its speed and direction [30].

3.4 Organic Robot Control Architecture

The Organic Robot Control Architecture (Orca) is an open-source framework for robotic
systems development. This project aims to maintain a community in which code is shared between
different research groups in order to improve the progress of robotic research and the robotic industry
[28]. It was created to achieve requirements such as [28]: enable software reuse by defining a
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set of commonly-used interfaces; simplify software reuse by providing libraries with a high-level
convenient API; encourage code reuse by maintaining a repository of components; be general,
flexible and extensible; be sufficiently robust, high-performance and full-featured in order to be used
in commercial applications; and be sufficiently simple for experimentation in university research
environments, in which the last two items are somewhat contradictory and not easily combined [28].

Orca provides the means for developing independent code blocks to be used together in
order to achieve a goal. The goal may range from complex robotics systems to decentralized sensors
networks [28]. Orca’s code reuse is based on supplying developers with a high-level API, setting
a group of commonly-used interfaces and sustaining of a repository of components. Orca aims to
be as broadly applicable as possible, therefore no assumptions about component granularity, system
architecture, required interfaces and internal architecture of components was made [28].

The communication mechanism of Orca is provided by the Internet Communications Engine
(Ice) [19], using a protocol that supports both TCP and UDP. Ice optionally provides a flexible thread
pool for multi-threaded servers, has libraries to several languages (such as C++, Java, Python, PHP,
C#, and Visual Basic) and builds natively under several operating systems (such as Linux, Windows,
and MacOS X) [28].

3.5 Player

The Player project is composed of tools in whose objective is to simplify and speed up the
development of code to control robots by creating an abstract interface for robot hardware, based
on network engineering and operating systems techniques [48]. It consists of two main products:
Player, an interface to a collection of hardware devices and Stage1, a virtual robot device simulator.

The Player core - responsible for enabling portability and code reuse - is called Player
Abstract Device Interface (PADI). PADI defines a set of interfaces that capture the functionality
of logically similar sensors and actuators. The code reuse and portability is achieved because PADI
defines the data semantics and data syntax that is exchanged between the robot hardware and the
code that controls the robot, allowing Player-based controllers to execute unchanged on a variety
of real and simulated devices [48]. There are three abstractions that underlie Player project: the
character device model, the interface/driver model, and the client/server model.

The character device model is part of the device-as-file model used on UNIX operating
system. It establishes that all I/O devices can be thought of as data files. There are two types of
devices: random access devices, also known as block devices, which are able to manipulate chunks
of data in arbitrary orders, such as disk drives and sequential access devices, also known as character
devices, able to manipulate streams of data one byte after another, such as tapes and terminals.
Sensors and actuators are character devices and Player uses the character device model operations
to access its hardware devices [48]. In order to gather information from a given sensor, Player uses

1The Stage simulator is presented in Section APPENDIX D
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an open operation followed by a read operation. To control a given actuator, Player uses an open
operation followed by a write operation.

The interface/driver model is responsible for determining the content of the data streams
used by the character device model, providing device independence and it is responsible for grouping
the devices by logical functionality, thus devices that do almost the same job will appear identical
to the developer [48]. One limitation of having a generic interface for entire classes of devices is
that special features or functionalities of a given device are ignored. The developer has two ways for
addressing this limitation: he may implements a new interface for these kind of devices including the
support of the special feature, or the developer may adds the special feature to the existing class.

The client/server model is responsible for providing a practical architecture for implement-
ing a robot interface [48]. Player is based on a client/server model, in which the server is responsible
for executing low-level device control and the client is the program controlled by the developers. One
advantage of this model is that the client can be written in any programming language compatible
with a TCP socket [48]. This makes Player almost language-neutral because TCP is supported by
almost every modern programming language, and it enables clients to be executed on any machine
with network connectivity to the server machine. Two disadvantages of this model are that it intro-
duces additional latency to device interactions since all data and commands need to pass through
the server and it requires network hardware and software.

3.6 Considerations

A number of elements contribute to an increase of interest in robot programming, such
as advances in technology, low-cost of basic robotic hardware and software/firmware availability.
These elements motivated the creation of various robot development frameworks, such as the RDFs
presented in this Chapter.

From robot arms at factory assembly lines to homemade robots created using technologies
such as Arduino2, we need a control layer responsible to interact with hardware. This control may
be provided by the RDFs, which are able to handle robot kits, sensors and actuators.

This Chapter presents RDFs commonly used to control autonomous mobile robots, i.e,
robots able to move autonomously through an environment, possibly performing previously pro-
grammed goal-oriented tasks. AMRs are being increasingly employed in real-world applications and
the development of algorithms able to control mobile robots is not a trivial task, making this area
of high interest to the academic community.

2More information about Arduino is available at http://www.arduino.cc/
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4. RATIONAL AGENTS

The study of artificial intelligence started after the World War II, and the term was coined
in 1956. Russell and Norvig [41] define AI as "the study of agents that receive percepts from the
environment and perform actions", but a huge number of different definitions was created since the
fifties: “AI . . . is concerned with intelligent behavior in artifacts.” Nilsson [32]; “The study of
the computations that make it possible to perceive, reason, and act.” Winston, 1992 [53]; “The
exciting new effort to make computers think . . . machines with minds, in the full and literal sense.”
Haugeland [18]; on all these definitions, the main unifying theme is the idea of a rational agent [41].
According to Haugeland [18] and Norvig et al. [41], an agent is just something that perceives and
acts. On the other hand, a rational agent acts to achieve the best outcome or, at least, the best
expected outcome, operating autonomously, perceiving its environment, persisting over a prolonged
time period, adapting itself to changes, creating and pursuing goals [41]. According to Wooldridge
[55], a rational agent should have three properties: reactivity : intelligent agents are able to perceive
their environment, and respond in a timely fashion to changes that occur in it in order to satisfy
their design objectives; pro-activeness: intelligent agents are able to exhibit goal-directed behavior
by taking the initiative in order to satisfy their design objectives; and social ability : intelligent agents
are capable of interacting with other agents (and possibly humans) in order to satisfy their design
objectives.

Figure 4.1 – An agent and its environment [41].

As Figure 4.1 illustrates, an agent is able to interact with an environment (which may be
physical, in case of robots on the physical world or may be a software, in case of a simulator), and an
agent is capable of sensing the environment via sensors. As the agent decides what to do based on
the information obtained via these sensors, the set of possible actions to be performed by the agent
- in order to modify the environment - depends on the information perceived from these sensors.
When a given action is chosen, the agent modifies the environment through the use of the actuators
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and effectors. In an multi-agent system, the same environment is shared by multiple agents, each
of them acting on the environment, interfering and communicating with the other agents.

4.1 Agent Architectures

The essential operation of gathering information from the environment (through sensors)
and selecting and executing the best action to apply (through actuators) depends on the agent’s
architecture, and this architecture is composed by a collection of software (or hardware) modules
which define how the sensor data and the current internal state of the agent determine the agent’s
actions [56]. According to Wooldridge and Jennings [56], there are three different approaches to
building agents: the classical approach (deliberative architecture); the alternative approach (reactive
architectures); and the hybrid approach (hybrid architecture).

Deliberative Architectures: An agent built using this architecture realizes deliberation
about alternative courses of action before any action is taken, thus, it is focused on long term
planning of actions. Wooldridge and Jennings [56] define a deliberative architecture as one that
contains an explicitly represented, symbolic model of the world, and in which decisions (for example
about what actions to perform) are made via logical (or at least pseudo-logical) reasoning, based
on pattern matching and symbolic manipulation. As Figure 4.2 illustrates, based on its word model,
the agent applies to an action through the use of planning operations.

Figure 4.2 – Basic Schema of a Deliberative Agent [54].

Reactive architectures: An agent built using this architecture is based on fast reactions to
the changes detected in the environment. Wooldridge and Jennings [56] define a reactive architecture
as one that does not include any kind of central symbolic world model, and does not use complex
symbolic reasoning, instead, it connects sensory inputs to specific actions. It should be stressed that
the resulting systems are, in terms of the amount of computation they need to do, extremely simple,
with no explicit reasoning of the kind found in symbolic AI systems [56]. As Figure 4.3 illustrates,
there is no world model, no planning and for each state, there is an action to be performed.
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Figure 4.3 – Basic Schema of a Reactive Agent [54].

Hybrid Architectures: An agent built using this architecture is based on a combination of
deliberative and reactive architectures. According to Wooldridge and Jennings [56], the deliberative
subsystem contains a symbolic world model, develops plans and makes decisions in the way proposed
by mainstream symbolic AI; and the reactive subsystem is capable of reacting to events that occur in
the environment without engaging in complex reasoning. Often, the reactive component has some
kind of precedence over the deliberative one, so that it can provide a rapid response to important
environmental events [56]. Figure 4.4 illustrates the basic schema of a hybrid agent.

Figure 4.4 – Basic Schema of a Hybrid Agent [54].

4.2 Belief-Desire-Intention Model

The Belief-Desire-Intention (BDI) model is a theory of human practical reasoning, devel-
oped by Michael Bratman [6]. This philosophical model, inspired by human behavior, is the base of
the BDI software model developed for programming intelligent agents and it provides a computa-
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tional analogy for human practical reasoning. Beliefs of an agent are what the agent considers to be
true regarding its current environment and a belief is an expectancy, it is not necessarily accurate;
Desires are a set of states that the agent would like to achieve and these states may be mutually
inconsistent; Intentions are the states that the agent chose to achieve: The agent selects a course
of action and become committed to this course in order to reach that states [6].

The process of practical reasoning in a BDI agent are composed by beliefs, desires and
intentions, in addition to a belief revision function, an option generation function, a filter function
and an action selection function [50], as shown in Figure 4.5. The belief revision function first
gather information from the environment; after that checks the current agent’s beliefs set; then, on
the basis of these, determines a new set of beliefs; The option generation function is responsible for
determining the options (namely, the viable desires) available to the agent, and it is based on its
current beliefs, its environment and its current intentions; The filter function chooses the agent’s
intentions based on its current beliefs, desires, and intentions; and the action selection function
determines an action to perform based on its current intentions [50].

Belief
Revision
Function

Generate
Options

Filter Action

Beliefs

Desires

Intentions

Sensor
Input

Action
Output

Figure 4.5 – Belief-desire-intention architecture [50]

To support the BDI model, some programming languages were created, such as AgentS-
peak(L) [35], Jason [5] and 2APL [9]. Through the use of agent programming languages that
support the BDI model, developers are able to program agents skilled to sense, reason and act in
an autonomous way. Section 5 presents a set of agent programming languages commonly used by
the academic community to program BDI agents.
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5. AGENT PROGRAMMING LANGUAGES

The growing research in Multi-Agent Systems (MAS) has led the development of pro-
gramming languages and tools which help the implementation of these systems [3]. Surveying the
MAS literature will reveal a large number of different proposals for Agent Programming Languages
(APL), such as APLs which support the BDI model. The use of APLs, instead of a more conven-
tional programing language, proves useful when the problem is modeled as a multi-agent system, and
understood in terms of cognitive and social concepts such as beliefs, goals, plans, roles, and norms
[3]. In this Chapter, we first briefly introduce the Agent-Oriented Programming paradigm; second,
we introduce AgentSpeak(L) and its extended language Jason; then, we present a brief introduction
about other APLs that support the BDI model commonly used by the academic community; and
finally, we present a brief introduction about multi-agent environments.

5.1 Agent-Oriented Programming

The term agent-oriented programming (AOP) was coined by Yoav Shoham [43] to describe
a programming paradigm based a societal view of computation, in which multiple agents interact with
one another, inspired by previous research in distributed and parallel programming and AI. According
to Shoham [43], from the engineering point of view, AOP can be viewed as a specialization of the
object-oriented programming (OOP) paradigm: whereas OOP proposes viewing a computational
system as made up of modules that are able to communicate with one another and that have
individual ways of handling incoming messages, AOP specializes the framework by fixing the state
(now called mental state) of the modules (now called agents) to consist of components such as
beliefs, capabilities, and decisions, each of which enjoys a precisely defined syntax. Table 5.1
summarizes the relation between AOP and OOP. A complete AOP system includes three primary
components [43]:

• a restricted formal language with clear syntax and semantics for describing mental state. The
mental state will be defined uniquely by several modalities, such as belief and commitment;

• an interpreted programming language in which to define and program agents, with primitive
commands such as REQUEST and INFORM. the semantics of the programming language will
be required to be faithful to the semantics of mental state; and

• an agentifier, converting neutral devices into programmable agents.

Since imperative languages are not the best choice for expressing the high-level abstractions
associated with agent systems design, the research community has created several agent program-
ming languages that help the development of agents and multi-agent systems. The next Sections
present agent programming languages commonly used by the academic community.
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OOP AOP
Basic Unit object agent
Parameters Defining
State of Basic Unit unconstrained beliefs, commitments,

capabilities, choices...

Process of Comunication message passing and
response methods

message passing and
response methods

Types of Message unconstrained inform, request, offer,
promise, decline...

Constraints on Methods none honesty, consistency...

Table 5.1 – OOP versus AOP [43].

5.2 AgentSpeak(L)

AgentSpeak(L) is a logical programming language for the implementation of BDI agents.
It is based on a restricted first-order language with events and actions. AgentSpeak(L) can be
viewed as a simplified textual language of Procedural Reasoning System (PRS) [36] or Distributed
Multi-Agent Reasoning System (dMARS) [11] [35].

PRS [36] was one of the first implemented systems to be based on the BDI architecture
[50]. It was implemented in LISP and provides goal-oriented behavior and reactive behavior. PRS
was created to support real-time malfunction-handling and diagnostic systems. It has been used for
a wide range of applications in problem diagnosis such as the Space Shuttle, air-traffic management,
and network management [50]. dMARS [11] is a faster, more robust reimplementation of PRS in
C++. It has been used in a variety of operational environments, such as air combat simulation,
resource exploration and malfunction handling on NASA’s space shuttle [50].

5.2.1 Introducing the AgentSpeak(L) Programming Language

This section introduces the AgentSpeak(L) language syntax. The alphabet of the formal
language consists of variables, constants, function symbols, predicate symbols, action symbols,
connectives, quantifiers, and punctuation symbols.

In addition to first-order connectives, the AgentSpeak(L) language use ! (for achievement),
? (for test), ; (for sequencing), and← (for implication). In the agent programs, AgentSpeak(L) use
& for ∧, not for ¬ , <- for ← and, such as Prolog1 - AgentSpeak(L) requires that all negations
be grounded when evaluated. It uses the convention that variables are written in upper-case and
constants in lower-case, an underscore sign for an anonymous variable, standard first-order definitions
of terms, first-order formulas, closed formulas, and free and bound occurrences of variables.

1Prolog is a general purpose logic programming language that is used for solving problems that involve objects
and the relationships between objects [8].
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Beliefs represent the agent’s view of the current state of the environment (including other
agents in the environment). They are defined as follows [35]: if p is a predicate symbol, and t1, ..., tn

are terms, then p(~t) is a belief atom, in which ~t is a (possible empty) list of terms. If p(~t) and q(~u)
are belief atoms, p(~t) ∧ q(~u), ¬p(~t), and ¬q(~u) are beliefs. Terms in AgentSpeak(L) can be either
constants or variables, and follow the Prolog convention [8].

Desires, in the BDI literature, are states that the agent wants to reach. Although the term
desire is not used in its original definition [35], AgentSpeak(L) implicitly considers goals as adopted
desires. There are two types of goals: achievement goals and test goals. Achievement goals express
which state the agent wants to achieve in the environment and test goals verify if the predicate
associated with the goal is true. Test goals either succeed if they unify with a belief in the belief
base, or fail if it is not possible to unify with any agent belief. In the syntax, goals are defined as
follows. If p is a predicate symbol, and t1, ..., tn are terms, then !p(~t) is an achievement goal, and
?p(~t) is a test goal, in which ~t is a (possible empty) list of terms.

Intentions in AgentSpeak(L) are plans adopted to satisfy the agent’s goals. In order to
satisfy these goals, an AgentSpeak(L) agent uses plans from a plan library. A plan library contains a
set of conditional plans that can be used to respond to events, which results in the agent executing
actions in the environment.

Events in AgentSpeak(L) can be either externally perceived, when a change in the envi-
ronment is perceived, or internally generated when a new goal is adopted, or explicit additions or
deletions of beliefs are generated by the agent. These events are called triggering events, and are
represented as follows: to remove a belief or a goal, AgentSpeak(L) language uses the “-” operator;
to add a belief or goal, the “+” operator is used; if b(a) is a belief and !g(a) and ?g(a) are goals,
then +b(a), −b(a), +!g(a), −!g(a), +?g(a), −?g(a) are triggering events. [35].

Based on the environment observation and its own goals, an AgentSpeak(L) agent may
desire to change the state of the environment and it is done by executing actions. If a is an action
symbol and t1, ..., tn are terms, then a(~t) is an action, in which ~t is a (possible empty) list of terms
[35].

Now that we know the concept of a triggering event and an action, we can talk about
plans. A plan consists of a head and a body. The head is composed of a triggering event - which
specifies what causes the plan to be triggered - and a context condition, which specifies the minimum
requirements for the plan to execute successfully. The body consists of a sequence of steps that
an agent must accomplish to achieve the goal associated with the triggering condition. These
steps can be actions that the agent executes in the environment or goals that the agent tests or
achieves. If e is a triggering event, b1, ..., bm are belief literals, and h1, ..., hn are plan steps then
e : b1 ∧ ... ∧ bm ← h1; ...; hn is a plan [35]. Thus, a plan is adopted only when an event occurs
that matches its triggering condition and the context condition holds in the agent’s belief base.
More specifically, a plan in the plan library is relevant to respond to an event if its triggering event
matches the event, and applicable if the context condition holds. In summary, an agent is composed
of a belief base, a set of events, a set of actions, a plan library and a set of intentions.
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5.2.2 Interpreter Cycle

A program developed to create an agent or a multi-agent system has a different behavior
from a conventional programming language such as Java or C. AgentSpeak(L) executes inside a
loop: the language interpreter has a set of steps and when it reaches the last step, it starts from the
beginning again. Figure 5.1 shows the interpretation cycle of an AgentSpeak(L) program: beliefs,
events, plans and intentions are represented by rectangles, the selection of an element from a set is
represented by rhombuses and processes are represented by circles.

Figure 5.1 – Interpretation Cycle of an AgentSpeak(L) Program [27].

When an internal or an external event happens, an appropriate triggering event is generated
and the event (internal or external) is asynchronously added to the set of events. After that, the
function SE (Figure 5.1, rhombuses 2) selects an event from the set of events, remove it from the
list, and use it to unify with the triggering events of the plans on the plan library. There may be
many applicable plans for each event and the function S0 (rhombuses 5) is responsible for choosing
a single applicable plan from the plan library. If the event is an external one, S0 function creates a
new intention stack in the set of intentions. If the event is internal, then the function S0 pushes
that plan on the top of an existing intention stack, as shown in figure 5.1.
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The next step is performed by the function S1 : it selects a single intention to be executed,
as shown in figure 5.1, rhombuses 6. The intention is a stack of partially instantiated plans, and
when an intention is executed, the first goal or action on the body of the top of the intention stack
is executed. When an action is executed the action is added to the set of actions and is removed
from the body of the top of the intention. Finally, the agent goes to the set of events and the cycle
repeats until there are no events in the events list or there is no runnable intention.

A definition of an AgentSpeak(L) agent consists basically of the agent’s initial beliefs (and
usually the initial goals) and the agent’s plans [35]. If we need to develop an agent that wants to
book a concert ticket for example, we need an AgentSpeak(L) code similar to the one shown in
Listing 1.

1 /∗ Initial Beliefs ∗/
2 likes(radiohead).
3 phone_number(covo,"05112345").
4
5 /∗ Belief addition ∗/
6 +concert(Artist, Date, Venue) : likes(Artist) <-
7 !book_tickets(Artist, Date, Venue).
8
9 /∗ Plan to book tickets ∗/
10 +!book_tickets(A,D,V) : not busy(phone) <-
11 ?phone_number(V,N); /∗ Test Goal to Retrieve a Belief ∗/
12 !call(N);
13 ...
14 !choose_seats(A,D,V).

Listing 1: AgentSpeak(L) code example, based on [5].

The Lines 2 and 3 are the initial agent’s beliefs. In the Line 6, we define that a plan
!book_tickets(Artist, Date, Venue) must be executed if a new belief +concert(Artist,
Date, Venue) is added. But the plan will only be executed if it achieves its condition likes(Artist).
Between Line 9 and Line 14 we have a plan. To be executed, this plan must meet its con-
text: not busy(phone). The first action of the plan is to check if the agent has a belief:
?phone_number(V,N). The second action depends of the first. So, if the first action fails, the
agent will not execute the second !call(N) and the third one !choose seats(A,D,V). Next
section will present an extension of AgentSpeak(L): Jason.

5.2.3 Jason

Jason is a particular implementation of AgentSpeak(L) in Java. It extends the AgentS-
peak(L) language on a set of features, such as [4]: handling of plan failures, support for multi-agent
system distributed over a network, a library of internal actions and an IDE in the form of a jEdit or
Eclipse plugin.

Jason language syntax follows the AgentSpeak(L) syntax pattern. For example, in order
to develop an agent which simple prints "hello word", we need the code shown in Listing 2 [5]:
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1 start.
2 +start : true <- .print("Hello World!").

Listing 2: Hello World in Jason.

The first line of this file defines the initial belief for the agent. In this example, the agent
has one single belief: start. The second line defines a plan for the agent. In this example, the agent
has just one single plan, divided in three parts. The first part of the plan is the triggering event:
+start. The second part is the context. It is the condition that must be fulfilled for the plan to be
executed. In this example, the context will always be fulfilled (true), optionally it could be purged:
+start <- .print("Hello World!"). The third part of the plan is its body: .print("Hello
World!"). Although .print("Hello World!") looks like a belief, it is in fact an internal action.
Jason’s internal actions begin with a full stop in order to give the reader some syntactic clue and
do not change the environment [5]. Examples of internal actions are .send and .broadcast,
commonly used for agent communication. At the end of each line, we have a dot signal "." which
is a syntactic separator. This separator is very similar with the semicolon for Java or C.

In summary, in this example, when the agent starts running, it will have the belief "start".
And there is a plan which establish that when the agent acquire ("+" symbol) the belief "start",
it will print the message "Hello World!". Consequently, this plan is triggered when the agent starts
executing. The effect of this plan is just to show the text "Hello World!" on the console.

Now we would like to present a more complex example of Jason code that makes use of
recursion: computing the factorial (specifically, the factorial of 5).

1 !print_fact(5).
2
3 +!print_fact(N)
4 <- !fact(N,F);
5 .print("Factorial of ", N, " is ", F).
6
7 +!fact(N,1) : N == 0.
8
9 +!fact(N,F) : N > 0
10 <- !fact(N-1,F1);
11 F = F1 * N.

Listing 3: Example of factorial in Jason [5].

The first line of the code shown in Listing 3 describes the agent’s initial goal. The "!"
signal defines that the agent has the intention to achieve the goal: prints the factorial of 5. This
Jason code has three plans. The first plan (Line 3) starts adding a new goal: "!fact(N,F)" (Line 4)
and when this goal is achieved, the plan prints out the factorial of N. The other two plans are both
for calculating the factorial. They will be triggered when the agent acquire the goal "!fact(N,F)"
(Line 7 and Line 9). The first plan establish that when the agent acquires the goal of calculate the
factorial of 0, nothing must be done and the result is "1". The second plan defines that when the
agent acquires the goal of calculate the factorial of N, and N is bigger than 0, then calculates the
factorial of N-1, the result of this must be multiplied by N.
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As we can see in Listing 3, within a plan’s body, there may be a goal. When a goal is found
in a plan body, the interpreter looks for a plan that achieves this goal. The agent may have a set
of such plans, and these plans may or may not satisfy the required context. Wherefore, in different
contexts the same invocation may result in different plans being run. Jason has much more features
that are considered out of the scope of this work and more information about Jason can be found
on "Programming multi-agent systems in AgentSpeak using Jason" [5]. The next sections present
a brief introduction of other agent programming languages commonly used to the development of
rational agents.

5.3 Other Agent Programming Languages

5.3.1 3APL and 2APL

Artificial Autonomous Agents Programming Language (3APL) is a combination of im-
perative and logic programming, in addition to agent oriented features. All regular programming
constructs (such as recursive procedures and state-based computation) from the imperative pro-
gramming are supported and from the logic programming, 3APL inherits the computational model
for querying the belief base of an agent [21]. 3APL was created to support agent programming
mechanisms, such as [21]: representing and querying the agent’s beliefs; belief updating; and goal
updating;

A Practical Agent Programming Language (2APL) is a BDI-based agent-oriented pro-
gramming language that extends and modifies the original version of 3APL. The most important
modification is the support of multi-agent systems [57]. 2APL promotes the integration between
declarative and imperative style programming: the agent’s beliefs and goals are implemented in a
declarative programming style, while plans, events and environments are implemented in an imper-
ative programming style.

According to Ziafati [57], the declarative programming part supports the implementation
of reasoning and update mechanisms that are needed to allow individual agents to reason about
and update their mental states. The imperative programming part facilitates the implementation
of plans, flow of control, and mechanisms such as procedure call, recursion, and interfacing with
existing imperative programming languages.

2APL separates the multi-agent and individual agent concerns, providing two different sets
of programming constructs for each of them. This separation allows the development of a wide
range of social organizational concepts in a modular way [57]. At the multi-agent level, 2APL
creates individual agents, assigns unique names to them, creates external environments and defines
the access relations between the external environments and the agents. Environments and agents
are implemented as Java objects, allowing the possibility to use these objects as interfaces to the
physical environments or other software. At the individual agent level, 2APL implements beliefs,
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goals, actions, plans, events, and three different types of rules. The first type of rule generates
plans for achieving goals; the second type is responsible for processing events and handling received
messages; and the last one is responsible for handling and repairing failed plans.

5.3.2 Jack Agent Language

Jack Agent Language (JAL) [7] is not a logic-based language, but an extension of Java
which implements features of logic languages (such as logical variables). Jack programs are compiled
as normal Java files with a pre-compiler and can subsequently be translated to Java classes using
the normal Java compiler [3]. Syntactic constructs was added to Java, allowing developers to
implement BDI concepts such as beliefs, goals, plans, and events [57]. Plans can be composed
of reasoning methods and grouped into capabilities which, together, compose a specific ability an
agent is supposed to have, thus supporting a good degree of modularization [3].

According to Lucas et al. [7], Jack provides a high performance, light-weight implemen-
tation of the BDI architecture, and can be easily extended to support different agent models or
specific application requirements. Jack was designed to achieve the following goals [7]: provide to
the developers robust, stable and light-weight framework; make easy the technology transfer from
research to industry; satisfy practical agent application needs; and enable further applied research
on agent programming.

5.3.3 Jade and Jadex

JADE (Java Agent DEvelopment Framework) is a software framework to develop agent
applications in compliance with the FIPA specifications for inter-operable intelligent multi-agent
systems [1]. The Foundation for Intelligent Physical Agents (FIPA) is an international non-profit
association of companies and organizations sharing the effort to produce specifications of generic
agent technologies [1]. Its goal is to simplify the development of multi-agent systems while ensuring
standard compliance through a comprehensive set of system services and agents. It can be adapted
to be used on devices with limited resources such as PDAs and mobile phones [3], and provides a
set of services and graphical tools for debugging and testing. Jade deals with all those aspects that
are not peculiar of the agent internals and that are independent of the applications, such as message
transport, encoding and parsing, or agent life-cycle [1]. The software architecture is based on the
coexistence of several Java Virtual Machines (JVM) and communication relies on Java RMI (Remote
Method Invocation) between different JVMs and event signaling within a single JVM. Each JVM is
a basic container of agents that provides a complete run time environment for agent execution and
allows several agents to concurrently execute on the same host [1].

Jadex [25] is a software framework for the creation of goal-oriented agents following the
belief-desire-intention (BDI) model. The framework is realized as a rational agent layer that sits on
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top of JADE, and supports agent development with Java and XML [3]. The Jadex reasoning engine
addresses traditional limitations of BDI systems by introducing new concepts such as explicit goals
and goal deliberation mechanisms. Jadex does not define a new agent programming language, but
uses a BDI meta-model defined in XML-schema for agent definition and pure Java as implementation
language for plans avoiding the need for a pre-compiler [25].

5.4 Multi-Agent Environments

As present in Chapter 4, agents are situated in an environment and they interact with
this environment through the use of sensors and actuators. In many multi-agent applications, the
environment is the real world and when an agent decides to act, the action itself is executed by a given
hardware that performs changes in the environment. In the same way, perception of the environment
is gathered from sensors that capture aspects of the current state of the real world. However, in
other cases, agents are situated in a simulated world. In this case, in order to create a multi-agent
system, not only the agents need to be developed, but also the environment must be implemented.
The developer should create a computational model of the real world (or a computational model
of a given artificial environment) and this computational model needs to be able to simulate the
dynamic aspects of the original environment. Based on the artificial environment, the developer
implements the agents that will "live" on it, acting upon it and perceiving properties of it [5].
The implementation of a simulated environment is useful even for applications that are aimed at
deployment in real-world environments, and most developers will want to have a computational
model of the real-world where they can verify and validate it, in addition to evaluate how well the
system can perform under specific circumstances of the original environment [5].

The growing research in MAS has led the creation of several models, architectures and
frameworks that help the development of environments, but present all of them is beyond the scope of
this work. Among them, the CArtAgO [39] framework introduced a general-purpose computational
and programming model for the development of environments based on the notion of artifacts [38].

Artifacts are runtime objects that provide some kind of function or service which agents
can use in order to achieve their objectives. Artifacts have a set of operating instructions and a
function description that can be read by the agents in order to discover its characteristics [40].
Agents are able to interact with the artifacts by invoking operations and then observing the events
generated from them. Figure 5.2 shows the invoking operations as a set of buttons that agents
can press to interact with the artifact and the output area which contains the observable events
perceived through the sensors.

CArtAgO (Common ARTifact infrastructure for AGents Open environments) is a frame-
work used for engineering multi-agent applications, providing an architecture based on artifact notion
and all the related concepts, such as object-oriented and service-oriented abstractions, autonomous
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Figure 5.2 – An abstract representation of an artifact [40].

activities (typically goal / task oriented) and structures (typically passive and reactive entities which
are constructed, shared and used by the agents) [39]. In CArtAgO, sensors and actuators are struc-
tures that agents can create and use to partition and to control the information flow perceived from
artifacts. Namely, CArtAgO provide a natural way to model object-oriented and service-oriented
abstractions (objects, components, services) at the agent level of abstraction [39] through the use
of artifacts. We present a CArtAgO artifact pseudo-code example in Section 6.2.

5.5 Considerations

The increasing amount of research on multi-agent systems resulted in the development
of various programming languages and tools that are adequate for the implementation of MAS.
Analyzing the literature, several APLs stand out, such as the ones presented in the current Chapter.

The number of available APLs is a sign that MAS is becoming widely used, and that more
agent-based applications may be implemented in the near future. An agent programming language
should include, at least, some structure corresponding to an agent and may also have primitives
such as beliefs, goals, or other mentalistic notions [56].

Using agent programming languages rather than traditional ones, proves to be useful when
we need to solve a problem that is modeled in an agent-oriented fashion way, using for example
goals to reach and beliefs about the state of the world; this kind of problems are very common when
developing for Autonomous Mobile Robots.
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6. JACAROS: THE INTEGRATION OF JASON AND ROS

The main objective of our work is to simplify the modeling of complex behaviors in robots,
by using the abstraction of autonomous cognitive agents, allowing the development of mobile robots
at a higher level of abstraction, following the BDI model. To fulfill this objective we created JaC-
aROS, an integration between an agent programming language (APL) with a robot development
framework (RDF). This integration has two requirements: a functionality requirement and an ex-
tensibility requirement.

To satisfy the functionality requirement, we need to design and implement a complete
architecture, including an interface responsible for translating APL higher-level abstraction into low-
level robot control directives and translating data gathered from the environment into information
that the agent can understand. To satisfy the extensibility requirement, our integration must sup-
port the development of new applications for mobile robots, including the design and use of new
sensors and actuators supported by the RDF. In the next sections, we detail the requirements of our
integration and its architecture.

6.1 Integration Requirements

To fulfill the functionality requirement, we need a middleware that communicates with
robot hardware. This middleware must meet a set of basic requirements, including: supporting a
large number of sensors, actuators and robot kits; having an active developers community; having
a good documentation; and to be frequently updated. Given these requirements, ROS proved to be
the best choice among the frameworks previously studied. Actually, ROS is more than a middleware,
as shown in Section 3.1 and it is free and open source, providing us with a large variety of tools
already implemented; it has a good technical support from community; it allows code access from
the core of ROS to external modules made by other researchers; and it supports cross-language
development and it supports a great number of sensors and actuators. Finally, the authors of ROS
are continuously working on Player1 source code in order to allow developers to gain access and reuse
code (drivers, algorithms and simulation environments) previously implemented by Player developers
within ROS platform. Player project has two simulators: Stage and Gazebo; both are used by our
project and are presented in Section APPENDIX D.

To fulfill the extensibility requirement, we need an agent programming language that sup-
ports the BDI architecture; multi-agent systems; have an active developers community; and have a
good documentation. Given these requirements, Jason proved to be the best choice among the pre-
viously studied APLs. As shown in Section 5.2.3, Jason is an extension of the AgentSpeak(L), which
has all the most important elements of the BDI architecture; it supports strong negation, making

1More information about Player is presented in Section 3.5
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available both closed-world and open-world assumptions; and it supports additional information in
beliefs and plans.

Throughout our work, it was noticed the need of raise the abstraction level of the exten-
sibility requirement (in the way agents communicate with the robot framework) and the need of
a better control of data flow between the layers of our architecture. Thus, we need an abstract
representation of the connection between the high level agent perception and the low level sensor
perception and this was reached through the use of artifacts2. An infrastructure which supplies basic
services for agents to instantiate and use artifacts, as well as a flexible way for multi-agent systems
developers to design and construct any kind of artifact may be provided by CArtAgO3 and it is
used in our work as the main abstraction to support our intermediate architecture. Rational agent
developers commonly use Jason and CArtAgO together, composing an agent-oriented programming
platform knew as JaCa. Programmers use Jason as programming language to develop and execute
the agents and they use CArtAgO as the framework to develop and execute the environments [42].

6.2 Integration Architecture

Figure 6.1 illustrates the design of our architecture which consists of three layers: the
agent layer, in which we develop rational agents using Jason in order to interact with the robot
using the BDI model; the interface layer, in which we establish the communication between the APL
and the RDF and we use special artifacts to abstract robots sensors and actuators. We call these
special artifacts JaCaROS artifacts; and finally, the control layer, in which we have access to robot’s
sensors and actuators in the hardware level through the use of rosjava4 library.

Control Layer

Interface
Layer

Agent
Layer

Actuators
topics

rosjava

+perception 1 operation 1

operation N

JaCaROS Artifact 1

JaCaROS Artifact 2

JaCaROS Artifact N

Sensors
topics

+perception N

HardwareActuators Sensors

Services ...

Figure 6.1 – The design of our architecture.
2More information about artifacts can be found in Section 5.4
3More information about CArtAgO is presented in Section 5.4
4The rosjava library is an implementation of ROS in pure-Java with Android support [47].
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JaCaROS artifacts (that we use at the interface layer) are objects that provide the high
level of abstraction we want in order to access robot sensors, robot actuators and robot control
directives. Through JaCaROS artifacts operations, the agent is able to gather information from the
environment or control the robot actions. Each agent in a multi-agent system can execute one or
more external actions, each external action may call one JaCaROS artifact operation, each JaCaROS
artifact can have one or more operations, each operation can publish on or subscribe to one or more
ROS topics and each ROS topic can handle one or more sensors or actuators. Therefore, an agent
using a single JaCaROS artifact is able to interact with one ore more sensors or actuators.

Figure 6.2 illustrates the design of our architecture with examples of Jason external actions,
JaCaROS artifacts and ROS topics. In this example, a laser range finding sensor publishes data
from the environment on a ROS topic called /scan, and our Scan artifact is able to read the
ROS topic and translate this data into information that the agent is able to understand. For
the agent, the information received from the JaCaROS artifact is a new belief and the format
of this belief is defined by the artifact developer. Since ROS returns an array of float values at
/scan topic, we decided to program our laser finding JaCaROS artifact to return following belief:
+laserrange(scan[0], scan[laserSize*0.25], scan[laserSize*0.5], scan[laserSize*0.75], scan[laserSize-
1];), but the artifact developer is free to use any other design (namely, since ROS provides an array
of float values for /scan, the developer can do any computation with this data before send it to
the agent, setting the abstraction level of the agent belief base for this value). In order to make
the robot rotate, the agent in our example executes an external action called rotate, this external
action executes a given operation within the Movement artifact, and this operation publishes data
on /cmd_vel_mux topic and finally, the actuator receives data from the ROS topic.

Movement Artifact Scan Artifact

Topic
/cmd_vel_mux/input/navi

Topic
/scan

HardwareActuators Sensors

rotatemoveForward +laser range

Control Layer

Interface Layer

Agent Layer

Figure 6.2 – The design of our architecture, with examples of Jason external actions, JaCaROS
artifacts and ROS topics.

To better understand how the interface layer was works, we first briefly describe how a
CArtAgO artifact is created and then we describe how a JaCaROS artifact is created. Listing 4
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shows the Java pseudo-code for a CArtAgO artifact: first, to develop a new CArtAgO artifact, the
developer must extend the Artifact class from CArtAgO library (Line 1); second, using the method
defineObsProperty (Line 7), a developer may define an environment property to be observable by an
agent and an initial value for this property; third, a set of operations (Line 11 and Line 19) can be
created. These operations are used by the agent in order to interact with the environment and they
may change the value of the observed properties through the use of updateValue method (Line 15)
or read the current property value using the method getObsProperty (Line 13); Finally, the method
init (Line 5) represents the artifact constructor [40] and it is executed automatically as soon as the
artifact is created;

1 import cartago.*;
2
3 public class ClassName extends Artifact {
4 ...
5 void init(){
6 ...
7 defineObsProperty(propertyName, values)
8 ...
9 }
10 ...
11 @OPERATION void operationName(){
12 ...
13 ObsProperty prop = getObsProperty(propertyName);
14 ...
15 prop.updateValue(newValues);
16 ...
17 }
18 ...
19 @OPERATION void sum(){
20 ...
21 }
22 ...
23 }

Listing 4: CArtAgO artifact pseudo-code example.

The development of a JaCaROS artifact is a slightly different: we use JaCaRosArtifact
class (that extends the Artifact class from CArtAgO) which adds features specifically designed to
interact with ROS. Instead of extending the Artifact class from CArtAgO, our JaCaROS artifacts
extend JaCaRosArtifact class, allowing them to interact with ROS. Thus, at a high level, when an
agent observes a property exposed by a JaCaROS artifact, it is observing a message from a ROS
topic and when an agent executes a JaCaROS artifact operation, it is publishing data on a ROS
topic.

To start publishing on or subscribing to a ROS topic, and to start interacting with a ROS
service, the JaCaROS artifact needs to establish a connection with ROS. In order to communicate
with ROS topics, we need to create a node in the ROS system and connect this node with the
ROS Master node5. Our architecture is responsible for creating a node for each artifact interested
in interact with ROS topics and ROS services. We call our node within ROS system Jason node.

5More information about ROS Master node is presented in Section 3.1
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Figure 6.3 shows the design of the connection between a JaCaROS artifact and ROS: basically this
is done by the creation of a Jason node into ROS system. First, the agent creates a JaCaROS
artifact (red bubble 1) after that, our architecture first, asks ROS to create a new node (red bubble
2), and ROS returns the created node (red bubble 3); and second, it asks ROS to connect the new
node with ROS Master node (red bubble 4); finally, if the connection is successful established, the
artifact becomes available to the agent.

Agent Layer

Interface Layer

JaCaROS 
Artifact

Jason Agent

Connect
to Master

Control Layer

Create Node

1 2 3

4

Figure 6.3 – JaCaROS artifact connection with ROS.

6.3 JaCaROS Artifacts Architecture

We developed a basic set of JaCaROS artifacts (such as artifacts for motion, odometry
and laser range finding) to compose the basic API and we present four of them (ArtOdometry,
ArtOdometryOnDemand, ArtTutorial and ArtCmdVelAndOdometry) in order to explain how the
architecture of the JaCaROS artifacts works. Our architecture allows the creation of new artifacts,
according to the Jason/ROS developer needs, thereby ensuring support for new sensors and actuators
supported by ROS.

We divide them by artifacts that use actuators, artifacts that use sensors and artifacts
which interact with ROS services, but in practice, a set of sensors, actuators and services can be
controlled by a single JaCaROS artifact. We start by presenting a JaCaROS artifact responsible for
controlling sensors and our architecture has two modes of operation for this kind of artifact: the
verbose mode in which the artifact forwards to the agent all the information gathered by the sensor;
and the on demand mode in which the agent must request the gathered information by using an
artifact operation.

Figure 6.4 ilustrates how verbose mode works. We used ArtOdometry artifact as an
example because basically, all the artifacts using the verbose mode works in a similar way. The



46

ArtOdometry is responsible for reading the odometry of a given movement and its code is presented
in Section APPENDIX B. As we can see in Figure 6.4, when the sensor detects a given information
from the environment (red bubble 1), ROS publish this information into the topic (red bubble 2):
in our example, ROS publish in /odom topic; A listener within the artifact receives the published
information (red bubble 3) and saves the information into a local variable (red bubble 4); After that,
our artifact updates the observable property (red bubble 5) and as a consequence, the information
is propagated to the agent (red bubble 6).

Agent Layer

+odom

Control Layer

/odom
 topic

2

Hardware

Odometry
Sensor

1

Artifact

Listener

Local Storage

Property
Update

In
terface Layer

5

4

6

3

Figure 6.4 – Design of ArtOdometry artifact (verbose mode example).

We can observe that the verbose mode may cause an agent’s overhead data processing or
a high refresh rate in the agent’s belief-base, since in this mode the artifact forwards to the agent
all the data gathered from the sensor. In order to avoid these problems, a set of actions is taken,
including:

• to avoid duplicate information over communication between the agent and the artifact, it
discards the gathered information when the value of the current perception (the value published
by ROS and received by the artifact) is the same of the last perception value (the value
previously stored on the artifact) and the artifact does not forward the message;

• the artifacts have a refresh rate that can be adjusted, thus, some messages published into the
ROS topic can be discarded. Namely, the published messages can be updated on the artifact
and not forwarded to the agent, and this can occurs in a given rate.

• the artifacts can be focused and unfocused by the agent at any time, avoiding the receipt of
messages in a moment that a given information is not needed.

• to avoid a large agent’s belief-base, we adopted the range of view6 concept for a given type of
artifact, in which the artifact just sends to the agent information limited by a range, relative
to the current agent’s position.

6More information about the range of view is presented in Section APPENDIX B
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The JaCaROS artifact developer is free to program any other behavior to avoid the high
refresh rate in the agent’s belief-base, including changing the methods listed above. For example:
instead of discarding only identical messages (the first item of previous list), namely, instead of
always forward a message that is different from the previous one, the developer can defines that a
message will be forwarded only if there is a significant change in its value.

Our architecture makes available a mechanism to gather information from a given topic
on demand, helping to avoid unnecessary updates on the agent’s belief base. These kind of artifact
does not update the observable property for each message received, but instead of it, the artifact
updates a local variable responsible for storing the last value received from the ROS topic and only
updates the observable property through the use of an operation. As a result, the agent’s belief
base is updated only after the execution of an operation. We call this on demand mode and Figure
6.5 illustrates how it works.
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Figure 6.5 – Design of ArtOdometryOnDemand artifact (on demand mode example).

We used ArtOdometryOnDemand artifact as an example because basically, all the sub-
scriber artifacts using the on demand mode work in a similar way. The ArtOdometryOnDemand
is responsible for reading the odometry of a given movement and its code is presented in Section
APPENDIX B. As we can see in Figure 6.5, when the sensor detects a given information from
the environment (red bubble 1), ROS publishes this information into the topic (red bubble 2): in
our example, ROS publishes in /odom topic; A listener within the artifact receives the published
information (red bubble 3) and saves the information into a local variable (red bubble 4); at this
time, our artifact does not update the observable property, instead, it delays the update for the time
that agent asks for it, through the use of an operation (red bubble 5). The artifact operation is
responsible for verifying the value previously saved (red bubble 6) and use it to update the observ-
able property (red bubble 7); the consequence is dissemination of the information to the agent (red
bubble 8).
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In our architecture, on demand artifacts are also used to interact with ROS services and
Figure 6.6 illustrates how it works. We used ArtTutorial artifact as an example because basically, all
the artifacts that interact with ROS services works in a similar way. In our example, first, through
the use of an operation (red bubble 1), that agent asks for a given service (sum two values); after
that, the JaCaROS artifact call the ROS service (red bubble 2). A listener within the artifact receives
the service response (red bubble 3) and saves the information into a local variable (red bubble 4);
After that, our artifact updates the observable property (red bubble 5) and as a consequence, the
information is propagated to the agent (red bubble 6).
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Figure 6.6 – Design of ArtTutorial artifact: an example of interaction with a ROS service.

Now that we presented how JaCaROS artifacts responsible for controlling sensors work
and how JaCaROS artifacts interact with ROS services, we introduce how an artifact responsible for
controlling actuators works: Figure 6.7 shows the design of our ArtCmdVelAndOdometry artifact.
We used this artifact as an example because basically, all the artifacts that interact with ROS
system using a publisher works in a similar way. In our example, first, the agent executes a move
operation (red bubble 1); after that, the JaCaROS artifact publishes the movement information
into /cmd_vel topic (red bubble 2); and as a consequence, the information published into the
topic will be transmitted to the robot actuators (red bubble 3 and red bubble 4). Meanwhile, the
artifact receives information from odometry (red bubble 6) in order to control the distance already
traveled (red bubble 5) and it uses this information to know when to stop publishing into the ROS
topic. A second way to stop publishing in the topic is abort the move operation by using the abort
operation (red bubble 7). If fact, as we can see in Figure 6.7 ArtCmdVelAndOdometry artifact
controls actuators and sensors because the agent needs to know how long it traveled, in order to
know when to stop moving.



49

Interface Layer

Artifact

Local
Storage

Listener

move (distance)
Operation
Odometry
Control

Abort
Control

6

abort Operation

get Odom
Operation

Agent Layer

+odom

getCurrentOdom
Operation

abort Operation

move(distance)
Operation

Control Layer

/odom
 topic

/cmd_vel
 topic

Hardware

Movement
Actuators

Odometry
Sensors

3

4

2

7

1
5

Figure 6.7 – Design of ArtCmdVelAndOdometry artifact: an example of publish artifact.
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7. IMPLEMENTATION

Figure 7.1 illustrates the class diagram of JaCaROS architecture and three JaCaROS
artifacts used as example. In the center of this figure, we have the JaCaRosArtifact class, and
as presented in Section 6.2, this class has features specifically designed to interact with ROS.
JaCaRosArtifact class has two main functions: to create a node within ROS system; and to provide
means for the JaCaROS artifacts to interact with ROS topics. We explain these functions below.

Figure 7.1 – Class Diagram of JaCaROS Architecture (including three artifacts).

The node used by JaCaROS artifacts is an instance of RosNode class, as we can see
in Figure 7.1. Listing 5 shows the pseudo-code of the JaCaRosArtifact class constructor and the
method responsible for asking ROS for a new node. To improve readability, we omit the least
significant lines, showing only how the class constructor establishes a connection with ROS. This
code snippet is called once for each JaCaROS artifact created by the agent, and it is responsible for
two objectives: to create a new Jason node into ROS system; and to connect it to ROS Master node.
JaCaRosArtifact class receives the node name from the artifact (Line 5) and calls connectToROS
method in Line 7. This method creates a new node (Line 14) and it tries to connect the created
node with the ROS Master node in Line 16. When the connection is successful established, the
Jason node is ready to be used by our JaCaROS artifact.

In addition to create a node and connect it to ROS Master, the JaCaRosArtifact class is
responsible for providing means for the JaCaROS artifact to publish on and to subscribe to a ROS
topic, namely, JaCaRosArtifact class provides a subscriber object for JaCaROS artifacts which want
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1 public class JaCaRosArtifact extends Artifact {
2 ...
3 RosNode m_rosnode;
4 ...
5 public JaCaRosArtifact(String name) {
6 ...
7 connectToROS(name);
8 ...
9 }
10 private void connectToROS(String name) {
11 ...
12 name = name + "_" + getNextLongInt(); //avoid jason nodes with the same name
13 nodeConfiguration.setNodeName(name);
14 RosNode m_rosnode = (RosNode)loader.loadClass(nodeClassName)
15 ...
16 while( m_rosnode.getConnectedNode() == null ) sleep(1000);
17 ...
18 }
19 }

Listing 5: JaCaRosArtifact class pseudo-code (class constructor and connectToROS method).

to subscribe to a ROS topic, and a publisher object for JaCaROS artifacts which want to publish on
a ROS topic. We can see the methods responsible for providing these objects in the class diagram
(Figure 7.1), they are called createSubscriber and createPublisher. As shown in Listing 6, in order to
create a publisher, we use the method createPublisher (Line 3) and its parameters are the ROS topic
name and the ROS message type and it returns a publisher which our JaCaROS artifact use in order
to publish data into the ROS topic. To create a subscriber, we use the method createSubscriber
(Line 7) and its parameters are the same from createPublisher and it returns the subscriber which
is used by our JaCaROS artifacts in order to receive data from a given ROS topic.

1 public class JaCaRosArtifact extends Artifact {
2 ...
3 public Object createPublisher(String topicName, String topicType){
4 Object result = m_rosnode.getConnectedNode().newPublisher(topicName, topicType);
5 return result;
6 }
7 public Object createSubscriber(String topicName, String topicType){
8 Object result = m_rosnode.getConnectedNode().newSubscriber(topicName, topicType);
9 return result;
10 }
11 public Object createServer(String serviceName, String serviceType, ServiceResponseBuilder

builder) {
12 Object result = m_rosnode.getConnectedNode().newServiceServer(serviceName, serviceType,

builder);
13 return result;
14 }
15 public Object createClient(String clientName, String serviceType) throws

ServiceNotFoundException{
16 Object result = m_rosnode.getConnectedNode().newServiceClient(clientName, serviceType);
17 return result;
18 }
19 ...
20 }

Listing 6: JaCaRosArtifact class pseudo-code (methods which create publishers and subscribers).
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JaCaRosArtifact class is also responsible for providing means for JaCaROS artifacts to
interact with a ROS service. As shown in Listing 6, in order to create a client, we use the method
createClient (Line 15) and its parameters are the ROS service name and the ROS message type.
It returns a client object which our JaCaROS artifact use in order to interacts with a given ROS
service. The ROS topic/server name and the ROS message type are obtained through the use of
command-line tools from ROS system, such as rostopic and rosservice. The study and presentation
of these tools in details are out of the scope of this work and the interested reader can find more
information in "Ros: an open-source robot operating system" [34].

The creation of Jason node and the creation of the publishers and subscribers happens
when a JaCaRos artifact is created1, as illustrated in Figure 7.2. First, when the JaCaROS artifact
is created, its constructor calls JaCaRosArtifact class constructor. It calls connectToRos method
which creates a Jason node within ROS system. After that, the JaCaROS artifact executes its
init() method and this method calls createSubscriber, createPublisher or createClient method. As
explained before, this method returns a subscriber or a publisher that is used by the artifact to
interact with ROS topics.

RosNode
Class

Artifact JaCaROS Artifact
Class

super(rosNodeName)
connectToROS()

newPublisher(topicName, topicType)

RosNode Object

Publisher Object
Publisher Object

createPublisher()

Figure 7.2 – Sequence diagram of Jason node creation and publisher creation.

7.1 Code Development Using JaCaROS

As we can see in the class diagram (Figure 7.1), all the JaCaROS artifacts are extended
from JaCaRosArtifact class, inheriting the characteristics needed to interact with ROS. In order to
create JaCaROS artifacts, a set of proceedings must be done by the agent. These proceedings are
the same that an agent does in order to create and use a common CArtAgO Artifact. At these level,
the changes made in order to integrate Jason and ROS are transparent to Jason developer: Listing
7 illustrates the plans needed to create and use a new JaCaROS artifact (ArtOdometry artifact is

1More information about how JaCaRos artifacts are created is presented in Section 7.1
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used as an example). To improve readability, we omit the least significant lines (such as repairing
plan) of this pseudo-code.

1 +!create_odom(AgentName, OdomId) :
2 <- .print("Creating Odometry artifact. We are using an agent name: ", AgentName);
3 .concat("Odom", AgentName, Result);
4 makeArtifact(Result,"jason.architecture.ArtOdometry",[AgentName],OdomId).
5
6 +!create_odom :
7 <- .print("Creating Odometry artifact. The agent name is unknown.");
8 makeArtifact("Odom","jason.architecture.ArtOdometry",[],OdomId).
9
10 +?toolOdom(AgentName, OdomId) :
11 true <-
12 .print("Discovering Odometry artifact.");
13 .concat("Odom", AgentName, Result);
14 lookupArtifact(Result, OdomId).
15
16 +?toolOdom(OdomId) :
17 <- .print("Discovering Odometry artifact.");
18 lookupArtifact("Odom",OdomId).
19 ...
20 +odom(A,B,C)
21 <- .print("An odometry property was perceived");
22 -+currentPose(A,B,C).

Listing 7: Jason plans to create and use a JaCaROS artifact (ArtOdometry was used as example).

To create and use a JaCaROS artifact, the agent exploits makeArtifact action (Line
4 and Line 8) and lookupArtifact action (Line 14 and Line 18); and in order to take a given
action when the agent perceives a new value from the observation property, the developer may add a
triggering event to this property (Line 20). In a multi-agent system, more then one agent may have
sensors and actuators with the same name. Therefore, the artifact needs to know which of them
are the correct one and the disambiguation is done by using a parameter on the artifact creation, as
shown in Line 1 and Line 10: the AgentName parameter and the concatenation in Line 3 and Line
13.

Listing 8 illustrates Jason pseudo-code that uses the set of plans previously presented in
order to create and use the Odometry artifact. In Line 1 agent establishes the goal to create the
artifact; In Line 3, the agent will try to discover the artifact in order to use it. At any time, the
agent may select which parts (artifacts) of the environment to observe by using a focus action (Line
5) and the agent may want to stop receiving information from a given part of the environment by
using a stopFocus action (Line 7). The Jason developer can use the focus / stopFocus combination
to limit the amount of information received by the agent.

7.2 JaCaROS Artifacts Implementation

To present the implementation of JaCaROS artifacts, we use pseudo-code blocks of four
existing artifacts as example: ArtOdometry, ArtOdometryOnDemand, ArtCmdVelAndOdometry and
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1 !create_odom();
2 ...
3 ?toolOdom(OdomID);
4 ...
5 focus(OdomID);
6 ...
7 stopFocus(OdomID);

Listing 8: Jason pseudo-code using plans to create and use ArtOdometry artifact.

ArtTutorial. As we presented in Section 6.2, to develop a new JaCaROS artifact, we need to
extend the JaCaRosArtifact class and define a set of properties within the artifact, such as: ROS
topic/service name, ROS message type, Jason node name and the subscriber/publisher object.

7.2.1 Basic Properties of a ROS Artifact

Listing 9, shows the set of properties needed by the artifacts ArtOdometry and ArtOdom-
etryOnDemand. We present them as example of artifact which uses a subscriber object to interact
with ROS. The properties needed by all the artifacts which use a subscriber object are similar: in
Line 3 we define the name that is used when the Jason node is created into ROS system (variable
rosNodeName); in Line 4, we create the object that receives the subscriber object from JaCaRosAr-
tifact class (in the current example, the subscriber object is called subscriberOdometry). The ROS
topic name is defined in the property topicName (Line 5) and the topic’s message type is defined
in the property topicType (Line 6); Line 7 defines the name of the property to be observable by
the artifact (variable propertyName), it is used as parameter on CArtAgO primitives such as defi-
neObsProperty and getObsProperty ; the constant refreshRateValue is the artifact refresh update
rate (Line 11); init method (Line 13) is responsible for creating the subscriber (Line 15) that is used
to receive data from ROS topic. To improve readability, we omit the least significant lines of this
pseudo-code.

Listing 10, shows the set of properties needed by the artifact ArtCmdVelAndOdometry. We
present it as example of artifact which uses a publisher object to interact with ROS. The properties
needed by all the artifacts which use a publisher object are similar: the name used when Jason node
is created into ROS system is set in Line 3; the publisher responsible for publishing data into the
ROS topic is defined in Line 4 (and its name is publisherCmdVel); in Line 5, the ROS topic name
is defined; and the ROS topic type is set in Line 6. As this example is about a movement artifact,
some specific properties must be defined, such as: the movement speed value to be published on
the ROS topic (speed variable in Line 8); a variable that controls the distance traveled by the robot
(stepCounter in Line 10); a flag to control movement interruption (abort flag in Line 11); and a
variable of type geometry_msgs.Twist used to push data movement into ROS topic (Line 9). As
Listing 10 illustrates, init method (Line 13) is responsible for creating the publisher (Line 15) that
is used to publish data into ROS topic. To improve readability, we omit the least significant lines of
this pseudo-code.
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1 public class ArtOdometry extends JaCaRosArtifact {
2 /∗Basic properties ∗/
3 private static String rosNodeName = "ArtOdometry";
4 private Subscriber<nav_msgs.Odometry> subscriberOdometry;
5 private String topicName = "/odom";
6 private String topicType = nav_msgs.Odometry._TYPE;
7 private String propertyName = "odom";
8 /∗Specific properties ∗/
9 private Point currentOdometry;
10 private final byte refreshRateValue = 1; //must be > 0
11 private byte refreshRateAux = refreshRateValue;
12 ...
13 void init(String agentName) {
14 ...
15 subscriberOdometry = (Subscriber<Twist>) createSubscriber(topicNameCmdVel,

topicTypeCmdVel);
16 ...
17 }
18 ...
19 }

Listing 9: Pseudo-code used by ArtOdometry and ArtOdometryOnDemand artifacts: setting basic
properties of an artifact which uses a subscriber.

1 public class ArtCmdVelAndOdometry extends JaCaRosArtifact {
2 /∗Basic properties ∗/
3 private static String rosNodeName = "ArtCmdVelAndOdometry";
4 private Publisher<geometry_msgs.Twist> publisherCmdVel;
5 private String topicName = "/cmd_vel";
6 private String topicType = geometry_msgs.Twist._TYPE;
7 /∗Specific properties ∗/
8 private float speed=1;
9 private geometry_msgs.Twist twist;
10 private double stepCounter = 0;
11 private boolean abort = false;
12 ...
13 void init(String agentName) {
14 ...
15 publisherCmdVel = (Publisher<Twist>) createPublisher(topicNameCmdVel, topicTypeCmdVel);
16 ...
17 }
18 ...
19 }

Listing 10: ArtCmdVelAndOdometry artifact pseudo code: setting basic properties of an artifact
which uses a publisher.

Listing 11, shows the set of properties needed by the artifact ArtTutorial. This is a example
of artifact that interacts with ROS service. The basic properties needed by all these client artifacts
are similar: in Line 3 we define the name that is used when the Jason node is created within the ROS
system (variable rosNodeName); in Line 4, we create the client object that is responsible to send and
receive messages of a ROS service (in the current example, the client object is called serviceClient).
The ROS service name is defined in the property serverName (Line 5) and the service’s message
type is defined in the property serverType (Line 6); Line 7 defines the name of the property to be
observable by the artifact (variable propertyName), it is used as parameter on CArtAgO primitives
such as defineObsProperty and getObsProperty ; init method (Line 11) is responsible for creating
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the client (Line 13). To improve readability, we omit some lines of code that are irrelevant for the
definition of properties and which we explain in the following sections.

1 public class ArtTutorial extends JaCaRosArtifact {
2 /∗Basic properties ∗/
3 private static String rosNodeName = "ArtTutorial";
4 private ServiceClient<AddTwoIntsRequest, AddTwoIntsResponse> serviceClient;
5 private serverName = "add_two_ints";
6 private serverType = AddTwoInts._TYPE;
7 private String propertyNameSum = "twoIntsSum";
8 /∗ Specific properties ∗/
9 private long currentSum;
10 ...
11 void init(String agentName) {
12 ...
13 serviceClient = (ServiceClient<AddTwoIntsRequest, AddTwoIntsResponse>) createClient(

serverName, serverType);
14 ...
15 }
16 }

Listing 11: ArtTutorial artifact pseudo code: setting basic properties of an artifact which interacts
with a ROS service.

7.2.2 Subscriber Artifact - Verbose Mode

Now we want to present how a subscriber JaCaROS artifact which uses the verbose mode
is developed. We used ArtOdometry artifact as an example because basically, all the artifacts using
the verbose mode work in a similar way. Listing 12 shows the init method of the ArtOdometry
artifact and, as explained before, this method is executed automatically as soon as the artifact is
created. In our architecture, the init method executes right after the artifact constructor method,
namely, init method executes after the Jason node has a connection established with the ROS
Master node.

As illustrated in Listing 12, Line 6, the artifact defines the name of the property to be
observable and its initial value; In Line 8, the artifact updates the topic name with the received
parameter in order to make the ROS topic disambiguation in a multi-agent environment; In Line
10, the artifact calls createSubscriber method in order to create a new subscriber and in Line 11, a
listener is added on the subscriber thus any information from the topic can be handled by the artifact.
In our ArtOdometry example (Listing 12), when the artifact receives a new odometry message (Line
13), it gathers the position information from the message (Line 14) and if the received values are
different from the current values saved on the artifact (Line 15), then the current values are updated
(Line 17). Actually, as shown in Listing 12 Line 15, before update local values, the artifact also
checks the refresh rate defined by the Jason developer (Listing 9, Line 10) and we present the code
that controls the update refresh rate in Listing 13.
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1 void init() {
2 init(null);
3 }
4 ...
5 void init(String agentName) {
6 defineObsProperty(propertyName, 0,0,0); //Define Property and Initialize values
7 if (agentName != null)
8 topicName = "/" + agentName + topicName; // Update topic name with agent name
9 cmd = new ReadCmd();
10 subscriberOdometry = (Subscriber<nav_msgs.Odometry>) createSubscriber(topicName, topicType

);
11 subscriberOdometry.addMessageListener(new MessageListener<nav_msgs.Odometry> () {
12 @Override
13 public void onNewMessage(nav_msgs.Odometry message) {
14 Point localPose = message.getPose().getPose().getPosition();
15 if ( !currentOdometry.equals(localPose) && refreshRate() )
16 { // Dont update if ( current = previous) && update only at correct refresh rate
17 currentOdometry = localPose;
18 execInternalOp("receiving"); // receiving calls await, that calls prop update
19 }
20 }
21 });
22 }

Listing 12: ArtOdometry artifact pseudo-code: init methods of verbose mode.

1 subscriberOdometry.addMessageListener(new MessageListener <nav_msgs.Odometry> () {
2 @Override
3 public void onNewMessage(nav_msgs.Odometry message) {
4 ...
5 }
6 private boolean refreshRate() {
7 boolean result = false;
8 if (refreshRateAux % refreshRateValue == 0)
9 {
10 refreshRateAux = refreshRateValue;
11 result = true;
12 }
13 refreshRateAux++;
14 return result;
15 }
16 });

Listing 13: ArtOdometry artifact pseudo code: developer can choose update refresh rate.

As Listing 12 illustrates in Line 11, in order to gather information from the ROS topic,
JaCaROS artifacts adopt a design technique knew as Observer Pattern2, registering listeners on the
subscribers. This implies inversion of control, namely, onNewMessage (Line 13) is executed by a
ROS thread, not by a CArtAgO thread, and this may generate interference in the CArtAgO layer,
especially if the method executed by a ROS thread needs to update the observed property values
or signal it. Fortunately, CArtAgO provides a mechanism to suspend the execution of an artifact
operation until a specified command has been executed [40] and this is done by the await primitive
which accepts an object of type IBlockingCommand representing a command to be executed (Listing
14, Line 7).

2More information about design patterns can be found in the book Design Patterns: Elements of Reusable
Object-Oriented Software [13].
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1 ...
2 @INTERNAL_OPERATION
3 void receiving() {
4 await(cmd);
5 }
6 /∗ The ReadCmd implements a blocking command − implementing the IBlockingCmd interface − containing the

command code in the exec method. ∗/
7 class ReadCmd implements IBlockingCmd {
8 public void exec() {
9 try {
10 ObsProperty prop = getObsProperty(propertyName);
11 prop.updateValues(currentOdometry.getX(),currentOdometry.getY(),currentOdometry.getZ()

);
12 }
13 catch (Exception ex) {
14 ex.printStackTrace();
15 }
16 }
17 }
18 ...

Listing 14: ArtOdometry artifact pseudo-code: blocking commands.

When the artifact receives a message from the ROS topic, it should update the observed
property and in our architecture this is done by using the await primitive protection, called within
the receiving internal operation, as Listing 14 illustrates in Line 4. Namely, the artifact calls the
receiving internal operation within onNewMessage method (Listing 12, Line 18), then this internal
operation calls the await primitive (Listing 14, Line 4) that suspends the artifact operation until the
observed property update gets completed (within exec method), as shown in Listing 14, Line 8).

RosJason JaCaROS Artifact

receiving data through listener

Process and 
Save Info

receiving data through listener

Process and 
Save Info

Focus Artifact

info from the enviroment
processed by the artifact

receiving data through listener

Process and 
Save Infoinfo from the enviroment

processed by the artifact
receiving data through listener

Process and 
Save Infoinfo from the enviroment

processed by the artifact

Figure 7.3 – Sequence diagram of a perception from the environment, verbose mode.

Figure 7.3 presents the processes sequence that occurs when a JaCaROS artifact - which
uses verbose mode - perceives a new information from the ROS topic. The artifact is always listening
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to the ROS topic and receiving data from it. The artifact processes the received data and saves it
locally. This process repeats for each message published on the ROS topic. At any time, an agent
can focus the JaCaROS artifact and, from that moment, the agent starts receiving the perceptions
generated by the artifact. At any time, the agent can stop focusing the JaCaROS artifact and, as
a consequence, it stops receiving the perceptions generated by the artifact.

7.2.3 Subscriber Artifact - On Demand Mode

This section presents how a subscriber JaCaROS artifact which uses the on demand mode
is developed. We used ArtOdometryOnDemand artifact as an example because basically, all the
artifacts using the on demand mode work in a similar way. As shown in Listing 15, onNewMessage
method (Line 6) does not have a call for an internal operation responsible for updating the observable
property. Instead, the property update is done by an artifact operation (Line 14). Namely, we delay
the observable property update, moving it from the onNewMessage method to an operation (in our
example, the operation is called getCurrentOdom) and the agent can use this operation any time it
needs data from the ROS topic.

1 ...
2 void init(String agentName) {
3 ...
4 subscriberOdometry.addMessageListener(new MessageListener<nav_msgs.Odometry> () {
5 @Override
6 public void onNewMessage(nav_msgs.Odometry message) {
7 Point localPose = message.getPose().getPose().getPosition();
8 if (!currentOdometry.equals(localPose) && refreshRate() )
9 currentOdometry = localPose;
10 }
11 });
12 }
13 ...
14 @OPERATION void getCurrentOdom() {
15 ObsProperty prop = getObsProperty(propertyName);
16 if(currentOdometry!= null)
17 prop.updateValues(currentOdometry.getX(),currentOdometry.getY(),currentOdometry.getZ());
18 else
19 prop.updateValues(0,0,0);
20
21 signal(propertyName);
22 }

Listing 15: ArtOdometryOnDemand artifact pseudo code: init method of on demand mode. Agent
gathers information using getCurrentOdom operation.

Figure 7.4 presents the processes sequence that occurs when a JaCaROS artifact - which
uses on demand mode - perceives a new information from the ROS topic: the artifact receives a
message published on the ROS topic and saves it locally, in the same manner as the previous working
mode. Any new message published on the ROS topic is updated within the JaCaROS artifact; When
an agent focus the artifact, it becomes eligible to receive messages published on the ROS topic.
At this point, an initial update is sent to the agent, containing the current value saved from the
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observable property, but the agent only receives (more) information from the artifact if the agent
directly request it by using an operation.
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Figure 7.4 – Sequence diagram of a perception from the environment, on demand mode.

7.2.4 Publisher Artifact

The following section presents how a JaCaROS artifact which uses a publisher is developed:
in order to publish data into ROS topic, the Jason agent needs to use the artifacts operations. In
our example (Listing 16), through the use of moveForward(double distance) operation (Line 1), the
agent is able to publish linear data (Line 18) into the ROS topic and as a consequence, move the
robot into a given distance. In Line 3, the artifact defines that it want to apply a movement into the
X axis, using a given speed. All the other axes are defined to have no speed; Line 8 saves the current
position of the robot and uses it in the future to calculate the traveled distance; While the distance
is not reached and while the abort flag is false (Line 13), the artifact keep publishing movement into
the ROS topic (Line 18).

Figure 7.5 shows the processes sequence that must be done to publish in a given topic and
consequently, interact with ROS actuators: first, the Jason agent calls an artifact operation (such as
rotate or move forward); Second, the JaCaROS artifact executes the desired operation, publishing
a message in the correct ROS topic. Artifacts may keep publishing messages on the topic until a
given condition is satisfied and this stop condition may be part of the information given by the agent
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1 @OPERATION void moveForward(double distance){
2 twist = publisherCmdVel.newMessage(); //initializing variable
3 twist.getLinear().setX(speed); twist.getLinear().setY(0); twist.getLinear().setZ(0);
4 twist.getAngular().setX(0); twist.getAngular().setY(0); twist.getAngular().setZ(0);
5 this.abort = false; //initialize abort flag
6 double initialPose; //initializing variable
7 if (currentOdometry!=null)
8 initialPose = currentOdometry.getX();
9 else
10 initialPose = 0;
11
12 stepCounter = 0; //initialize stepcounter
13 while (!this.abort && stepCounter <= distance)
14 {
15 if (currentOdometry!=null)
16 stepCounter = currentOdometry.getX() - initialPose;
17
18 publisherCmdVel.publish(twist);
19 }
20 }
21 @OPERATION void abortMoving() {
22 this.abort = true;
23 }

Listing 16: ArtCmdVel artifact pseudo code: Publishing movement into a ROS topic.

when it calls the operation. Meanwhile, an artifact can receive information from a given topic and
it may use this information as the stop condition.

Jason RosJaCaROS Artifact

publisherCmdVel.publish(twist)
MoveForward()

odometry info from sensors

publisherCmdVel.publish(twist)

odometry info from sensors
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Figure 7.5 – Sequence diagram of an operation in an actuator (move forward example).

7.2.5 Client Artifact

This section presents how a JaCaROS artifact which interacts with a service is developed.
We used ArtTutorial artifact as an example because basically, all the artifacts which interact with a
ROS service work in a similar way. In our example (Listing 17), through the use of sum operation
(Line 1), the agent is able to interact with ROS service. In Line 2, the artifact creates a new
variable (request) responsible to request the service from ROS; In Line 3 and Line 4, the artifact
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sets the input values needed by the service; In Line 5, the artifact request the service, creating a
new Listener responsible to receive the ROS service response; if the request was successful (Line 7),
the artifact saves the response in a local variable (Line 8) and after that, runs an internal action
called receivingSum (Line 9). This internal action is responsible to update the observable property
and as a consequence, the information from the service is propagated to the agent.

1 @OPERATION void sum(int valueA, int valueB){
2 final AddTwoIntsRequest request = serviceClient.newMessage();
3 request.setA(valueA);
4 request.setB(valueB);
5 serviceClient.call(request, new ServiceResponseListener<AddTwoIntsResponse>() {
6 @Override
7 public void onSuccess(AddTwoIntsResponse response) {
8 currentSum = response.getSum();
9 execInternalOp("receivingSum");
10 }
11 @Override
12 public void onFailure(RemoteException e) {
13 currentSum = 0;
14 }
15 });
16 }

Listing 17: ArtTutorial artifact pseudo code: interaction with a ROS service.

The use of a listener causes inversion of control - as we explained before in section 7.2.2 -
thus, we implement a IBlockingCmd class to certify that the update of the observable property will
be performed within the correct thread, as shown in Listing 18.

1 ...
2 private ReadCmdSum cmdSum;
3 ...
4 @INTERNAL_OPERATION
5 void receivingSum() {
6 await(cmdSum);
7 signal(propertyNameSum);
8 }
9 class ReadCmdSum implements IBlockingCmd {
10 public void exec() {
11 try {
12 ObsProperty prop = getObsProperty(propertyNameSum);
13 prop.updateValues(currentSum);
14 } catch (Exception ex) {
15 ex.printStackTrace();
16 }
17 }
18 }

Listing 18: ArtTutorial artifact pseudo code: internal operation.
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8. EXPERIMENTS

In order to understand how JaCaROS simplify the development of complex behaviors on
robots, we compare the code developed using Python - a common language used to develop robot
algorithms - with the code developed using JaCaROS for a set of different scenarios. After that, we
analyzed the resolution strategy and the source code of both approaches. The Python code used in
the experiments were developed by Patrick Goebel and extracted from the books ROS by Example
[16][17], while Jason code and Java code were developed by ourselves.

Since there are usually more than one way to solve a given problem, the pseudo-code
blocks that we are presented in this chapter are only meant as a guide, and may not represent the
best way (or even the only way) to perform a given goal at illustrated scenarios.

8.1 Experimental Design

In this Section, we provide a high-level description of five scenarios in which a Turtlebot1

robot interacts with a simulated environment and performs tasks. The scenarios were inspired on
the books ROS by Example [16][17], and we describe them below:

The time-based out-and-back Scenario: in this scenario, a robot should move forward
during a given time, turn around 180 degrees, then come back to the starting point, rotating the
robot 180 degrees one more time to match with the original orientation, as presented on Figure 8.1.

Figure 8.1 – The Time-Based Out-and-Back Scenario [16].

Navigating a square scenario: in this scenario, a robot should move the perimeter of a
square by navigating from corner to corner, in sequence. Each side of the square has one meter.
The robot should come back to the starting point at the same position and orientation that it has
started, as presented on Figure 8.2.

1Turtlebot tobot is presented in Section APPENDIX D
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Figure 8.2 – Navigating a Square Scenario [16].

The fake battery simulator : in this scenario, we simulate the behavior of a mobile robot
battery. The scenario starts with the initial battery level set to 100 (simulating 100% of battery),
and its counting down to 0 over a time period. Diagnostics status level are defined, such as Full
Battery, Medium Battery (when the counter reaches 50) and Low Battery (when the counter reaches
20). The agent should know the current diagnostic status level.

The patrol robot scenario: in this scenario, a robot should patrol the perimeter of a square
by navigating from corner to corner, in sequence. The robot should monitor the battery level and if
it reaches a given value, the robot should stop patrolling and recharge. After recharging, the robot
should continue to patrol the perimeter of the square, from where it left off. In Figure 8.3, the
waypoints are illustrated as colored squares and the recharge point (the docking station) as a yellow
disc.

Figure 8.3 – The Patrol Robot Scenario [17].

The house cleaning robot Scenario: in this scenario, we suppose that each corner of a
square represents a room, and the robot should perform one or more cleaning tasks in each room.
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When the robot finished the cleaning task, it should move to the next room. The square corners
represent a living room, a kitchen, a bathroom and a hallway, and the tasks for each room are the
following: in the living room, the robot should vacuum the carpet; in the kitchen, it should mop the
floor; and in the bathroom it should perform two tasks: scrub the tub and mop the floor.

8.2 Experimental Development

8.2.1 The Time-Based Out-and-Back Scenario

The code used to accomplish the current scenario using JaCaROS architecture is presented
in Listing 19 in addition to ArtCmdVel artifact presented in Listing APPENDIX B.6. The Jason code
is the following: between Line 3 and Line 14, we have the plans to create and use the ArtCmdVel
JaCaROS artifact; between Line 17 and Line 19, we use these plans; and finally, between Line 20
and Line 22, we move the robot in order to accomplish the current scenario goal.

1 !start.
2
3 +!create_cmd_vel
4 <- makeArtifact("Cmd_vel","jason.architecture.ArtCmdVel",[],CmdVelId).
5
6 -!create_cmd_vel
7 <- .print("cmd_vel artifact creation failed.").
8
9 +?toolCmd_vel(CmdVelId)
10 <- lookupArtifact("Cmd_vel", CmdVelId).
11
12 -?toolCmd_vel(CmdVelId)
13 <- .wait(10);
14 ?toolCmd_vel(CmdVelId).
15
16 +!start
17 <- !create_cmd_vel;
18 ?toolCmd_vel(CmdVelId);
19 focus(CmdVelId);
20 for ( .range(I,1,2) ) { //go out and return
21 move(25); //period spend publishing
22 rotate(180);
23 }.

Listing 19: Jason code using JaCaROS for the time-based out-and-back scenario.

The artifact code (Listing APPENDIX B.6) is the following: the code configures a publisher
in Line 21; the movement speed is set in Line 7; the amount of time for publishing the forward
movement comes from a parameter of the artifact operation, as shown in Line 25 (linear_duration);
the angle degree comes from a parameter of the artifact operation, as shown in Line 35 (degree); the
forward movement is done between Line 29 and Line 32; and the rotate movement is done between
Line 45 and Line 48;
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The python code used to accomplish the current scenario is presented in Listing AP-
PENDIX C.1. The code configures a publisher in Line 10; the amount of time for publishing the
forward movement is set on Line 15; the amount of time for publishing the rotate movement is set
on Line 18; the forward movement is done between Line 26 and Line 28; the rotate movement is
done between Line 41 and 43; The script finally has methods responsible for shutdowning the robot,
between Line 53 and 57;

8.2.2 Navigating a Square Scenario

The code used to accomplish the current scenario using JaCaROS architecture is pre-
sented in Listing 20 in addition to ArtCmdVelMuxAndOdometry artifact presented in Listing AP-
PENDIX B.7. This Jason code is almost the same comparing with the last scenario. The differences
are: first, we are using a artifact in which uses odometry to define when to stop publishing the for-
ward movement, instead a period of time; and second, between the Line 20 and Line 22, we change
the rotate angle and the number of times that the movement repeats, in order to accomplish the
current scenario goal (navigate a square).

1 !start.
2
3 +!create_cmd_vel_mux_odom
4 <- makeArtifact("Cmd_vel_mux_odom","jason.architecture.ArtCmdVelMuxAndOdometry",[],

CmdVelMuxId).
5
6 -!create_cmd_vel_mux_odom
7 <- .print("cmd_vel_mux_odom artifact creation failed.").
8
9 +?toolCmd_vel_mux_odom(CmdVelMuxId)
10 <- lookupArtifact("Cmd_vel_mux_odom",CmdVelMuxId).
11
12 -?toolCmd_vel_mux_odom(CmdVelMuxId)
13 <- .wait(10);
14 ?toolCmd_vel_mux_odom(CmdVelMuxId).
15
16 +!start
17 <- !create_cmd_vel_mux_odom;
18 ?toolCmd_vel_mux_odom(CmdVelMuxId);
19 focus(CmdVelMuxId);
20 for ( .range(I,1,4) ) { //4 sides of the square
21 moveForward(1); //distance in meters
22 rotate(90);
23 }.

Listing 20: Jason code using JaCaROS for the navigating a square scenario.

The artifact code used in this scenario (Listing APPENDIX B.7) performs the following:
it configures a publisher in Line 32 (in order to give movement to the robot), and it configures a
subscriber in Line 36 (in order to receive odometry information); speed is set in Line 9 and used
both for linear and angular motion; the distance of one meter comes from a parameter of the artifact
operation (distance), as shown in Line 53; the angle degree comes from a parameter of the artifact
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operation (degree), as shown in Line 76; the forward movement is done between Line 64 and Line
70; and finally, the rotate movement is done between Line 87 and Line 90.

The python code used to accomplish the current scenario is presented in Listing AP-
PENDIX C.2. Between the Line 16 and Line 19, linear speed, angular speed, distance (one meter)
and angle degree (90 degrees) are set; a publisher is set in Line 22; a odometry listener is configured
in Line 25; The script cycles through the four sides of the square by using a for in Line 43 and
keep publishing on ROS topic until one meter is reached between Line 54 and Line 63; the rotate
movement is done between Line 75 and Line 82; and finally, the script has methods responsible for
shutdowning the robot, between Line 100 and Line 104;

8.2.3 The Fake Battery Simulator

The code used to satisfy the current scenario using JaCaROS architecture is presented in
Listing 21 in addition to the artifact presented in Listing APPENDIX B.8. The Jason code is the
following: between Line 3 and Line 14, we have the plans to create and use the ArtSimBattery
artifact; between Line 21 and Line 23, we use these plans; and finally, between Line 16 and Line
18, we print the diagnostic message when the agent get the belief (diagnostics) from the artifact
observed property.

1 !start.
2
3 +!create_battery <-
4 makeArtifact("Battery","jason.architecture.ArtSimBattery",[],BatteryId).
5
6 -!create_battery <-
7 .print("Battery artifact creation failed.").
8
9 +?toolBattery(BatteryId) <-
10 lookupArtifact("Battery",BatteryId).
11
12 -?toolBattery(BatteryId) <-
13 .wait(10);
14 ?toolBattery(BatteryId).
15
16 +diagnostics(Diag) <-
17 .print(Diag);
18 -diagnostics(Diag).
19
20 +!start <-
21 !create_battery;
22 ?toolBattery(BatteryId);
23 focus(BatteryId).

Listing 21: Jason code for fake battery scenario.

The artifact code used in this scenario (Listing APPENDIX B.8) do the following: the
diagnostic levels are defined between Line 8 and Line 10; step size used to decrease the battery level
is set in Line 11; a property responsible for handling battery level is created in Line 14; a property
responsible for handling diagnostics is created in Line 16; between Line 53 and Line 63, the artifact
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sets the diagnostics status level based on the current battery level and the property is updated in
Line 66; and a timer in Line 20 is responsible for decreasing battery level, in Line 23. If the agent
want to recharge battery, this can be done by using the operationRecharge() operation (Line 70).

The python code used to accomplish the current scenario is presented in Listing AP-
PENDIX C.3: the diagnostic levels are defined between Line 15 and Line 17; step size used to
decrease the battery level is set in Line 20; a battery level publisher is created in Line 22; a diagnos-
tic publisher is created in Line 24; between Line 35 and Line 43, the python code set the diagnostics
status level based on the current battery level; and method SetBatteryLevelHandler in Line 69 is
responsible for changing the battery level value.

8.2.4 The Patrol Robot Scenario

The code used to satisfy the current scenario using JaCaROS architecture is presented in
Listing 22 and Listing 23. We split it out in two listings in order to make the code clear. Let’s
start explaining Listing 22: between Line 10 and Line 16, the agent creates and focuses the artifacts
ArtCmdVelMuxAndOdometry (in order to move the agent) and ArtSimBattery (in order to check
simulated battery). Plans for create and use these artifacts were omitted since previous pseudo-code
blocks already illustrate them. In fact, the plans used to create and to use a given artifact are
reusable, it can be saved in a separate file and included in the agent’s code when needed; In Line
17, the agent adopts a new goal (to patrol); As shown between Line 4 and Line 7, the patrol plan is
composed of a 2 meters forward movement plus a 90 degree rotation. The agent will keep patrolling
in a loop since patrol is a recursive plan, as shown in Line 7.

1 /∗ Plans for create and use ArtSimBattery and ArtCmdVelMuxAndOdometry were ommited ∗/
2 !start.
3
4 +!patrol <-
5 moveForward(2);
6 rotate(90);
7 !!patrol. // recursive call.
8
9 +!start <-
10 !create_cmd_vel_mux_odom;
11 ?toolCmd_vel_mux_odom(CmdVelMuxId);
12 focus(CmdVelMuxId);
13
14 !create_battery;
15 ?toolBattery(BatId);
16 focus(BatId);
17 !patrol.

Listing 22: Jason pseudo-code using JaCaROS for the patrol robot scenario.

As shown in Listing 23, the recharge plan (between Line 15 and Line 20) is composed of
moving to the center of square and after that, executing an artifact operation: operationRecharge,
Line 19. This operation is responsible for recharging the battery; when finishing recharging, the
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agent returns (Line 20) to the previous square corner, as shown between Lines 22 and 27. The
agent suspends (Line 12) the patrol plan when it receives an update of "Low Battery" from the
observed property, as shown between Line 9 and Line 13; and it resumes the patrol plan (Line 28)
after return to last square corner visited before go recharging.

1 +diagnostics(Diag) : Diag = "Full Battery" <-
2 .print("Current Diagnostic: ",Diag);
3 -diagnostics(Diag).
4
5 +diagnostics(Diag) : Diag = "Medium Battery" <-
6 .print("Current Diagnostic: ",Diag);
7 -diagnostics(Diag).
8
9 +diagnostics(Diag) : Diag = "Low Battery" <-
10 .print("Current Diagnostic: ",Diag);
11 -diagnostics(Diag);
12 .suspend(patrol); //Suspending Patrol plan
13 !recharge.
14
15 +!recharge <-
16 moveForward(1);
17 rotate(90);
18 moveForward(1); //Now agent arrived in Recharge Base
19 operationRecharge;
20 !return. //Return to previous square corner
21
22 +!return <-
23 rotate(180); //Turned around
24 moveForward(1);
25 rotate(-90);
26 moveForward(1); //original position
27 rotate(180); //original orientation
28 .resume(patrol).

Listing 23: Jason pseudo-code using JaCaROS for the patrol robot scenario.

To satisfy current scenario goals, two artifacts were used: ArtSimBattery to simulate the
battery and ArtCmdVelMuxAndOdometry (to move the robot). Both artifacts were previously used
and explained in the last scenarios.

The patrol robot scenario requires more reasoning than the three previous scenarios. The
robot should perform two distinct tasks at same time: patrol the corners of a square and keep track
of battery level. If the battery level falls below a certain level, the robot should stop its patrol and
navigate to the docking station. All of this can be done using ROS actions, but despite this works
for this particular example, it becomes less efficient as we add more tasks to the robot’s behavior
[17]. Thus, in order to create a code to fulfill the current scenario, the python developer may need
to simulate the interpretation cycle and develop robot behaviors using hierarchical state machines
or behavior trees. Listing APPENDIX C.5 and Listing APPENDIX C.6 show the pseudo code of the
libraries used in this scenario to create and use behavior trees for Python and for ROS, but explain
them is beyond the scope of this work.

The python code used to accomplish the current scenario is presented in Listing AP-
PENDIX C.7: Between Line 18 and Line 24, a navigation task is created for each square corner; The
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local of the recharge place (docking station) is set between Line 27 and Line 30; A motion action to
the docking station is added in Line 33; A behavior tree is created with the tasks STAY_HEALTHY
and LOOP_PATROL between Line 40 and Line 41; in Line 49, patrol task is added on a loop;
battery check and recharge tasks are added into the STAY_HEALTHY task between Line 52 and
Line 61; Finally, the tree runs between Line 68 and Line 70.

8.2.5 The House Cleaning Robot Scenario

The code used to fulfill the current scenario using JaCaROS architecture is presented in
Listing 24 and Listing 25, in addition to the artifact presented in Listing APPENDIX B.9. Jason
code is based on the source code of the previous one, thus, we present in Listing 24 and Listing 25
just the differences between them. Let’s start explaining Listing 24.

1 !start.
2
3 +!create_cleaner <-
4 makeArtifact("Cleaner","jason.architecture.ArtCleaning",[],Cleaner).
5
6 -!create_cleaner <-
7 .print("Cleaner artifact creation failed.").
8
9 +?toolCleaner(CleanerId) <-
10 lookupArtifact("Cleaner",CleanerId).
11
12 -?toolCleaner(CleanerId) <-
13 .wait(10);
14 ?toolCleaner(CleanerId).
15
16 +!patrol <-
17 moveForward(2);
18 rotate(90);
19 !cleanRoom; //clean room
20 !!patrol.
21
22 +!start
23 ...
24 !create_cleaner;
25 ?toolCleaner(CleanerId);
26 focus(CleanerId);
27 ...
28 !patrol.

Listing 24: Jason pseudo-code using JaCaROS for the house cleaning robot simulator.

Plans to create and use the ArtCleaning artifact is shown between Line 3 and Line 14,
and these plans are used between Line 24 and Line 26. The patrol plan (Line 16) acquired the
cleanRoom goal in Line 19 and the plan used to reach this goal is responsible for cleaning the
current room.

As we can see in Listing 25, between Line 13 and Line 19, cleanRoom plan is responsible
for verifying the current room (updateWhereAmI operation, Line 15) and ask the artifact for a task
(vacuum, mop or scrub), through the use of the clean operation, Line 17. The clean operation
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changes the value of observable properties and as a consequence, may activate a set of triggers
(between Lines 1 and 11). The tasks (vacuum, mop or scrub) are represented by messages, as we
can see in Line 2, Line 6 and Line 10, and the cleaning activity is simulated as a swing (Line 18). In
the current scenario, we need to suspend cleanRoom plan (Line 24) before recharge (Line 25) and
resume cleanRoom plan (Line 30) after return to last place visited before go recharging (Line 29).

1 +vacuum(Object, Room) <-
2 .print("At: ", Room); .println("Vacuum ", Object);
3 -vacuum(Object, Room).
4
5 +mop(Object, Room) <-
6 .print("At ", Room); .println("Mop ", Object);
7 -mop(Object, Room).
8
9 +scrub(Object, Room) <-
10 .print("At ", Room); .println("Scrub ", Object);
11 -scrub(Object, Room).
12
13 +!cleanRoom <-
14 -atRoom(Any);
15 updateWhereAmI; //update current local
16 ?atRoom(Y);
17 clean(Y); //clean room
18 rotate(-5); rotate(10); rotate(-5); //swing a little to simulated clean activity,
19 .wait(1000). //simulate clean time spend
20
21 +diagnostics(Diag) : Diag = "Low Battery" <-
22 ..
23 .suspend(patrol); //Suspending Patrol plan
24 .suspend(cleanRoom); //Suspending Clean plan
25 !recharge.
26
27 +!return <-
28 ...
29 rotate(180); //original orientation
30 .resume(cleanRoom);
31 .resume(patrol).

Listing 25: Jason pseudo-code using JaCaROS for the house cleaning robot simulator.

To fulfill this scenario, tree artifacts were used: ArtSimBattery (to simulate the battery),
ArtCmdVelMuxAndOdometry (to move the robot) and ArtCleaning (to clean the rooms). ArtSim-
Battery and ArtCmdVelMuxAndOdometry were previously used and explained in the last scenarios,
thus we will focus our attention on ArtCleaning artifact (Listing APPENDIX B.9): Properties for
vacuum, mop and scrub are created between Lines 3 and 5; the room names are defined between
Lines 7 and 10; the room that the agent is current patrolling is a parameter of clean operation (Line
29), and this operation updates the observed properties according to the room (such as vacuum the
living room carpet or mop the kitchen floor).

The current scenario is another situation where more reasoning from the agent is needed.
Thus, in order to satisfy this scenario, the python code developer may need to create behavior
trees. The libraries from the last scenario (Listing APPENDIX C.5 and Listing APPENDIX C.6)
are used in python pseudo-code of the current scenario. It is divided in two pseudo-code blocks:
Listing APPENDIX C.8 and Listing APPENDIX C.9. Listing APPENDIX C.9 contains the simulated
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cleaning tasks: the vacuum task in Line 6, the mop task in Line 38 and the scrub task in line 70.
Each of them simulate the clean activity by short strokes in the robot (Line 25, Line 58 and Line
90). Listing APPENDIX C.8 have code in common with the last scenario source code, thus we
focus on the differences. Between Line 26 and Line 31, the room names are defined and tasks are
mapped for each room. For each room, a set of activities are performed between Line 131 and Line
173, such as: check current room (Line 136); initialize the cleaning task (Line 140); initialize the
navigation task (Line 142); add move base task and navigate to room task to the behavior three
(between Line 147 and Line 150); update task list (between Line 159 and Line 166); and finally the
cleaning activities (between Line 168 and Line 173).

8.3 Discussion

Below we have three code metrics, obtained from static analysis of the source code used
to program the scenarios. Table 8.1 shows the number of identifiers used by each approach. For the
Jason code, we considered plans, triggers and operations as identifiers and for Java and Python code,
we considered classes, methods and variables. Table 8.2 shows the number of lines of code needed
to program the behaviors using each approach. Although Lines of Code (LOC) are not an unanimous
metric to measure code quality, we believe it is an acceptable estimation of code complexity. In
particular, since we want to measure the complexity resulting from the different abstraction levels,
we use this metric in our experiments. According to Kan [23, chapter 11, pg 312], LOC count
represents the program size and its complexity. Finally, Table 8.3 shows the measure of source code
size by compressing it with gzip.

Environment Complexity JaCaROS PythonJason Artifacts Total
Time-Based Out-and-Back Low 8 17 25 19
Navigating a Square Low 8 28 36 27
The Fake Battery Simulator Low 7 21 28 23
The Patrol Robot Medium 31 49 80 143
The House Cleaning Robot High 52 65 117 173

Table 8.1 – Code metrics: static analysis of both approaches. Number of Identifiers.

Environment Complexity JaCaROS PythonJason Artifacts Total
Time-Based Out-and-Back Low 23 50 73 63
Navigating a Square Low 23 107 130 110
The Fake Battery Simulator Low 23 81 104 76
The Patrol Robot Medium 73 188 261 536
The House Cleaning Robot High 127 255 382 759

Table 8.2 – Code metrics: static analysis of both approaches. Lines of code.
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Environment Complexity JaCaROS PythonJason Artifacts Total
Time-Based Out-and-Back Low 289 632 921 890
Navigating a Square Low 311 1.239 1550 1.392
The Fake Battery Simulator Low 230 665 895 1.196
The Patrol Robot Medium 527 1.721 2248 4.215
The House Cleaning Robot High 791 2.110 2901 6.443

Table 8.3 – Code metrics: static analysis of both approaches. Source code size (bytes) compressed
by gzip.

The robot within our first three scenarios has a simple behavior. Basically, at time-based
out-and-back scenario and at navigating a square scenario, the robot just walks around in the
environment; and at the fake battery scenario, the robot just need to be aware of the battery level.
On the other hand, the robot within last two scenarios has a more complex behavior, since it should
perform distinct tasks at same time, such as: walk around, check battery and cleaning. A complex
behavior requires more reasoning from the robot, and more code development.

For all five scenarios, the Jason code has less identifiers and less LOCs than the Python
code. But when we take JaCaROS artifacts into consideration, we noticed a difference in the
results obtained in simple scenarios compared to complex scenarios: in simple scenarios, Jason code
plus artifact code have slightly more identifiers and lines of code than Python. But, when the
development of complex behaviors are needed, Jason code plus artifact code have the expected
results: less identifiers and less lines of code compared to Python, as we can see in Table 8.1 and
Table 8.2. The same behavior is detected when we analyze the size of source code compressed by
gzip, as shown in Table 8.3.

Figure 8.4, Figure 8.5 and Figure 8.6 show relevant part of JaCaROS code and Python
code for the first three scenarios. As we can verify, the code for each scenario is very similar to
one another. Python was able to accomplish the scenario goals with a similar abstraction level as
JaCaROS and as a result, our architecture has not made a significant difference to simplify the
development of the code.

The robot within our last two scenarios has a complex behavior. The scenario complexity
increasing results in the addition of new tasks in the Python code, increases the number of events to
handle, and may result in a Python source code “polluted” by large blocks of if-then-else statements
(or any conditional statements, such as switch case). In order to develop the source code for the
patrol robot scenario and the house cleaning robot scenario in Python, an alternative approach
called behavior trees was used. Behavior tree is a model for plan execution which enables the code
developer to decompose tasks into a set of in a subtasks, in a modular fashion [17]. The tree is
always executed from top to bottom and left to right; higher nodes in the tree are more abstract
than lower levels and just terminal nodes in each branch of the tree result in actual behavior.

For the last two scenarios, we are not able to easily compare and contrast bits of code
for JaCarROS and Python, in order to highlight the differences, since the creation of behavior trees
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Figure 8.4 – Pseudo-code blocks for Time-Based Out-and-Back Scenario.

Figure 8.5 – Pseudo-code blocks for Navigating a Square Scenario.

Figure 8.6 – Pseudo-code blocks for The Fake Battery Simulator.
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makes Python code very different from our architecture code. Therefore, for these two scenarios,
we are just analyzing the results of code metrics. The use of behavior trees can make easier the
development of rational behaviors for classical programming languages, but does not prevent the
increase in code complexity, proportional to the rationality necessary to accomplish a given task
or behavior at the presented scenarios. The more the complexity of the scene grows, the greater
is the number of identifiers and greater is the number of lines of code in Python. On the other
hand, despite the increase of robot rational behavior at the last two scenarios, the complexity of
Jason code and JaCaROS artifacts code did not increase in the same proportion that Python code
increased, as we can see in Figure 8.7, Figure 8.8 and Figure 8.9.

The disconnection between the agents layer - where the agent code is developed - and the
interface layer - where the JaCaROS artifacts are developed provided by our architecture contributes
for the development of robot complex behaviors in a simpler way, since this disconnection facilitates
modularization and code reuse: Jason plans to create and use artifacts and the artifacts themselves
were reused in the presented scenarios.

Figure 8.7 – Code Analysis: Number of Identifiers by scenario.
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Figure 8.8 – Code Analysis: Lines of Code by scenario.

Figure 8.9 – Code Analysis: Code Size in bytes, compressed by gzip.
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9. RELATED WORK

Ziafati [57] presents four requirements for BDI-based agent programming languages to
facilitate the implementation of autonomous robot control systems. The requirements are the
following: built-in support for integration with existing robotic frameworks; real-time reactivity to
events; management of heterogeneous sensory data and reasoning on complex events; and finally
representation of complex plans and coordination of the parallel execution of plans. JaCaROS
satisfies the first requirement using its interface layer, Jason and ROS; the use of a verbose mode
artifact helps the second requirement to be reached; heterogeneous sensory data can be handled by
the JaCaROS artifacts and translate to meaningful information to the agent. Furthermore, the use
of Jason proved to be a better approach handling complex behaviors, helping to satisfy the third
requirement; finally, the Jason language supports the development of complex plans helping to reach
the last requirement. As a proof of concept, Ziafati developed an environment interface for 2APL
to simplify its integration with ROS, enabling the communication of 2APL with ROS components
using ROS communication mechanisms.

Verbeek [49] research extends the 3APL language for a high level robot control by creating
a communication interface between the 3APL and ROS. According to Verbeek, the basic actions in
3APL are only capable of mental belief updates, thus the language needs to be extended with external
basic actions that will be executed by an external program (in this case, ROS). Experiments were
conducted in a simulated and in a physical environment, focused on the accuracy of the movements
and localization. Currently, we have artifacts able to make a mobile robot move within physical
environments and at simulated environments, and our SLAM artifact is able to make a mobile robot
gather, save and retrieve localization information. This artifact allows an agent to reason about its
own position both in relative terms (how far it moved) and in absolute terms (where exactly in the
map the agent, other agents or objects are). This artifact is responsible for two general functions:
store a grid representation of the map, including the current position of the agent, free positions,
obstacle positions and special positions (default keywords), such as “home” and “goal”; and provide
the correct direction that an agent must follow to reach a given goal. In order to store a grid
representation of the map, we use a Cartesian coordinate system, adopting a format to represent
the environment positions: pos2d(Object,Xpos,Ypos), where pos2d represents a 2D position tuple;
Xpos represents the position at X axis; Ypos represents the position at Y axis; and Object represents
the object name located at Xpos and Ypos position.

Santi et al. [42] discuss the application of an agent-oriented programming platform (in
this case, JaCa) for the development of smart mobile applications. In order to apply JaCa to mobile
computing, the authors developed a porting of the platform on top of Google Android, where a
mobile application can be realized as a workspace in which Jason agents are used to encapsulate
the logic and the control of mobile application tasks, and artifacts are used as tools for agents to
exploit available Android components and services. Namely, they extended JaCa with a predefined
set of artifacts specifically designed for exploiting Android functionalities. According to Santi et al.
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[42], the motivation to use JaCa on Android is address issues such as concurrency, asynchronous
interactions with different kinds of services, and mostly, handle behaviors governed by specific context
information (typical characteristics of mobile applications). Our work follows an similar approach,
creating an architecture able to handle issues like multiple asynchronous robot sensors and actuators
and developing a set of artifacts specifically designed for exploiting ROS functionalities using JaCa.
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10. CONCLUSION

In this work, we developed JaCaROS: an integration architecture between Jason - an agent
programming language (APL) and ROS - a robot development framework (RDF), in which CArtAgO
artifacts are used as the main abstraction for the robot sensors and actuators. It is composed by
an interface responsible for translating APL higher-level abstraction into low-level robot control
directives and translating data gathered from the environment into information that the agent can
understand; and it supports the development of new applications for mobile robots, including the
design and use of new sensors and actuators supported by the RDF.

The main contribution of this work to the area of mobile robot programming and multi-
agent system programming is that we expanded Jason beyond the development of multi-agent
systems, improving it to a high level mobile robot programming language. Our work simplifies the
development of complex behaviors on robots in a practical, extensible and scalable way.

The development using JaCaROS is composed by two parts: the agent code developed
in Jason, and the artifacts code developed in Java. This characteristic generates a disconnection
between the agents layer and the interface layer, allowing a modular architecture and improving reuse
and readability of robot programs. The simplification of code readability and code reuse is considered
a contribution of this work: JaCaROS artifacts code and Jason code can be reused to fulfill same
objectives in different projects, such as the use of the same code in a simulated environment and a
real environment. Further, a JaCaROS code can be reused for different robots if they use the same
ROS topic or just by adjusting the value of a couple of properties within the JaCaROS artifact.

Our architecture has some limitations regarding the artifact responsible for abstracting the
environment into a Cartesian coordinate system. The current artifact supports only 2D positioning,
therefore, only ground robots are able to use it. Improve this artifact in order to support 3D
positioning is considered a future work. The same approach should be taken on the Movement
artifact, adding move up and move down operations to it, and as a consequence allowing aerial
robots, such as drones, to use the artifact. A second limitation is that our current architecture does
not support the use of ROS actions, thus we are not able to use the native ROS path planners,
transferring the responsibility to make a planner to JaCaROS developers. We consider a future
work the integration of ROS actions with our architecture. Finally, as a future work, our integration
should be implemented under other agent programming languages which support CArtAgO. We
believe that the JaCaROS artifacts created to be used with Jason could also work with no changes
in other APLs, since JaCaROS artifacts are designed in a modular fashion. Once our architecture
does not change the basics artifact communication mechanisms (such as observable properties and
operations), any APL able to use a CArtAgO artifact is also able to use a JaCaROS artifact.
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APPENDIX A – JASON CODE

1 +!create_odom(AgentName) :
2 <- .print("Creating Odometry artifact. We are using an agent name: ", AgentName);
3 makeArtifact("Odom","jason.architecture.ArtOdometry",[AgentName],OdomId).
4
5 -!create_odom(AgentName) :
6 <- .print("Odometry artifact creation failed.").
7
8 +!create_odom :
9 <- .print("Creating Odometry artifact. The agent name is unknown.");
10 makeArtifact("Odom","jason.architecture.ArtOdometry",[],OdomId).
11
12 -!create_odom :
13 <- .print("Odometry artifact creation failed.").
14
15 +?toolOdom(OdomId) :
16 <- .print("Discovering Odometry artifact.");
17 lookupArtifact("Odom",OdomId).
18
19 -?toolOdom(OdomId) :
20 <- .print("Trying to discovering Odometry artifact again.");
21 .wait(10);
22 ?toolOdom(OdomId).
23
24 +odom(A,B,C)
25 <- .print("An odometry property was perceived");
26 println("X: ", A); println("Y: ", B); println("Z: ", C);
27 -+currentPose(A,B,C).

Listing 26: Jason plans to create and use a JaCaROS artifact (ArtOdometry artifact was used as
example).
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APPENDIX B – ARTIFACTS CODE

We developed a JaCaROS artifact in which we abstract the environment into a Cartesian
coordinate system. The artifact stores the information using a hashtable where the key is the
concatenation of x axis and y axes ("X_Y") and the value are labels, such as: free, obstacle,
home and goal. The getVisionRange operation updates the belief base with the data relative to
a given coordinate position, avoiding the agent to update its belief base with all the hashtable
content, as shown in Listing APPENDIX B.1. Therefore, instead of receive information of all the
environment (saved within the artifact, in the hashtable), the agent receives partial information of
the environment, in a radius around it.

1 @OPERATION void getVisionRange(int x, int y, int range) {
2 ObsProperty prop = getObsProperty("currentRange");
3
4 for (int a=x-range; a<=x+range; a++) {
5 for(int b=y-range; b<=y+range; b++) {
6
7 if (slam_data.containsKey(a+"_"+b)) {
8 position=slam_data.get(a+"_"+b);
9 prop.updateValues(a,b,position);
10 signal("currentRange");
11 }
12 else {
13 System.out.println(a+"_"+b + " key not found!");
14 }
15 }
16 }
17 }

Listing APPENDIX B.1 – getVisionRange method from SLAM artifact.

1 import cartago.*;
2 import geometry_msgs.*;
3 import org.ros.message.MessageListener;
4 import org.ros.node.topic.Subscriber;
5
6 public class ArtOdometry extends JaCaRosArtifact {
7 private static String rosNodeName = "ArtOdometry";
8
9 private Subscriber <nav_msgs.Odometry> subscriberOdometry;
10 private String topicName = "/odom";
11 private String topicType = nav_msgs.Odometry._TYPE;
12 private String propertyName = "odom";
13
14 private Point currentOdometry;
15 private final byte refreshRateValue = 1; //must be > 0
16 private byte refreshRateAux = refreshRateValue;
17
18 private ReadCmd cmd;
19
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20 public ArtOdometry() {
21 super(rosNodeName);
22 }
23
24 void init(String agentName) {
25 defineObsProperty(propertyName, 0,0,0);
26
27 if (agentName != null)
28 topicName = "/" + agentName + topicName; // Update topic name
29
30 cmd = new ReadCmd();
31 subscriberOdometry = (Subscriber <nav_msgs.Odometry>) createSubscriber(topicName,

topicType);
32 subscriberOdometry.addMessageListener(new MessageListener <nav_msgs.Odometry> () {
33 @Override
34 public void onNewMessage(nav_msgs.Odometry message) {
35 Point localPose = message.getPose().getPose().getPosition();
36
37 if (currentOdometry == null)
38 currentOdometry = localPose;
39 else if (!currentOdometry.equals(localPose) && refreshRate()) {
40 currentOdometry = localPose;
41 execInternalOp("receiving");
42 }
43 }
44
45 private boolean refreshRate() {
46 boolean result = false;
47 if (refreshRateAux % refreshRateValue == 0) {
48 refreshRateAux = refreshRateValue;
49 result = true;
50 }
51
52 refreshRateAux++;
53 return result;
54 }
55 });
56 }
57
58 void init() {
59 init(null);
60 }
61
62 @INTERNAL_OPERATION
63 void receiving() {
64 await(cmd);
65 signal(propertyName);
66 }
67
68 class ReadCmd implements IBlockingCmd {
69 public ReadCmd() {}
70
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71 public void exec() {
72 try {
73 ObsProperty prop = getObsProperty(propertyName);
74 prop.updateValues(currentOdometry.getX(),currentOdometry.getY(),currentOdometry.getZ

());
75 } catch (Exception ex) {
76 ex.printStackTrace();
77 }
78 }
79 }
80
81 @OPERATION void getCurrentOdom() {
82 ObsProperty prop = getObsProperty(propertyName);
83 if(currentOdometry!= null)
84 prop.updateValues(currentOdometry.getX(),currentOdometry.getY(),currentOdometry.getZ()

);
85 else
86 prop.updateValues(0,0,0);
87
88 signal(propertyName);
89 }
90 }

Listing APPENDIX B.2 – ArtOdometry source code.

1 import cartago.*;
2 import geometry_msgs.*;
3 import org.ros.message.MessageListener;
4 import org.ros.node.topic.Subscriber;
5
6 public class ArtOdometryOnDemand extends JaCaRosArtifact {
7 private static String rosNodeName = "ArtOdometry";
8
9 Subscriber <nav_msgs.Odometry> subscriberOdometry;
10 private String topicName = "/odom";
11 private String topicType = nav_msgs.Odometry._TYPE;
12 private String propertyName = "odom";
13
14 private Point currentOdometry;
15
16 public ArtOdometryOnDemand() {
17 super(rosNodeName);
18 }
19
20 void init(String agentName) {
21 defineObsProperty(propertyName, 0,0,0);
22 if (agentName != null)
23 topicName = "/" + agentName + topicName; // Update topic name
24
25 subscriberOdometry = (Subscriber <nav_msgs.Odometry>) createSubscriber(topicName,

topicType);
26 subscriberOdometry.addMessageListener(new MessageListener <nav_msgs.Odometry> () {
27 @Override
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28 public void onNewMessage(nav_msgs.Odometry message) {
29 Point localPose = message.getPose().getPose().getPosition();
30 if (currentOdometry == null)
31 currentOdometry = localPose;
32 else if (!currentOdometry.equals(localPose) )
33 currentOdometry = localPose;
34 }
35 });
36 }
37
38 void init() {
39 init(null);
40 }
41
42 @OPERATION void getCurrentOdom() {
43 ObsProperty prop = getObsProperty(propertyName);
44 if(currentOdometry!= null)
45 prop.updateValues(currentOdometry.getX(),currentOdometry.getY(),currentOdometry.getZ()

);
46 else
47 prop.updateValues(0,0,0);
48 signal(propertyName);
49 }
50 }

Listing APPENDIX B.3 – ArtOdometryOnDemand source code.

1 import org.ros.exception.RemoteException;
2 import org.ros.exception.ServiceNotFoundException;
3 import org.ros.message.MessageListener;
4 import org.ros.node.service.ServiceClient;
5 import org.ros.node.service.ServiceResponseListener;
6 import org.ros.node.topic.Subscriber;
7 import test_rosjava_jni.AddTwoInts;
8 import test_rosjava_jni.AddTwoIntsRequest;
9 import test_rosjava_jni.AddTwoIntsResponse;
10 import cartago.IBlockingCmd;
11 import cartago.INTERNAL_OPERATION;
12 import cartago.OPERATION;
13 import cartago.ObsProperty;
14
15 public class ArtTutorial extends JaCaRosArtifact {
16 private static String rosNodeName = "ArtTutorial";
17
18 /∗ service properties ∗/
19 /∗∗ Property responsible to connects with AddTwoInts service ∗/
20 private ServiceClient<AddTwoIntsRequest, AddTwoIntsResponse> serviceClient;
21 private long currentSum;
22 /∗∗ Property to be observable within artifact ∗/
23 private String propertyNameSum = "twoIntsSum";
24 private ReadCmdSum cmdSum;
25
26 /∗ chatter properties ∗/
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27 /∗∗ Property responsible to connects with chatter topic ∗/
28 private Subscriber<std_msgs.String> subscriberChatter;
29 private String topicName = "/chatter";
30 private String topicType = std_msgs.String._TYPE;
31 private String currentMessage;
32 /∗∗ Property to be observable within artifact ∗/
33 private String propertyNameChatter = "chatter";
34 private ReadCmdMsg cmdMsg;
35
36 public ArtTutorial() {
37 super(rosNodeName);
38 }
39
40 void init(String agentName) {
41 if (agentName != null) {
42 topicName = "/" + agentName + topicName; // Update topic name with agent name
43 propertyNameChatter = agentName + "_" + propertyNameChatter;
44 propertyNameSum = agentName + "_" + propertyNameSum;
45 }
46
47 defineObsProperty(propertyNameChatter, "");
48 cmdMsg = new ReadCmdMsg();
49 defineObsProperty(propertyNameSum, 0);
50 cmdSum = new ReadCmdSum();
51
52 try {
53 serviceClient = (ServiceClient<AddTwoIntsRequest, AddTwoIntsResponse>) createClient("

add_two_ints", AddTwoInts._TYPE);
54 } catch (ServiceNotFoundException e) {
55 e.printStackTrace();
56 }
57
58 subscriberChatter = (Subscriber <std_msgs.String>) createSubscriber(topicName, topicType

);
59 subscriberChatter.addMessageListener(new MessageListener <std_msgs.String> () {
60 @Override
61 public void onNewMessage(std_msgs.String message) {
62 currentMessage = message.getData();
63 execInternalOp("receivingMsg");
64 }
65 });
66 }
67
68 void init() {
69 init(null);
70 }
71
72 @OPERATION void getCurrentMessage() {
73 ObsProperty prop = getObsProperty(propertyNameChatter);
74 if(currentMessage!= null)
75 prop.updateValues(currentMessage);
76 else
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77 prop.updateValues("Error: current message is null");
78
79 signal(propertyNameChatter);
80 }
81
82 @OPERATION void sum(int valueA, int valueB){
83 final AddTwoIntsRequest request = serviceClient.newMessage();
84 request.setA(valueA);
85 request.setB(valueB);
86 serviceClient.call(request, new ServiceResponseListener<AddTwoIntsResponse>() {
87 @Override
88 public void onSuccess(AddTwoIntsResponse response) {
89 currentSum = response.getSum();
90 execInternalOp("receivingSum");
91 }
92
93 @Override
94 public void onFailure(RemoteException e) {
95 currentSum = 0;
96 }
97 });
98 }
99

100 @INTERNAL_OPERATION
101 void receivingMsg() {
102 await(cmdMsg);
103 signal(propertyNameChatter);
104 }
105
106 class ReadCmdMsg implements IBlockingCmd {
107 public void exec() {
108 try {
109 ObsProperty prop = getObsProperty(propertyNameChatter);
110 prop.updateValues(currentMessage);
111 } catch (Exception ex) {
112 ex.printStackTrace();
113 }
114 }
115 }
116
117 @INTERNAL_OPERATION
118 void receivingSum() {
119 await(cmdSum);
120 signal(propertyNameSum);
121 }
122
123 class ReadCmdSum implements IBlockingCmd {
124 public void exec() {
125 try {
126 ObsProperty prop = getObsProperty(propertyNameSum);
127 prop.updateValues(currentSum);
128 } catch (Exception ex) {
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129 ex.printStackTrace();
130 }
131 }
132 }
133 }

Listing APPENDIX B.4 – ArtTutorial source code.

1 import cartago.*;
2 import geometry_msgs.*;
3 import java.util.List;
4 import java.util.ArrayList;
5 import org.ros.message.MessageListener;
6 import org.ros.node.topic.Publisher;
7 import org.ros.node.topic.Subscriber;
8
9 public class ArtCmdVelAndOdometry extends JaCaRosArtifact {
10 private static String rosNodeName = "ArtCmdVelAndOdometry";
11
12 /∗ cmd_vel properties ∗/
13 private Publisher<geometry_msgs.Twist> publisherCmdVel;
14 private String topicNameCmdVel = "/cmd_vel";
15 private String topicTypeCmdVel = geometry_msgs.Twist._TYPE;
16 private String propertyNameCmdVel = "cmd_vel";
17 private geometry_msgs.Twist twist;
18 private float speed = 1;
19 private double stepCounter = 0;
20 private boolean abort = false;
21
22 /∗ odom properties ∗/
23 Subscriber <nav_msgs.Odometry> subscriberOdometry;
24 private String topicNameOdom = "/odom";
25 private String topicTypeOdom = nav_msgs.Odometry._TYPE;
26 private String propertyNameOdom = "odom_cmd_vel";
27 private Point currentOdometry;
28
29 public ArtCmdVelAndOdometry() {
30 super(rosNodeName);
31 }
32
33 void init(String agentName) {
34 if (agentName != null) { // Update topic name with agent name
35 topicNameOdom = "/" + agentName + topicNameOdom;
36 topicNameCmdVel = "/" + agentName + topicNameCmdVel;
37 propertyNameOdom = agentName + "_" + propertyNameOdom;
38 }
39
40 /∗ cmd_vel communication ∗/
41 publisherCmdVel = (Publisher<Twist>) createPublisher(topicNameCmdVel, topicTypeCmdVel);
42 sleep(2000);
43
44 /∗ odom communication ∗/
45 defineObsProperty(propertyNameOdom, 0,0,0);
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46
47 subscriberOdometry = (Subscriber <nav_msgs.Odometry>) createSubscriber(topicNameOdom,

topicTypeOdom);
48 subscriberOdometry.addMessageListener(new MessageListener <nav_msgs.Odometry> () {
49 @Override
50 public void onNewMessage(nav_msgs.Odometry message) {
51 Point localPose = message.getPose().getPose().getPosition();
52 if (currentOdometry == null || !currentOdometry.equals(message.getPose().getPose().

getPosition()))
53 currentOdometry = localPose;
54
55 }
56 });
57 }
58
59 void init() {
60 init(null);
61 }
62
63 /∗ cmd_vel Operations ∗/
64
65 @OPERATION void moveForward(double distance){
66 twist = publisherCmdVel.newMessage();
67 twist.getLinear().setX(this.speed); twist.getLinear().setY(0); twist.getLinear().setZ(0)

;
68 twist.getAngular().setX(0); twist.getAngular().setY(0); twist.getAngular().setZ(0);
69
70 this.abort = false; //initialize abort flag
71 double initialPose;
72 if (currentOdometry!=null)
73 initialPose = currentOdometry.getX();
74 else
75 initialPose = 0;
76
77 stepCounter = 0; //initialize stepcounter
78 while (!this.abort && stepCounter <= distance)
79 {
80 if (currentOdometry!=null)
81 stepCounter = currentOdometry.getX() - initialPose;
82
83 sleepNoLog(10);
84 publisherCmdVel.publish(twist);
85 }
86 }
87
88 /∗ odom Operations ∗/
89
90 @OPERATION void abortMoving() {
91 this.abort = true;
92 }
93
94 @OPERATION void rotate(int degree){
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95 twist = publisherCmdVel.newMessage();
96 float localSpeed = 0.5f;
97 if (degree < 0)
98 {
99 localSpeed = localSpeed * -1;

100 degree = degree * -1;
101 }
102 twist.getLinear().setX(0); twist.getLinear().setY(0); twist.getLinear().setZ(0);
103 twist.getAngular().setX(0); twist.getAngular().setY(0); twist.getAngular().setZ(

localSpeed);
104
105 for (short i=0; i<degree/15; i++)
106 { //magic number depends of robot calibration
107 publisherCmdVel.publish(twist);
108 sleepNoLog(500);
109 }
110 }
111
112 @OPERATION void getCurrentOdom() {
113 ObsProperty prop = getObsProperty(propertyNameOdom);
114 if(currentOdometry!= null)
115 prop.updateValues(currentOdometry.getX(),currentOdometry.getY(),currentOdometry.getZ()

);
116 else
117 prop.updateValues(0,0,0);
118 signal(propertyNameOdom);
119 }
120 }

Listing APPENDIX B.5 – ArtCmdVelAndOdometry source code.

1 public class ArtCmdVel extends JaCaRosArtifact {
2 private Publisher<geometry_msgs.Twist> publisherCmdVel;
3 private geometry_msgs.Twist twist = publisherCmdVel.newMessage();
4 private static String rosNodeName = "ArtCmdVel";
5 private String topicName = "/cmd_vel";
6 private String topicType = geometry_msgs.Twist._TYPE;
7 private float speed = 1;
8
9 public ArtCmdVel(){
10 super(rosNodeName); //Creates JaCaROS node into ROS
11 }
12
13 void init(){
14 init(null);
15 }
16
17 void init(String agentName){
18 if (agentName != null) // Update topic name with agent name
19 topicName = "/" + agentName + topicName;
20
21 publisherCmdVel = (Publisher<Twist>) createPublisher(topicName, topicType);
22 sleep(2000); //take some time to ROS process last command
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23 }
24
25 @OPERATION void move(int linear_duration){
26 twist.getLinear().setX(speed); twist.getLinear().setY(0); twist.getLinear().setZ(0);
27 twist.getAngular().setX(0); twist.getAngular().setY(0); twist.getAngular().setZ(0);
28
29 for (int a=0; a<=linear_duration; a++){ //publish during a given time
30 publisherCmdVel.publish(twist);
31 sleepNoLog(100);
32 }
33 }
34
35 @OPERATION void rotate(int degree){
36 if (degree < 0)
37 {
38 speed = speed * -1;
39 degree = degree * -1;
40 }
41
42 twist.getLinear().setX(0); twist.getLinear().setY(0); twist.getLinear().setZ(0);
43 twist.getAngular().setX(0); twist.getAngular().setY(0); twist.getAngular().setZ(speed);
44
45 for (short i=0; i<degree/15; i++) { //magic number depends of robot calibration
46 publisherCmdVel.publish(twist);
47 sleepNoLog(100);
48 }
49 }
50 }

Listing APPENDIX B.6 – ArtCmdVel source code.

1 public class ArtCmdVelMuxAndOdometry extends JaCaRosArtifact {
2 /∗ cmd_vel properties ∗/
3 private Publisher<geometry_msgs.Twist> publisherCmdVelMux;
4 private geometry_msgs.Twist twist = publisherCmdVelMux.newMessage();
5 private static String rosNodeName = "ArtCmdVelMuxAndOdometry";
6 private String propertyNameCmdVelMux = "cmd_vel_mux";
7 private String topicNameCmdVelMux = "/cmd_vel_mux/input/navi";
8 private String topicTypeCmdVelMux = geometry_msgs.Twist._TYPE;
9 private float speed = 1;
10 private double stepCounter = 0;
11 private boolean abort = false;
12 /∗ odom properties ∗/
13 Subscriber <nav_msgs.Odometry> subscriberOdometry;
14 Point currentOdometry;
15 private String propertyNameOdom = "odom_cmd_vel_mux";
16 private String topicNameOdom = "/odom";
17 private String topicTypeOdom = nav_msgs.Odometry._TYPE;
18
19 public ArtCmdVelMuxAndOdometry() {
20 super(rosNodeName); //Creates JaCaROS node into ROS
21 }
22
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23 void init(String agentName) {
24 if (agentName != null) {
25 // Update topic name and property name with agent name (for multi−agent systems)
26 topicNameOdom = "/" + agentName + topicNameOdom;
27 topicNameCmdVelMux = "/" + agentName + topicNameCmdVelMux;
28 propertyNameOdom = agentName + "_" + propertyNameOdom;
29 }
30
31 /∗ cmd_vel_mux communication ∗/
32 publisherCmdVelMux = (Publisher<Twist>) createPublisher(topicNameCmdVelMux,

topicTypeCmdVelMux);
33 sleep(2000); //take some time to ROS process last command
34 /∗ odom communication ∗/
35 defineObsProperty(propertyNameOdom, 0,0,0);
36 subscriberOdometry = (Subscriber <nav_msgs.Odometry>) createSubscriber(topicNameOdom

, topicTypeOdom);
37 /∗ odom Listener ∗/
38 subscriberOdometry.addMessageListener(new MessageListener <nav_msgs.Odometry> () {
39 @Override
40 public void onNewMessage(nav_msgs.Odometry message) {
41 Point localPose = message.getPose().getPose().getPosition();
42 if (currentOdometry == null || !currentOdometry.equals(message.getPose().

getPose().getPosition()))
43 currentOdometry = localPose;
44 }
45 });
46 }
47
48 void init() {
49 init(null);
50 }
51
52 /∗ cmd_vel_mux Operations ∗/
53 @OPERATION void moveForward(double distance){
54 twist.getLinear().setX(speed); twist.getLinear().setY(0); twist.getLinear().setZ(0);
55 twist.getAngular().setX(0); twist.getAngular().setY(0); twist.getAngular().setZ(0);
56 this.abort = false; //initialize abort flag
57 double initialPose;
58 if (currentOdometry!=null)
59 initialPose = currentOdometry.getX();
60 else
61 initialPose = 0;
62
63 stepCounter = 0; //initialize stepcounter
64 while (!this.abort && stepCounter <= distance) {
65 if (currentOdometry!=null)
66 stepCounter = currentOdometry.getX() - initialPose;
67
68 sleepNoLog(10);
69 publisherCmdVelMux.publish(twist); //Publish into ROS topics: cmd_vel Linear X
70 }
71
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72 if (this.abort)
73 logger1.info("ArtCmdVelMuxAndOdometry >> ABORTED");
74 }
75
76 @OPERATION void rotate(int degree) {
77 float localSpeed = this.speed;
78
79 if (degree < 0) {
80 localSpeed = localSpeed * -1;
81 degree = degree * -1;
82 }
83
84 twist.getLinear().setX(0); twist.getLinear().setY(0); twist.getLinear().setZ(0);
85 twist.getAngular().setX(0); twist.getAngular().setY(0); twist.getAngular().setZ(

localSpeed);
86
87 for (short i=0; i<degree/15; i++) { //magic number depends of robot calibration
88 publisherCmdVelMux.publish(twist); //Publish into ROS topics: cmd_vel_mux Angular Z
89 sleepNoLog(10);
90 }
91 }
92
93 @OPERATION void abortMoving() {
94 this.abort = true;
95 }
96
97 /∗ odom Operations ∗/
98 @OPERATION void getCurrentOdom() {
99 ObsProperty prop = getObsProperty(propertyNameOdom);

100 if(currentOdometry!= null)
101 prop.updateValues(currentOdometry.getX(),currentOdometry.getY(),currentOdometry.

getZ());
102 else
103 prop.updateValues(0,0,0);
104
105 signal(propertyNameOdom);
106 }
107 }

Listing APPENDIX B.7 – ArtCmdVelMuxAndOdometry artifact source code.

1 public class ArtSimBattery extends Artifact {
2 private String propertyNameBattery = "battery";
3 private int currentBattery = 100; //initialize battery 100% charged
4 private String propertyNameDiagnostics = "diagnostics";
5 private String currentDiagnostics = "Full Battery"; //initialize status = full charged
6 private ReadCmd cmd;
7 private Timer timer;
8 private final int FULL = 100;
9 private final int MEDIUM = 50;
10 private final int LOW = 20;
11 private final int STEP = 1;
12
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13 void init() {
14 defineObsProperty(propertyNameBattery, currentBattery);
15 signal(propertyNameBattery);
16 defineObsProperty(propertyNameDiagnostics, currentDiagnostics);
17 signal(propertyNameDiagnostics);
18
19 cmd = new ReadCmd();
20 timer = new Timer(1000, new ActionListener() {
21 @Override
22 public void actionPerformed(ActionEvent e) {
23 currentBattery = currentBattery - STEP; // uncharging
24 execInternalOp("intOp");
25 if (currentBattery == 0)
26 timer.stop();
27 }
28 });
29 timer.start();
30 }
31
32 @INTERNAL_OPERATION
33 void intOp() {
34 await(cmd);
35 }
36
37 class ReadCmd implements IBlockingCmd {
38 public ReadCmd() {}
39
40 public void exec() {
41 try {
42 ObsProperty prop = getObsProperty(propertyNameBattery);
43 prop.updateValues(currentBattery);
44 isDiagnosticUpdateNeeded();
45 }catch (Exception ex) {
46 ex.printStackTrace();
47 }
48 }
49 }
50
51 private void isDiagnosticUpdateNeeded() {
52 String localDiagnostic = getObsProperty(propertyNameDiagnostics).stringValue(); //saving

current
53 switch (currentBattery) {
54 case FULL:
55 currentDiagnostics = "Full Battery";
56 break;
57 case MEDIUM:
58 currentDiagnostics = "Medium Battery";
59 break;
60 case LOW:
61 currentDiagnostics = "Low Battery";
62 break;
63 }
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64 if (!localDiagnostic.equals(currentDiagnostics)){
65 ObsProperty propDiag = getObsProperty(propertyNameDiagnostics);
66 propDiag.updateValues(currentDiagnostics);
67 }
68 }
69
70 @OPERATION void operationRecharge() throws InterruptedException{
71 while (currentBattery < 100) {
72 currentBattery = currentBattery + 10;
73 ObsProperty prop = getObsProperty(propertyNameBattery); //recharging
74 prop.updateValues(currentBattery);
75 signal(propertyNameBattery);
76 Thread.sleep(500);
77 isDiagnosticUpdateNeeded();
78 }
79 timer.start();
80 }
81 }

Listing APPENDIX B.8 – ArtSimBattery pseudo code.

1 public class ArtCleaning extends Artifact {
2 private String propertyNameAtRoom = "atRoom";
3 private String propertyNameVacuum = "vacuum";
4 private String propertyNameMop = "mop";
5 private String propertyNameScrub = "scrub";
6
7 private final String HALLWAY ="hallway";
8 private final String LIVING ="living Room";
9 private final String KITCHEN ="kitchen";
10 private final String BATHROOM ="bathroom";
11
12 private int atRoom = 0;
13 private String room = HALLWAY;
14
15 void init() {
16 defineObsProperty(propertyNameAtRoom, atRoom); //initialize at hallway
17 signal(propertyNameAtRoom);
18 defineObsProperty(propertyNameVacuum, "", "");
19 defineObsProperty(propertyNameMop, "", "");
20 defineObsProperty(propertyNameScrub, "", "");
21 }
22
23
24 @OPERATION void whereAmI() {
25 ObsProperty prop = getObsProperty(propertyNameAtRoom);
26 signal(propertyNameAtRoom);
27 }
28
29 @OPERATION void clean(int localRoom) throws InterruptedException{
30 if(localRoom == 0){
31 room = HALLWAY;
32 }else if (localRoom == 1){
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33 room = LIVING;
34 ObsProperty prop = getObsProperty(propertyNameVacuum);
35 prop.updateValues("Carpet", room);
36 signal(propertyNameVacuum);
37 }else if (localRoom == 2){
38 room = KITCHEN;
39 ObsProperty prop = getObsProperty(propertyNameMop);
40 prop.updateValues("Flor", room);
41 signal(propertyNameMop);
42 }else if (localRoom == 3){
43 room = BATHROOM;
44 ObsProperty prop = getObsProperty(propertyNameScrub);
45 prop.updateValues("Tub", room);
46 signal(propertyNameScrub);
47
48 Thread.sleep(1000);
49 prop = getObsProperty(propertyNameMop);
50 prop.updateValues("Flor", room);
51 signal(propertyNameMop);
52 }else {
53 room = "error";
54 }
55 Thread.sleep(2500);
56 }
57
58 @OPERATION void updateWhereAmI(){
59 atRoom++;
60 if (atRoom > 3)
61 atRoom = 0;
62
63 ObsProperty prop = getObsProperty(propertyNameAtRoom);
64 prop.updateValues(atRoom);
65 signal(propertyNameAtRoom);
66 }
67 }

Listing APPENDIX B.9 – ArtCleaning source code.
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APPENDIX C – PYTHON CODE

1 #!/usr/bin/env python
2 import rospy
3 from geometry_msgs.msg import Twist
4 from math import pi
5
6 class OutAndBack():
7 def __init__(self):
8 rospy.init_node(’out_and_back’, anonymous=False) # Give the node a name
9 rospy.on_shutdown(self.shutdown) # Set rospy to execute a shutdown function when exiting
10 self.cmd_vel = rospy.Publisher(’/cmd_vel’, Twist) # Publisher to control the robot’s speed
11 rate = 50 # How fast will we update the robot’s movement?
12 r = rospy.Rate(rate) # Set the equivalent ROS rate variable
13 linear_speed = 0.2 # Set the forward linear speed to 0.2 meters per second
14 goal_distance = 1.0 # Set the travel distance to 1.0 meters
15 linear_duration = goal_distance / linear_speed # How long should it take us to get there?
16 angular_speed = 1.0 # Set the rotation speed to 1.0 radians per second
17 goal_angle = pi # Set the rotation angle to Pi radians (180 degrees)
18 angular_duration = goal_angle / angular_speed # How long should it take to rotate?
19
20 # Loop through the two legs of the trip
21 for i in range(2):
22 move_cmd = Twist() # Initialize the movement command
23 move_cmd.linear.x = linear_speed # Set the forward speed
24 ticks = int(linear_duration * rate) # Move forward for a time to go the desired distance
25
26 for t in range(ticks):
27 self.cmd_vel.publish(move_cmd)
28 r.sleep()
29
30 # Stop the robot before the rotation
31 move_cmd = Twist()
32 self.cmd_vel.publish(move_cmd)
33 rospy.sleep(1)
34
35 # Now rotate left roughly 180 degrees
36 # Set the angular speed
37 move_cmd.angular.z = angular_speed
38
39 ticks = int(goal_angle * rate) # Rotate for a time to go 180 degrees
40
41 for t in range(ticks):
42 self.cmd_vel.publish(move_cmd)
43 r.sleep()
44
45 # Stop the robot before the next leg
46 move_cmd = Twist()
47 self.cmd_vel.publish(move_cmd)
48 rospy.sleep(1)
49
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50 # Stop the robot
51 self.cmd_vel.publish(Twist())
52
53 def shutdown(self):
54 # Always stop the robot when shutting down the node.
55 rospy.loginfo("Stopping the robot...")
56 self.cmd_vel.publish(Twist())
57 rospy.sleep(1)
58
59 if __name__ == ’__main__’:
60 try:
61 OutAndBack()
62 except:
63 rospy.loginfo("Out-and-Back node terminated.")

Listing APPENDIX C.1 – The Time-Based Out-and-Back Script [16].

1 #!/usr/bin/env python
2 import rospy
3 from geometry_msgs.msg import Twist, Point, Quaternion
4 import tf
5 from rbx1_nav.transform_utils import quat_to_angle, normalize_angle
6 from math import radians, copysign, sqrt, pow, pi
7
8 class NavSquare():
9 def __init__(self):
10 rospy.init_node(’nav_square’, anonymous=False) # Give the node a name
11 rospy.on_shutdown(self.shutdown) # Set rospy to execute a shutdown function when terminating

the script
12 rate = 20 # How fast will we check the odometry values?
13 r = rospy.Rate(rate) # Set the equivalent ROS rate variable
14
15 # Set the parameters for the target square
16 goal_distance = rospy.get_param("~goal_distance", 1.0) # meters
17 goal_angle = rospy.get_param("~goal_angle", radians(90)) # degrees converted to radians
18 linear_speed = rospy.get_param("~linear_speed", 0.2) # meters per second
19 angular_speed = rospy.get_param("~angular_speed", 0.7) # radians per second
20 angular_tolerance = rospy.get_param("~angular_tolerance", radians(2)) # degrees to

radians
21
22 self.cmd_vel = rospy.Publisher(’/cmd_vel’, Twist) # Publisher to control the robot’s speed
23 self.base_frame = rospy.get_param(’~base_frame’, ’/base_link’) # The base frame is

base_footprint for the TurtleBot but base_link for Pi Robot
24 self.odom_frame = rospy.get_param(’~odom_frame’, ’/odom’) # The odom frame is usually

just /odom
25 self.tf_listener = tf.TransformListener() # Initialize the tf listener
26 rospy.sleep(2) # Give tf some time to fill its buffer
27 self.odom_frame = ’/odom’ # Set the odom frame
28
29 try:
30 self.tf_listener.waitForTransform(self.odom_frame, ’/base_footprint’, rospy.Time

(), rospy.Duration(1.0))
31 self.base_frame = ’/base_footprint’
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32 except (tf.Exception, tf.ConnectivityException, tf.LookupException):
33 try:
34 self.tf_listener.waitForTransform(self.odom_frame, ’/base_link’, rospy.Time()

, rospy.Duration(1.0))
35 self.base_frame = ’/base_link’
36 except (tf.Exception, tf.ConnectivityException, tf.LookupException):
37 rospy.loginfo("Cannot find transform between /odom and /base_link or /

base_footprint")
38 rospy.signal_shutdown("tf Exception")
39
40 position = Point() # Initialize the position variable as a Point type
41
42 # Cycle through the four sides of the square
43 for i in range(4):
44 move_cmd = Twist() # Initialize the movement command
45 move_cmd.linear.x = linear_speed # Set the movement command to forward motion
46 (position, rotation) = self.get_odom() # Get the starting position values
47
48 x_start = position.x
49 y_start = position.y
50
51 distance = 0 # Keep track of the distance traveled
52
53 # Enter the loop to move along a side
54 while distance < goal_distance and not rospy.is_shutdown():
55 # Publish the Twist message and sleep 1 cycle
56 self.cmd_vel.publish(move_cmd)
57 r.sleep()
58
59 (position, rotation) = self.get_odom() # Get the current position
60
61 # Compute the Euclidean distance from the start
62 distance = sqrt(pow((position.x - x_start), 2) +
63 pow((position.y - y_start), 2))
64
65 # Stop the robot before rotating
66 move_cmd = Twist()
67 self.cmd_vel.publish(move_cmd)
68 rospy.sleep(1.0)
69
70 move_cmd.angular.z = angular_speed # Set the movement command to a rotation
71 last_angle = rotation # Track the last angle measured
72 turn_angle = 0 # Track how far we have turned
73
74 # Begin the rotation
75 while abs(turn_angle + angular_tolerance) < abs(goal_angle) and not rospy.

is_shutdown():
76 self.cmd_vel.publish(move_cmd) # Publish the Twist message and sleep 1 cycle
77 r.sleep()
78 (position, rotation) = self.get_odom() # Get the current rotation
79 delta_angle = normalize_angle(rotation - last_angle) # Compute the amount of

rotation since the last loop
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80
81 turn_angle += delta_angle
82 last_angle = rotation
83
84 move_cmd = Twist()
85 self.cmd_vel.publish(move_cmd)
86 rospy.sleep(1.0)
87
88 self.cmd_vel.publish(Twist()) # Stop the robot when we are done
89
90 def get_odom(self):
91 # Get the current transform between the odom and base frames
92 try:
93 (trans, rot) = self.tf_listener.lookupTransform(self.odom_frame, self.base_frame,

rospy.Time(0))
94 except (tf.Exception, tf.ConnectivityException, tf.LookupException):
95 rospy.loginfo("TF Exception")
96 return
97
98 return (Point(*trans), quat_to_angle(Quaternion(*rot)))
99

100 def shutdown(self):
101 # Always stop the robot when shutting down the node
102 rospy.loginfo("Stopping the robot...")
103 self.cmd_vel.publish(Twist())
104 rospy.sleep(1)
105
106 if __name__ == ’__main__’:
107 try:
108 NavSquare()
109 except rospy.ROSInterruptException:
110 rospy.loginfo("Navigation terminated.")

Listing APPENDIX C.2 – Navigating a Square [16].

1 import rospy
2 from diagnostic_msgs.msg import *
3 from std_msgs.msg import Float32
4 from rbx2_msgs.srv import *
5 import dynamic_reconfigure.server
6 from rbx2_utils.cfg import BatterySimulatorConfig
7 import thread
8
9 class BatterySimulator():
10 def __init__(self):
11 rospy.init_node("battery_simulator")
12 self.rate = rospy.get_param("~rate", 1) # The rate at which to publish the battery level
13 r = rospy.Rate(self.rate) # Convert to a ROS rate
14 self.battery_runtime = rospy.get_param("~battery_runtime", 30) # The battery runtime in

seconds
15 self.initial_battery_level = rospy.get_param("~initial_battery_level", 100) # The intial

battery level − 100 is considered full charge
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16 self.error_battery_level = rospy.get_param("~error_battery_level", 20) # Error battery level
for diagnostics

17 self.warn_battery_level = rospy.get_param("~warn_battery_level", 50) # Warn battery level
for diagnostics

18 self.current_battery_level = self.initial_battery_level # Initialize the current level variable to
the startup level

19 self.new_battery_level = self.initial_battery_level # Initialize the new level variable to the
startup level

20 self.battery_step = float(self.initial_battery_level) / self.rate / self.battery_runtime
# The step sized used to decrease the battery level on each publishing loop

21 self.mutex = thread.allocate_lock() # Reserve a thread lock
22 battery_level_pub = rospy.Publisher("battery_level", Float32) # Create the battery level

publisher
23 rospy.Service(’~set_battery_level’, SetBatteryLevel, self.SetBatteryLevelHandler) # A

service to maually set the battery level
24 diag_pub = rospy.Publisher("diagnostics", DiagnosticArray) # Create a diagnostics publisher
25 dyn_server = dynamic_reconfigure.server.Server(BatterySimulatorConfig, self.

dynamic_reconfigure_callback) # Create a dynamic_reconfigure server and set a callback function
26 rospy.loginfo("Publishing simulated battery level with a runtime of " + str(self.

battery_runtime) + " seconds...")
27
28 # Start the publishing loop
29 while not rospy.is_shutdown():
30 # Initialize the diagnostics status
31 status = DiagnosticStatus()
32 status.name = "Battery Level"
33
34 # Set the diagnostics status level based on the current battery level
35 if self.current_battery_level < self.error_battery_level:
36 status.message = "Low Battery"
37 status.level = DiagnosticStatus.ERROR
38 elif self.current_battery_level < self.warn_battery_level:
39 status.message = "Medium Battery"
40 status.level = DiagnosticStatus.WARN
41 else:
42 status.message = "Battery OK"
43 status.level = DiagnosticStatus.OK
44
45 status.values.append(KeyValue("Battery Level", str(self.current_battery_level))) # Add

the raw battery level to the diagnostics message
46
47 # Build the diagnostics array message
48 msg = DiagnosticArray()
49 msg.header.stamp = rospy.Time.now()
50 msg.status.append(status)
51 diag_pub.publish(msg)
52 battery_level_pub.publish(self.current_battery_level)
53 self.current_battery_level = max(0, self.current_battery_level - self.battery_step)
54 r.sleep()
55
56 def dynamic_reconfigure_callback(self, config, level):
57 if self.battery_runtime != config[’battery_runtime’]:
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58 self.battery_runtime = config[’battery_runtime’]
59 self.battery_step = 100.0 / self.rate / self.battery_runtime
60
61 if self.new_battery_level != config[’new_battery_level’]:
62 self.new_battery_level = config[’new_battery_level’]
63 self.mutex.acquire()
64 self.current_battery_level = self.new_battery_level
65 self.mutex.release()
66
67 return config
68
69 def SetBatteryLevelHandler(self, req):
70 self.mutex.acquire()
71 self.current_battery_level = req.value
72 self.mutex.release()
73 return SetBatteryLevelResponse()
74
75 if __name__ == ’__main__’:
76 BatterySimulator()

Listing APPENDIX C.3 – The Fake Battery Simulator Script [17].

1 import rospy
2 import actionlib
3 from actionlib import GoalStatus
4 from geometry_msgs.msg import Pose, Point, Quaternion, Twist
5 from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal, MoveBaseActionFeedback
6 from tf.transformations import quaternion_from_euler
7 from visualization_msgs.msg import Marker
8 from math import pi
9 from collections import OrderedDict
10
11 def setup_task_environment(self):
12 # How big is the square we want the robot to patrol ?
13 self.square_size = rospy.get_param("~square_size", 1.0) # meters
14 # Set the low battery threshold (between 0 and 100)
15 self.low_battery_threshold = rospy.get_param(’~low_battery_threshold’, 50)
16 # How many times should we execute the patrol loop
17 self.n_patrols = rospy.get_param("~n_patrols", 2) # meters
18 # How long do we have to get to each waypoint?
19 self.move_base_timeout = rospy.get_param("~move_base_timeout", 10) #seconds
20 self.patrol_count = 0 # Initialize the patrol counter
21
22 # Subscribe to the move_base action server
23 self.move_base = actionlib.SimpleActionClient("move_base", MoveBaseAction)
24 rospy.loginfo("Waiting for move_base action server...")
25 # Wait up to 60 seconds for the action server to become available
26 self.move_base.wait_for_server(rospy.Duration(60))
27 rospy.loginfo("Connected to move_base action server")
28
29 quaternions = list() # Create a list to hold the target quaternions ( orientations )
30 euler_angles = (pi/2, pi, 3*pi/2, 0) # First define the corner orientations as Euler angles
31 # Then convert the angles to quaternions
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32 for angle in euler_angles:
33 q_angle = quaternion_from_euler(0, 0, angle, axes=’sxyz’)
34 q = Quaternion(*q_angle)
35 quaternions.append(q)
36
37 self.waypoints = list() # Create a list to hold the waypoint poses
38
39 # Append each of the four waypoints to the list . Each waypoint
40 # is a pose consisting of a position and orientation in the map frame.
41 self.waypoints.append(Pose(Point(0.0, 0.0, 0.0), quaternions[3]))
42 self.waypoints.append(Pose(Point(self.square_size, 0.0, 0.0), quaternions[0]))
43 self.waypoints.append(Pose(Point(self.square_size, self.square_size, 0.0), quaternions[1])

)
44 self.waypoints.append(Pose(Point(0.0, self.square_size, 0.0), quaternions[2]))
45
46 # Create a mapping of room names to waypoint locations
47 room_locations = ((’hallway’, self.waypoints[0]),
48 (’living_room’, self.waypoints[1]),
49 (’kitchen’, self.waypoints[2]),
50 (’bathroom’, self.waypoints[3]))
51
52 # Store the mapping as an ordered dictionary so we can visit the rooms in sequence
53 self.room_locations = OrderedDict(room_locations)
54 # Where is the docking station ?
55 self.docking_station_pose = (Pose(Point(0.5, 0.5, 0.0), Quaternion(0.0, 0.0, 0.0, 1.0)))
56 init_waypoint_markers(self) # Initialize the waypoint visualization markers for RViz
57 # Set a visualization marker at each waypoint
58 for waypoint in self.waypoints:
59 p = Point()
60 p = waypoint.position
61 self.waypoint_markers.points.append(p)
62 init_docking_station_marker(self) # Set a marker for the docking station
63
64 # Publisher to manually control the robot (e.g. to stop it )
65 self.cmd_vel_pub = rospy.Publisher(’cmd_vel’, Twist)
66 rospy.loginfo("Starting Tasks")
67 # Publish the waypoint markers
68 self.marker_pub.publish(self.waypoint_markers)
69 rospy.sleep(1)
70 self.marker_pub.publish(self.waypoint_markers)
71 # Publish the docking station marker
72 self.docking_station_marker_pub.publish(self.docking_station_marker)
73 rospy.sleep(1)
74
75 def init_waypoint_markers(self):
76 # Set up our waypoint markers
77 marker_scale = 0.2
78 marker_lifetime = 0 # 0 is forever
79 marker_ns = ’waypoints’
80 marker_id = 0
81 marker_color = {’r’: 1.0, ’g’: 0.7, ’b’: 1.0, ’a’: 1.0}
82 # Define a marker publisher .
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83 self.marker_pub = rospy.Publisher(’waypoint_markers’, Marker)
84 # Initialize the marker points list .
85 self.waypoint_markers = Marker()
86 self.waypoint_markers.ns = marker_ns
87 self.waypoint_markers.id = marker_id
88 self.waypoint_markers.type = Marker.CUBE_LIST
89 self.waypoint_markers.action = Marker.ADD
90 self.waypoint_markers.lifetime = rospy.Duration(marker_lifetime)
91 self.waypoint_markers.scale.x = marker_scale
92 self.waypoint_markers.scale.y = marker_scale
93 self.waypoint_markers.color.r = marker_color[’r’]
94 self.waypoint_markers.color.g = marker_color[’g’]
95 self.waypoint_markers.color.b = marker_color[’b’]
96 self.waypoint_markers.color.a = marker_color[’a’]
97 self.waypoint_markers.header.frame_id = ’odom’
98 self.waypoint_markers.header.stamp = rospy.Time.now()
99 self.waypoint_markers.points = list()

100
101 def init_docking_station_marker(self):
102 # Define a marker for the charging station
103 marker_scale = 0.3
104 marker_lifetime = 0 # 0 is forever
105 marker_ns = ’waypoints’
106 marker_id = 0
107 marker_color = {’r’: 0.7, ’g’: 0.7, ’b’: 0.0, ’a’: 1.0}
108 self.docking_station_marker_pub = rospy.Publisher(’docking_station_marker’, Marker)
109 self.docking_station_marker = Marker()
110 self.docking_station_marker.ns = marker_ns
111 self.docking_station_marker.id = marker_id
112 self.docking_station_marker.type = Marker.CYLINDER
113 self.docking_station_marker.action = Marker.ADD
114 self.docking_station_marker.lifetime = rospy.Duration(marker_lifetime)
115 self.docking_station_marker.scale.x = marker_scale
116 self.docking_station_marker.scale.y = marker_scale
117 self.docking_station_marker.scale.z = 0.02
118 self.docking_station_marker.color.r = marker_color[’r’]
119 self.docking_station_marker.color.g = marker_color[’g’]
120 self.docking_station_marker.color.b = marker_color[’b’]
121 self.docking_station_marker.color.a = marker_color[’a’]
122 self.docking_station_marker.header.frame_id = ’odom’
123 self.docking_station_marker.header.stamp = rospy.Time.now()
124 self.docking_station_marker.pose = self.docking_station_pose

Listing APPENDIX C.4 – Task Setup script. It establish the basic environment [17].

1 #!/usr/bin/env python
2 import string
3 import pygraphviz as pgv
4 from pygraph.classes.graph import graph
5 from pygraph.classes.digraph import digraph
6 from pygraph.algorithms.searching import breadth_first_search
7 from pygraph.readwrite.dot import write
8
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9 class TaskStatus(object):
10 """ A class for enumerating task statuses """
11 FAILURE = 0
12 SUCCESS = 1
13 RUNNING = 2
14
15 class Task(object):
16 """ "The base Task class """
17 def __init__(self, name, children=None, *args, **kwargs):
18 self.name = name
19 self.status = None
20 if children is None:
21 children = []
22 self.children = children
23
24 def run(self):
25 pass
26
27 def reset(self):
28 for c in self.children:
29 c.reset()
30
31 def add_child(self, c):
32 self.children.append(c)
33
34 def remove_child(self, c):
35 self.children.remove(c)
36
37 def prepend_child(self, c):
38 self.children.insert(0, c)
39
40 def insert_child(self, c, i):
41 self.children.insert(i, c)
42
43 def get_status(self):
44 return self.status
45
46 def set_status(self, s):
47 self.status = s
48
49 def announce(self):
50 print("Executing task " + str(self.name))
51
52 # These next two functions allow us to use the ’with’ syntax
53 def __enter__(self):
54 return self.name
55
56 def __exit__(self, exc_type, exc_val, exc_tb):
57 if exc_type is not None:
58 return False
59 return True
60
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61 class Selector(Task):
62 """ A selector runs each task in order until one succeeds,
63 at which point it returns SUCCESS. If all tasks fail, a FAILURE
64 status is returned. If a subtask is still RUNNING, then a RUNNING
65 status is returned and processing continues until either SUCCESS
66 or FAILURE is returned from the subtask.
67 """
68 def __init__(self, name, *args, **kwargs):
69 super(Selector, self).__init__(name, *args, **kwargs)
70
71 def run(self):
72 for c in self.children:
73 c.status = c.run()
74 if c.status != TaskStatus.FAILURE:
75 return c.status
76 return TaskStatus.FAILURE
77
78 class Sequence(Task):
79 """
80 A sequence runs each task in order until one fails,
81 at which point it returns FAILURE. If all tasks succeed, a SUCCESS
82 status is returned. If a subtask is still RUNNING, then a RUNNING
83 status is returned and processing continues until either SUCCESS
84 or FAILURE is returned from the subtask.
85 """
86 def __init__(self, name, *args, **kwargs):
87 super(Sequence, self).__init__(name, *args, **kwargs)
88
89 def run(self):
90 for c in self.children:
91 c.status = c.run()
92 if c.status != TaskStatus.SUCCESS:
93 return c.status
94 return TaskStatus.SUCCESS
95
96 class Iterator(Task):
97 """
98 Iterate through all child tasks ignoring failure.
99 """

100 def __init__(self, name, *args, **kwargs):
101 super(Iterator, self).__init__(name, *args, **kwargs)
102
103 def run(self):
104 for c in self.children:
105 c.status = c.run()
106 if c.status != TaskStatus.SUCCESS and c.status != TaskStatus.FAILURE:
107 return c.status
108 return TaskStatus.SUCCESS
109
110 class ParallelOne(Task):
111 """
112 A parallel task runs each child task at (roughly) the same time.
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113 The ParallelOne task returns success as soon as any child succeeds.
114 """
115 def __init__(self, name, *args, **kwargs):
116 super(ParallelOne, self).__init__(name, *args, **kwargs)
117
118 def run(self):
119 for c in self.children:
120 c.status = c.run()
121 if c.status == TaskStatus.SUCCESS:
122 return TaskStatus.SUCCESS
123 return TaskStatus.FAILURE
124
125 class ParallelAll(Task):
126 """
127 A parallel task runs each child task at (roughly) the same time.
128 The ParallelAll task requires all subtasks to succeed for it to succeed.
129 """
130 def __init__(self, name, *args, **kwargs):
131 super(ParallelAll, self).__init__(name, *args, **kwargs)
132
133 def run(self):
134 n_success = 0
135 n_children = len(self.children)
136
137 for c in self.children:
138 c.status = c.run()
139 if c.status == TaskStatus.SUCCESS:
140 n_success += 1
141 if c.status == TaskStatus.FAILURE:
142 return TaskStatus.FAILURE
143 if n_success == n_children:
144 return TaskStatus.SUCCESS
145 else:
146 return TaskStatus.RUNNING
147
148 class Loop(Task):
149 """
150 Loop over one or more subtasks for the given number of iterations
151 Use the value -1 to indicate a continual loop.
152 """
153 def __init__(self, name, announce=True, *args, **kwargs):
154 super(Loop, self).__init__(name, *args, **kwargs)
155 self.iterations = kwargs[’iterations’]
156 self.announce = announce
157 self.loop_count = 0
158 self.name = name
159 print("Loop iterations: " + str(self.iterations))
160
161 def run(self):
162 while True:
163 if self.iterations != -1 and self.loop_count >= self.iterations:
164 return TaskStatus.SUCCESS
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165 for c in self.children:
166 while True:
167 c.status = c.run()
168 if c.status == TaskStatus.SUCCESS:
169 break
170 return c.status
171 c.reset()
172 self.loop_count += 1
173 if self.announce:
174 print(self.name + " COMPLETED " + str(self.loop_count) + " LOOP(S)")
175
176 class IgnoreFailure(Task):
177 """
178 Always return either RUNNING or SUCCESS.
179 """
180 def __init__(self, name, *args, **kwargs):
181 super(IgnoreFailure, self).__init__(name, *args, **kwargs)
182
183 def run(self):
184 for c in self.children:
185 c.status = c.run()
186 if c.status == TaskStatus.FAILURE:
187 return TaskStatus.SUCCESS
188 else:
189 return c.status
190 return TaskStatus.SUCCESS
191
192 class AutoRemoveSequence(Task):
193 """
194 Remove each successful subtask from a sequence
195 """
196 def __init__(self, name, *args, **kwargs):
197 super(AutoRemoveSequence, self).__init__(name, *args, **kwargs)
198
199 def run(self):
200 for c in self.children:
201 c.status = c.run()
202 if c.status == TaskStatus.FAILURE:
203 return TaskStatus.FAILURE
204 if c.statuss == TaskStatus.RUNNING:
205 return TaskStatus.RUNNING
206 try:
207 self.children.remove(self.children[0])
208 except:
209 return TaskStatus.FAILURE
210 return TaskStatus.SUCCESS
211
212 class loop(Task):
213 """
214 Loop over one or more subtasks a given number of iterations
215 """
216 def __init__(self, task, iterations=-1):
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217 new_name = task.name + "_loop_" + str(iterations)
218 super(loop, self).__init__(new_name)
219 self.task = task
220 self.iterations = iterations
221 self.old_run = task.run
222 self.old_reset = task.reset
223 self.old_children = task.children
224 self.loop_count = 0
225 print("Loop iterations: " + str(self.iterations))
226
227 def run(self):
228 if self.iterations != -1 and self.loop_count >= self.iterations:
229 return TaskStatus.SUCCESS
230 print("Loop " + str(self.loop_count))
231 while True:
232 self.status = self.old_run()
233 if self.status == TaskStatus.SUCCESS:
234 break
235 else:
236 return self.status
237 self.old_reset()
238 self.loop_count += 1
239 self.task.run = self.run
240 return self.task
241
242 class ignore_failure(Task):
243 """
244 Always return either RUNNING or SUCCESS.
245 """
246 def __init__(self, task):
247 new_name = task.name + "_ignore_failure"
248 super(ignore_failure, self).__init__(new_name)
249 self.task = task
250 self.old_run = task.run
251
252 def run(self):
253 while True:
254 self.status = self.old_run()
255 if self.status == TaskStatus.FAILURE:
256 return TaskStatus.SUCCESS
257 else:
258 return self.status
259 self.task.run = self.run
260 return self.task
261
262 def print_tree(tree, indent=0):
263 """
264 Print an ASCII representation of the tree
265 """
266 for c in tree.children:
267 print " " * indent, "-->", c.name
268 if c.children != []:
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269 print_tree(c, indent+1)
270
271 def print_phpsyntax_tree(tree):
272 """
273 Print an output compatible with ironcreek.net/phpSyntaxTree
274 """
275 for c in tree.children:
276 print "[" + string.replace(c.name, "_", "."),
277 if c.children != []:
278 print_phpsyntax_tree(c),
279 print "]",

Listing APPENDIX C.5 – Core classes for implementing Behavior Trees in Python [17].

1 #!/usr/bin/env python
2 import rospy
3 import actionlib
4 from actionlib_msgs.msg import GoalStatus
5 from pi_trees_lib.pi_trees_lib import *
6
7 class MonitorTask(Task):
8 """
9 Turn a ROS subscriber into a Task.
10 """
11 def __init__(self, name, topic, msg_type, msg_cb, wait_for_message=True, timeout=5):
12 super(MonitorTask, self).__init__(name)
13 self.topic = topic
14 self.msg_type = msg_type
15 self.timeout = timeout
16 self.msg_cb = msg_cb
17 rospy.loginfo("Subscribing to topic " + topic)
18 if wait_for_message:
19 try:
20 rospy.wait_for_message(topic, msg_type, timeout=self.timeout)
21 rospy.loginfo("Connected.")
22 except:
23 rospy.loginfo("Timed out waiting for " + topic)
24 # Subscribe to the given topic with the given callback function executed via run()
25 rospy.Subscriber(self.topic, self.msg_type, self._msg_cb)
26
27 def _msg_cb(self, msg):
28 self.set_status(self.msg_cb(msg))
29
30 def run(self):
31 return self.status
32
33 def reset(self):
34 pass
35
36 class ServiceTask(Task):
37 """
38 Turn a ROS service into a Task.
39 """
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40 def __init__(self, name, service, service_type, request, result_cb=None, wait_for_service=
True, timeout=5):

41 super(ServiceTask, self).__init__(name)
42 self.result = None
43 self.request = request
44 self.timeout = timeout
45 self.result_cb = result_cb
46 rospy.loginfo("Connecting to service " + service)
47 if wait_for_service:
48 rospy.loginfo("Waiting for service")
49 rospy.wait_for_service(service, timeout=self.timeout)
50 rospy.loginfo("Connected.")
51 # Create a service proxy
52 self.service_proxy = rospy.ServiceProxy(service, service_type)
53
54 def run(self):
55 try:
56 result = self.service_proxy(self.request)
57 if self.result_cb is not None:
58 self.result_cb(result)
59 return TaskStatus.SUCCESS
60 except:
61 rospy.logerr(sys.exc_info())
62 return TaskStatus.FAILURE
63
64 def reset(self):
65 pass
66
67 class SimpleActionTask(Task):
68 """
69 Turn a ROS action into a Task.
70 """
71 def __init__(self, name, action, action_type, goal, rate=5, connect_timeout=10,

result_timeout=30, reset_after=False, active_cb=None, done_cb=None, feedback_cb=None):
72 super(SimpleActionTask, self).__init__(name)
73 self.action = action
74 self.goal = goal
75 self.tick = 1.0 / rate
76 self.rate = rospy.Rate(rate)
77 self.result = None
78 self.connect_timeout = connect_timeout
79 self.result_timeout = result_timeout
80 self.reset_after = reset_after
81 if done_cb == None:
82 done_cb = self.default_done_cb
83 self.done_cb = done_cb
84 if active_cb == None:
85 active_cb = self.default_active_cb
86 self.active_cb = active_cb
87 if feedback_cb == None:
88 feedback_cb = self.default_feedback_cb
89 self.feedback_cb = feedback_cb
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90 self.action_started = False
91 self.action_finished = False
92 self.goal_status_reported = False
93 self.time_so_far = 0.0
94
95 # Goal state return values
96 self.goal_states = [’PENDING’, ’ACTIVE’, ’PREEMPTED’,
97 ’SUCCEEDED’, ’ABORTED’, ’REJECTED’,
98 ’PREEMPTING’, ’RECALLING’, ’RECALLED’,
99 ’LOST’]

100 rospy.loginfo("Connecting to action " + action)
101 # Subscribe to the base action server
102 self.action_client = actionlib.SimpleActionClient(action, action_type)
103 rospy.loginfo("Waiting for move_base action server...")
104 # Wait up to timeout seconds for the action server to become available
105 try:
106 self.action_client.wait_for_server(rospy.Duration(self.connect_timeout))
107 except:
108 rospy.loginfo("Timed out connecting to the action server " + action)
109 rospy.loginfo("Connected to action server")
110
111 def run(self):
112 # Send the goal
113 if not self.action_started:
114 rospy.loginfo("Sending " + str(self.name) + " goal to action server...")
115 self.action_client.send_goal(self.goal, done_cb=self.done_cb, active_cb=self.active_cb

, feedback_cb=self.feedback_cb)
116 self.action_started = True
117
118 ’’’ We cannot use the wait_for_result() method here as it will block the entire
119 tree so we break it down in time slices of duration 1 / rate.
120 ’’’
121 if not self.action_finished:
122 self.time_so_far += self.tick
123 self.rate.sleep()
124 if self.time_so_far > self.result_timeout:
125 self.action_client.cancel_goal()
126 rospy.loginfo("Timed out achieving goal")
127 return TaskStatus.FAILURE
128 else:
129 return TaskStatus.RUNNING
130 else:
131 # Check the final goal status returned by default_done_cb
132 if self.goal_status == GoalStatus.SUCCEEDED:
133 self.action_finished = True
134 if self.reset_after:
135 self.reset()
136 return TaskStatus.SUCCESS
137 elif self.goal_status == GoalStatus.ABORTED:
138 self.action_started = False
139 self.action_finished = False
140 return TaskStatus.FAILURE
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141 else:
142 self.action_started = False
143 self.action_finished = False
144 self.goal_status_reported = False
145 return TaskStatus.RUNNING
146
147 def default_done_cb(self, status, result):
148 # Check the final status
149 self.goal_status = status
150 self.action_finished = True
151 if not self.goal_status_reported:
152 rospy.loginfo(str(self.name) + " ended with status " + str(self.goal_states[status]))
153 self.goal_status_reported = True
154
155 def default_active_cb(self):
156 pass
157
158 def default_feedback_cb(self, msg):
159 pass
160
161 def reset(self):
162 self.action_started = False
163 self.action_finished = False
164 self.goal_status_reported = False
165 self.time_so_far = 0.0

Listing APPENDIX C.6 – ROS wrappers for behavior trees python library [17].

1 #!/usr/bin/env python
2 import rospy
3 from std_msgs.msg import Float32
4 from geometry_msgs.msg import Twist
5 from rbx2_msgs.srv import *
6 from pi_trees_ros.pi_trees_ros import *
7 from rbx2_tasks.task_setup import *
8
9 class Patrol():
10 def __init__(self):
11 rospy.init_node("patrol_tree")
12 rospy.on_shutdown(self.shutdown) # Set the shutdown function (stop the robot)
13 setup_task_environment(self) # Initialize a number of parameters and variables
14 MOVE_BASE_TASKS = list() # Create a list to hold the move_base tasks
15 n_waypoints = len(self.waypoints)
16
17 # Create simple action navigation task for each waypoint
18 for i in range(n_waypoints + 1):
19 goal = MoveBaseGoal()
20 goal.target_pose.header.frame_id = ’map’
21 goal.target_pose.header.stamp = rospy.Time.now()
22 goal.target_pose.pose = self.waypoints[i % n_waypoints]
23 move_base_task = SimpleActionTask("MOVE_BASE_TASK_" + str(i), "move_base",

MoveBaseAction, goal, reset_after=False)
24 MOVE_BASE_TASKS.append(move_base_task)
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25
26 # Set the docking station pose
27 goal = MoveBaseGoal()
28 goal.target_pose.header.frame_id = ’map’
29 goal.target_pose.header.stamp = rospy.Time.now()
30 goal.target_pose.pose = self.docking_station_pose
31
32 # Assign the docking station pose to a move_base action task
33 NAV_DOCK_TASK = SimpleActionTask("NAV_DOC_TASK", "move_base", MoveBaseAction, goal,

reset_after=True)
34
35 BEHAVE = Sequence("BEHAVE") # Create the root node
36 STAY_HEALTHY = Selector("STAY_HEALTHY") # Create the "stay healthy" selector
37 LOOP_PATROL = Loop("LOOP_PATROL", iterations=self.n_patrols) # Create the patrol loop

decorator
38
39 # Add the two subtrees to the root node in order of priority
40 BEHAVE.add_child(STAY_HEALTHY)
41 BEHAVE.add_child(LOOP_PATROL)
42
43 PATROL = Iterator("PATROL") # Create the patrol iterator
44
45 # Add the move_base tasks to the patrol task
46 for task in MOVE_BASE_TASKS:
47 PATROL.add_child(task)
48
49 LOOP_PATROL.add_child(PATROL) # Add the patrol to the loop decorator
50
51 # Add the battery check and recharge tasks to the "stay healthy" task
52 with STAY_HEALTHY:
53 # The check battery condition (uses MonitorTask)
54 CHECK_BATTERY = MonitorTask("CHECK_BATTERY", "battery_level", Float32, self.

check_battery)
55 # The charge robot task (uses ServiceTask)
56 CHARGE_ROBOT = ServiceTask("CHARGE_ROBOT", "battery_simulator/set_battery_level",

SetBatteryLevel, 100, result_cb=self.recharge_cb)
57 # Build the recharge sequence using inline construction
58 RECHARGE = Sequence("RECHARGE", [NAV_DOCK_TASK, CHARGE_ROBOT])
59 # Add the check battery and recharge tasks to the stay healthy selector
60 STAY_HEALTHY.add_child(CHECK_BATTERY)
61 STAY_HEALTHY.add_child(RECHARGE)
62
63 # Display the tree before beginning execution
64 print "Patrol Behavior Tree"
65 print_tree(BEHAVE)
66
67 # Run the tree
68 while not rospy.is_shutdown():
69 BEHAVE.run()
70 rospy.sleep(0.1)
71
72 def check_battery(self, msg):
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73 if msg.data is None:
74 return TaskStatus.RUNNING
75 else:
76 if msg.data < self.low_battery_threshold:
77 rospy.loginfo("LOW BATTERY - level: " + str(int(msg.data)))
78 return TaskStatus.FAILURE
79 else:
80 return TaskStatus.SUCCESS
81
82 def recharge_cb(self, result):
83 rospy.loginfo("BATTERY CHARGED!")
84
85 def shutdown(self):
86 rospy.loginfo("Stopping the robot...")
87 self.move_base.cancel_all_goals()
88 self.cmd_vel_pub.publish(Twist())
89 rospy.sleep(1)
90
91 if __name__ == ’__main__’:
92 tree = Patrol()

Listing APPENDIX C.7 – The Patrol Robot Scenario Script [17].

1 #!/usr/bin/env python
2 import rospy
3 from std_msgs.msg import Float32
4 from geometry_msgs.msg import Twist
5 from nav_msgs.msg import Odometry
6 from rbx2_msgs.srv import *
7 from pi_trees_ros.pi_trees_ros import *
8 from rbx2_tasks.task_setup import *
9 from rbx2_tasks.clean_house_tasks_tree import *
10 from collections import OrderedDict
11 from math import pi, sqrt
12 import time
13 import easygui
14
15 # A class to track global variables
16 class BlackBoard():
17 def __init__(self):
18 # A list to store rooms and tasks
19 self.task_list = list()
20 # The robot’s current position on the map
21 self.robot_position = Point()
22
23 black_board = BlackBoard() # Initialize the black board
24
25 # Create a task list mapping rooms to tasks.
26 black_board.task_list = OrderedDict([
27 (’living_room’, [Vacuum(room="living_room", timer=5)]),
28 (’kitchen’, [Mop(room="kitchen", timer=7)]),
29 (’bathroom’, [Scrub(room="bathroom", timer=9), Mop(room="bathroom", timer=5)]),
30 (’hallway’, [Vacuum(room="hallway", timer=5)])
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31 ])
32
33 class UpdateTaskList(Task):
34 def __init__(self, room, task, *args, **kwargs):
35 name = "UPDATE_TASK_LIST_" + room.upper() + "_" + task.name.upper()
36 super(UpdateTaskList, self).__init__(name)
37 self.name = name
38 self.room = room
39 self.task = task
40
41 def run(self):
42 try:
43 black_board.task_list[self.room].remove(self.task)
44 if len(black_board.task_list[self.room]) == 0:
45 del black_board.task_list[self.room]
46 except:
47 pass
48 return TaskStatus.SUCCESS
49
50 class CheckRoomCleaned(Task):
51 def __init__(self,room):
52 name = "CHECK_ROOM_CLEANED_" + room.upper()
53 super(CheckRoomCleaned, self).__init__(name)
54 self.name = name
55 self.room = room
56
57 def run(self):
58 try:
59 if len(black_board.task_list[self.room]) != 0:
60 return TaskStatus.FAILURE
61 except:
62 return TaskStatus.SUCCESS
63
64 class CheckLocation(Task):
65 def __init__(self, room, room_locations, *args, **kwargs):
66 name = "CHECK_LOCATION_" + room.upper()
67 super(CheckLocation, self).__init__(name)
68 self.name = name
69 self.room = room
70 self.room_locations = room_locations
71
72 def run(self):
73 wp = self.room_locations[self.room].position
74 cp = black_board.robot_position
75 distance = sqrt((wp.x - cp.x) * (wp.x - cp.x) +
76 (wp.y - cp.y) * (wp.y - cp.y) +
77 (wp.z - cp.z) * (wp.z - cp.z))
78 if distance < 0.15:
79 status = TaskStatus.SUCCESS
80 else:
81 status = TaskStatus.FAILURE
82 return status
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83
84 class CleanHouse():
85 def __init__(self):
86 rospy.init_node(’clean_house’, anonymous=False)
87 rospy.on_shutdown(self.shutdown) # Make sure we stop the robot when shutting down
88 setup_task_environment(self) # Initialize a number of parameters and variables
89 MOVE_BASE = {} # Create a dictionary to hold navigation tasks for getting to each room
90
91 # Create a navigation task for each room
92 for room in self.room_locations.iterkeys():
93 goal = MoveBaseGoal()
94 goal.target_pose.header.frame_id = ’map’
95 goal.target_pose.header.stamp = rospy.Time.now()
96 goal.target_pose.pose = self.room_locations[room]
97 MOVE_BASE[room] = SimpleActionTask("MOVE_BASE_" + str(room.upper()), "move_base",

MoveBaseAction, goal, reset_after=True, feedback_cb=self.update_robot_position)
98
99 # Create the docking station nav task

100 goal = MoveBaseGoal()
101 goal.target_pose.header.frame_id = ’map’
102 goal.target_pose.header.stamp = rospy.Time.now()
103 goal.target_pose.pose = self.docking_station_pose
104 MOVE_BASE[’dock’] = SimpleActionTask("MOVE_BASE_DOCK", "move_base", MoveBaseAction, goal

, reset_after=True, feedback_cb=self.update_robot_position)
105
106 BEHAVE = Sequence("BEHAVE") # The root node
107 STAY_HEALTHY = Selector("STAY_HEALTHY") # The "stay healthy" selector
108 CLEAN_HOUSE = Sequence("CLEAN_HOUSE") # The "clean house" sequence
109
110 with STAY_HEALTHY:
111 # Add the check battery condition (uses MonitorTask)
112 CHECK_BATTERY = MonitorTask("CHECK_BATTERY", "battery_level", Float32, self.

check_battery)
113 # Add the recharge task (uses ServiceTask)
114 CHARGE_ROBOT = ServiceTask("CHARGE_ROBOT", "battery_simulator/set_battery_level",

SetBatteryLevel, 100, result_cb=self.recharge_cb)
115 # Build the recharge sequence using inline syntax
116 RECHARGE = Sequence("RECHARGE", [MOVE_BASE[’dock’], CHARGE_ROBOT])
117 # Add the check battery and recharge tasks to the stay healthy selector
118 STAY_HEALTHY.add_child(CHECK_BATTERY)
119 STAY_HEALTHY.add_child(RECHARGE)
120
121 # Initialize a few dictionaries to hold the tasks for each room
122 CLEANING_ROUTINE = {}
123 CLEAN_ROOM = {}
124 NAV_ROOM = {}
125 CHECK_ROOM_CLEAN = {}
126 CHECK_LOCATION = {}
127 TASK_LIST = {}
128 UPDATE_TASK_LIST = {}
129
130 # Create the clean house sequence
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131 for room in black_board.task_list.keys():
132 ROOM = room.upper() # Convert the room name to upper case for consistency
133 # Initialize the CLEANING_ROUTINE selector for this room
134 CLEANING_ROUTINE[room] = Selector("CLEANING_ROUTINE_" + ROOM)
135 # Initialize the CHECK_ROOM_CLEAN condition
136 CHECK_ROOM_CLEAN[room] = CheckRoomCleaned(room)
137 # Add the CHECK_ROOM_CLEAN condition to the CLEANING_ROUTINE selector
138 CLEANING_ROUTINE[room].add_child(CHECK_ROOM_CLEAN[room])
139 # Initialize the CLEAN_ROOM sequence for this room
140 CLEAN_ROOM[room] = Sequence("CLEAN_" + ROOM)
141 # Initialize the NAV_ROOM selector for this room
142 NAV_ROOM[room] = Selector("NAV_ROOM_" + ROOM)
143 # Initialize the CHECK_LOCATION condition for this room
144 CHECK_LOCATION[room] = CheckLocation(room, self.room_locations)
145 # Add the CHECK_LOCATION condition to the NAV_ROOM selector
146 NAV_ROOM[room].add_child(CHECK_LOCATION[room])
147 # Add the MOVE_BASE task for this room to the NAV_ROOM selector
148 NAV_ROOM[room].add_child(MOVE_BASE[room])
149 # Add the NAV_ROOM selector to the CLEAN_ROOM sequence
150 CLEAN_ROOM[room].add_child(NAV_ROOM[room])
151 # Initialize the TASK_LIST iterator for this room
152 TASK_LIST[room] = Iterator("TASK_LIST_" + ROOM)
153 # Add the tasks assigned to this room
154 for task in black_board.task_list[room]:
155 # Initialize the DO_TASK sequence for this room and task
156 DO_TASK = Sequence("DO_TASK_" + ROOM + "_" + task.name)
157 # Add a CHECK_LOCATION condition to the DO_TASK sequence
158 DO_TASK.add_child(CHECK_LOCATION[room])
159 # Add the task itself to the DO_TASK sequence
160 DO_TASK.add_child(task)
161 # Create an UPDATE_TASK_LIST task for this room and task
162 UPDATE_TASK_LIST[room + "_" + task.name] = UpdateTaskList(room, task)
163 # Add the UPDATE_TASK_LIST task to the DO_TASK sequence
164 DO_TASK.add_child(UPDATE_TASK_LIST[room + "_" + task.name])
165 # Add the DO_TASK sequence to the TASK_LIST iterator
166 TASK_LIST[room].add_child(DO_TASK)
167
168 # Add the room TASK_LIST iterator to the CLEAN_ROOM sequence
169 CLEAN_ROOM[room].add_child(TASK_LIST[room])
170 # Add the CLEAN_ROOM sequence to the CLEANING_ROUTINE selector
171 CLEANING_ROUTINE[room].add_child(CLEAN_ROOM[room])
172 # Add the CLEANING_ROUTINE for this room to the CLEAN_HOUSE sequence
173 CLEAN_HOUSE.add_child(CLEANING_ROUTINE[room])
174
175 # Build the full tree from the two subtrees
176 BEHAVE.add_child(STAY_HEALTHY)
177 BEHAVE.add_child(CLEAN_HOUSE)
178 # Display the tree before execution
179 print "Behavior Tree\n"
180 print_tree(BEHAVE)
181 rospy.loginfo("Starting simulated house cleaning test")
182 # Run the tree
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183 while not rospy.is_shutdown():
184 BEHAVE.run()
185 rospy.sleep(0.1)
186
187 def check_battery(self, msg):
188 if msg.data is None:
189 return TaskStatus.RUNNING
190 else:
191 if msg.data < self.low_battery_threshold:
192 rospy.loginfo("LOW BATTERY - level: " + str(int(msg.data)))
193 return TaskStatus.FAILURE
194 else:
195 return TaskStatus.SUCCESS
196
197 def recharge_cb(self, result):
198 rospy.loginfo("BATTERY CHARGED!")
199
200 def update_robot_position(self, msg):
201 black_board.robot_position = msg.base_position.pose.position
202
203 def shutdown(self):
204 rospy.loginfo("Stopping the robot...")
205 self.move_base.cancel_all_goals()
206 self.cmd_vel_pub.publish(Twist())
207 rospy.sleep(1)
208
209 if __name__ == ’__main__’:
210 try:
211 CleanHouse()
212 except rospy.ROSInterruptException:
213 rospy.loginfo("House clearning test finished.")

Listing APPENDIX C.8 – The House Cleaning Robot Scenario [17].

1 #!/usr/bin/env python
2 import rospy
3 from pi_trees_lib.pi_trees_lib import *
4 from geometry_msgs.msg import Twist
5
6 class Vacuum(Task):
7 def __init__(self, room=None, timer=3, *args):
8 name = "VACUUM_" + room.upper()
9 super(Vacuum, self).__init__(name)
10 self.name = name
11 self.room = room
12 self.counter = timer
13 self.finished = False
14 self.cmd_vel_pub = rospy.Publisher(’cmd_vel’, Twist)
15 self.cmd_vel_msg = Twist()
16 self.cmd_vel_msg.linear.x = 0.05
17
18 def run(self):
19 if self.finished:
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20 return TaskStatus.SUCCESS
21 else:
22 rospy.loginfo(’Vacuuming the floor in the ’ + str(self.room))
23
24 while self.counter > 0:
25 self.cmd_vel_pub.publish(self.cmd_vel_msg)
26 self.cmd_vel_msg.linear.x *= -1
27 rospy.loginfo(self.counter)
28 self.counter -= 1
29 rospy.sleep(1)
30 return TaskStatus.RUNNING
31
32 self.finished = True
33 self.cmd_vel_pub.publish(Twist())
34 message = "Finished vacuuming the " + str(self.room) + "!"
35 rospy.loginfo(message)
36
37
38 class Mop(Task):
39 def __init__(self, room=None, timer=3, *args):
40 name = "MOP_" + room.upper()
41 super(Mop, self).__init__(name)
42 self.name = name
43 self.room = room
44 self.counter = timer
45 self.finished = False
46 self.cmd_vel_pub = rospy.Publisher(’cmd_vel’, Twist)
47 self.cmd_vel_msg = Twist()
48 self.cmd_vel_msg.linear.x = 0.05
49 self.cmd_vel_msg.angular.z = 1.2
50
51 def run(self):
52 if self.finished:
53 return TaskStatus.SUCCESS
54 else:
55 rospy.loginfo(’Mopping the floor in the ’ + str(self.room))
56
57 while self.counter > 0:
58 self.cmd_vel_pub.publish(self.cmd_vel_msg)
59 self.cmd_vel_msg.linear.x *= -1
60 rospy.loginfo(self.counter)
61 self.counter -= 1
62 rospy.sleep(1)
63 return TaskStatus.RUNNING
64
65 self.finished = True
66 self.cmd_vel_pub.publish(Twist())
67 message = "Done mopping the " + str(self.room) + "!"
68 rospy.loginfo(message)
69
70 class Scrub(Task):
71 def __init__(self, room=None, timer=7, *args):
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72 name = "SCRUB_" + room.upper()
73 super(Scrub, self).__init__(name)
74 self.name = name
75 self.room = room
76 self.finished = False
77 self.counter = timer
78 self.cmd_vel_pub = rospy.Publisher(’cmd_vel’, Twist)
79 self.cmd_vel_msg = Twist()
80 self.cmd_vel_msg.linear.x = 0.3
81 self.cmd_vel_msg.angular.z = 0.2
82
83 def run(self):
84 if self.finished:
85 return TaskStatus.SUCCESS
86 else:
87 rospy.loginfo(’Cleaning the tub...’)
88
89 while self.counter > 0:
90 self.cmd_vel_pub.publish(self.cmd_vel_msg)
91 self.cmd_vel_msg.linear.x *= -1
92 if self.counter % 2 == 5:
93 self.cmd_vel_msg.angular.z *= -1
94 rospy.loginfo(self.counter)
95 self.counter -= 1
96 rospy.sleep(0.2)
97 return TaskStatus.RUNNING
98
99 self.finished = True

100 self.cmd_vel_pub.publish(Twist())
101 message = "The tub is clean!"
102 rospy.loginfo(message)

Listing APPENDIX C.9 – The House Cleaning Robot Scenario (simulated cleaning tasks) [17].
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APPENDIX D – TURTLEBOT AND THE SIMULATORS

TurtleBot is an open source robot kit designed for research and education, which use ROS.
It is officially proposed by Willow Garage1 to program using ROS and its basic specifications are the
following:

Size - Weight - Performance Sensors
Dimension 354 x 354 x 420 mm Color Camera
Weight 6.3 kg Depth Camera
Wheels Diameter 76 mm 3x Rate Gyro
Max. Payload 5 kg 3x forward bump
Max. Speed 65 cm/s 3x cliff
Max. Rotational Speed 180°/S 2x wheel drop

Table APPENDIX D.1 – TurtleBot basic specifications [52].

One advantage of developing using the TurtleBot is that its physical model is available in
the Gazebo simulator. Gazebo is a multi-robot simulator for indoor and outdoor three-dimensional
environments. It generates both realistic sensor feedback and physically plausible interactions be-
tween objects, allowing the robot developer to make experiments (such as test algorithms and design
robots) using realistic scenarios [33]. We use both Gazebo and Turtlebot to test our agents and
artifacts.

Figure APPENDIX D.1 – Turtlebot simulation on Gazebo

A second simulator used in our project is Stage: it provides virtual devices for the robot
development frameworks and these simulated devices interact in the same way that real devices
do. Stage has two purposes: to enable rapid development of controllers that will eventually drive
real robots; and to enable robot experiments without access to the real hardware and environments
[15]. Stage needs less hardware requirements to be executed than Gazebo and we notice that this

1Willow Garage is a research lab that develops hardware and open source software for personal robotics applications,
such as the ROS framework.
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characteristic very useful when testing our artifacts for a long time period: Gazebo usually crashes
during longer simulations.

Figure APPENDIX D.2 – Multiple robots on Stage simulator


