

Pontifícia Universidade Católica do Rio Grande do Sul
Faculdade de Engenharia

Programa de Pós-Graduação em Engenharia Elétrica

Stack Smashing Attack Detection Methodology for Secure
Program Execution Based on Hardware

Raphael Segabinazzi Ferreira
Advisor: Fabian Luis Vargas, Prof. PhD

Porto Alegre – RS, Brasil
2016

Pontifícia Universidade Católica do Rio Grande do Sul
Faculdade de Engenharia

Programa de Pós-Graduação em Engenharia Elétrica

Stack Smashing Attack Detection Methodology for Secure
Program Execution Based on Hardware

Raphael Segabinazzi Ferreira
Advisor: Fabian Luis Vargas, Prof. PhD

Dissertação apresentada ao
Programa de Pós-Graduação em
Engenharia Elétrica, da Faculdade de
Engenharia da Pontifícia Universidade
Católica do Rio Grande do Sul, como
requisito parcial à obtenção do título de
Mestre em Engenharia Elétrica.

Área de concentração: Sinais,
Sistemas e Tecnologia da Informação.

Linha de Pesquisa: Sistemas de
Computação

Porto Alegre – RS, Brasil
2016

AGRADECIMENTOS

Agradeço primeiramente ao professor Dr. Fabian Luis Vargas, por ter aceitado

ser meu orientador durante este curso, e por todos os ensinamentos que me foram

concedidos, sendo estes de vital importância para conclusão deste curso. Ainda, a

todos os demais professores do programa que, de uma forma ou de outra, também

contribuíram para a conclusão deste trabalho.

Aos colegas do laboratório EASE que também fizeram parte deste trabalho, e

em muitos pontos a sua ajuda e conselhos foram essenciais para a conclusão das

tarefas e análises realizadas durante esta dissertação.

Agradeço também ao Programa de Pós Graduação em Engenharia Elétrica e

a Pontifícia Universidade Católica pela oportunidade dada neste curso. E a CAPES

pela bolsa concedida a mim para a realização do curso de mestrado.

Agradeço, por fim, a minha família por estar sempre ao meu lado, dando

apoio nas horas que mais precisei. A minha namorada, que também durante todo o

curso de mestrado sempre me apoiou, me escutou e juntamente comigo se privou

de momentos de lazer para que pudesse me dedicar às tarefas do mestrado.

RESUMO

A necessidade de inclusão de mecanismos de segurança em dispositivos

eletrônicos cresceu consideravelmente com o aumento do uso destes dispositivos

no dia a dia das pessoas. À medida que estes dispositivos foram ficando cada vez

mais conectados a rede e uns aos outros, estes mesmos se tornaram vulneráveis a

tentativa de ataques e intrusões remotas. Ataques deste tipo chegam normalmente

como dados recebidos por meio de um canal comum de comunicação, uma vez

presente na memória do dispositivo estes dados podem ser capazes de disparar

uma falha de software pré-existente, e, a partir desta falha, desviar o fluxo do

programa para o código malicioso inserido. Vulnerabilidades de software foram, nos

últimos anos, a principal causa de incidentes relacionados à quebra de segurança

em sistemas e computadores. Adicionalmente, estouros de buffer (buffer overflow)

são as vulnerabilidades mais exploradas em software, chegando a atingir, metade

das recomendações de segurança do grupo norte americano Computer Emergency

Readiness Team (CERT).

A partir deste cenário citado acima, o presente trabalho apresenta um novo

método baseado em hardware para detecção de ataques ocorridos a partir de

estouros de buffer chamados de Stack Smashing, propõe ainda de maneira

preliminar, um mecanismo de recuperação do sistema a partir da detecção de um

ataque ou falha. Comparando com métodos já existentes na bibliografia, a técnica

apresentada por este trabalho não necessita de recompilação de código e,

adicionalmente, dispensa o uso de software (como, por exemplo, um Sistema

Operacional) para fazer o gerenciamento do uso de memória.

Monitorando sinais internos do pipeline de um processador o presente

trabalho é capaz de detectar quando um endereço de retorno de uma função está

corrompido, e a partir desta detecção, voltar o sistema para um estado seguro salvo

previamente em uma região segura de memória.

Para validar este trabalho um programa simples, em linguagem C, foi

implementado, este programa força uma condição de buffer overflow. Esta condição

deve ser reconhecida pelo sistema implementado neste trabalho e, ainda,

recuperada adequadamente. Já para avaliação do sistema, a fim de verificar como o

mesmo se comporta em situações reais, programas testes foram implementados em

linguagem C com pequenos trechos de códigos maliciosos. Estes trechos foram

obtidos de vulnerabilidades reportadas na base de dados Common Vulnerabilities

and Exposures (CVE). Estes pequenos códigos maliciosos foram adaptados e

inseridos nos fontes do programa de teste. Com isso, enquanto estes programas

estão em execução o sistema implementado por este trabalho é avaliado. Durante

esta avaliação são observados: (1) a capacidade de detecção de modificação no

endereço de retorno de funções e (2) a recuperação do sistema. Finalmente, é

calculado o overhead de área e de tempo de execução.

De acordo com resultados e implementações preliminares este trabalho

conseguiu atingir 100% da detecção de ataques sobre uma baixa latência por

detecção de modificações de endereço de retorno de funções salva no stack. Foi

capaz, também, de se recuperar nos casos de testes implementados. E, finalmente,

resultando em baixo overhead de área sem nenhuma degradação de performance

na detecção de modificação do endereço de retorno.

ABSTRACT

The need to include security mechanisms in electronic devices has

dramatically grown with the widespread use of such devices in our daily life. With the

increasing interconnectivity among devices, attackers can now launch attacks

remotely. Such attacks arrive as data over a regular communication channel and,

once resident in the program memory, they trigger a pre-existing software flaw and

transfer control to the attacker’s malicious code. Software vulnerabilities have been

the main cause of computer security incidents. Among these, buffer overflows are

perhaps the most widely exploited type of vulnerability, accounting for approximately

half the Computer Emergency Readiness Team (CERT) advisories in recent years.

In this scenario, the methodology proposed in this work presents a new

hardware-based approach to detect stack smashing buffer overflow attack and

recover the system after the attack detection. Compared to existing approaches, the

proposed technique does not need application code recompilation or use of any kind

of software (e.g., an Operating System - OS) to manage memory usage.

By monitoring processor pipeline internal signals, this approach is able to

detect when the return address of a function call has been corrupted. At this moment,

a rollback-based recovery procedure is triggered, which drives the system into a safe

state previously stored in a protected memory area.

This approach was validated by implementing a C program that forces a buffer

overflow condition, which is promptly recognized by the proposed approach. From

this point on, the system is then properly recovered. Having in mind to evaluate the

system under more realistic conditions, test programs were implemented with pieces

of known vulnerable C codes. These vulnerable pieces of codes were obtained from

vulnerabilities reported in the Common Vulnerabilities and Exposures (CVE). These

code snippets were adapted and included in the test programs. Then, while running

these programs the proposed system was evaluated. This evaluation was done by

observing the capability of the proposed approach to: (1) detect an invalid return

address and (2) to safely recovery the system from the faulty condition. Finally, the

execution time and area overheads were determined. According to preliminary

implementations and results this approach guarantees 100% attack detection with

negligible detection latency by recognizing return address overwritten within a few

processor clock cycles.

FIGURES LIST

Figure 1 – Graf to illustrate the evolution of reported software vulnerabilities by the
years in the National Vulnerabilities Database. ... 19

Figure 2 - Common processor layout of memory. ... 22

Figure 3 - a) Stack during a normal execution. b) Stack with malicious code injected.
 .. 23

Figure 4 - LEON3 processor core block diagram. ... 25

Figure 5 – Instruction CALL format. ... 28

Figure 6 – Instruction JMPL format. .. 29

Figure 7 - Canary word next to return address. ... 33

Figure 8 - Function Prologue Code: Laying Down a Canary. 33

Figure 9 - Function Epilogue Code: Checking a Canary. .. 34

Figure 10 – Architecture of the scheme. Shaded blocks indicate the added
components. The dashed lines indicate the new interconnections. 35

Figure 11 – Architectural details of the integrity checker. .. 36

Figure 12 - Approach presented by (DU e MAI, 2011) to protect against stack
overflow. ... 39

Figure 13 - Layout of function frame on the stack. .. 42

Figure 14 - Function Frame Runtime Randomization – (a) FFRR technique for all
local variables; (b) FFRR technique for only buffer-type variable. 43

Figure 15 - (a) Stack without memory access virtualization and (b) stack with memory
access Virtualization. .. 46

Figure 16 – General architecture proposed by this work. .. 49

Figure 17 – Watchdog instantiated besides the processor core. 51

Figure 18 - Internal blocks of the Watchdog. ... 52

Figure 19 – Recovery mechanism included in the processor. 54

Figure 20 – The Recovery_mem memory block receiving data and the respective
data address in a queue order. ... 56

Figure 21 – Flow chart describing the basic operations performed by the Watchdog.
 .. 58

Figure 22 – Recovery mechanism operations when the execution is on main function.
 .. 59

Figure 23 – Operation performed by Recovery Mechanism when the execution is out
of main function. ... 59

Figure 24 – Recovery mechanism operations when an overwritten was detected in
the recovery mechanism. .. 60

Figure 25 – C source code used to check the Watchdog return address overwritten
detection. .. 63

Figure 26 - Moment when the Watchdog recognize the return address overwritten
and the Recovery Mechanism rollback the system to the safe point. 65

Figure 27 – Simulation moment when the exception signal is generated for the test
case Edbrowse. .. 68

Figure 28 –Benchmark Edbrowse successfully recovered. 70

Figure 29 – Watchdog return address overwrite detection latency to generate the
exception signal from a function return instruction decoded. 71

Figure 30 - The safe pointing system (a) the recovery memory when new safe points
were detected and (b) the safe point memory block with these new safe points.
 .. 79

Figure 31 – The new Recovery Mechanism architecture proposed by this
improvement. .. 80

Figure 32 – Flowchart to describe a DDoS attack in the system where the Watchdog
and the Recovery Mechanism are running. .. 83

TABLE LIST

Table 1 – Techniques based on hardware or software and his publication year. 31

Table 2 – Comparison among the most common approaches. 46

Table 3 – Comparison among main related works and the approach proposed by this
dissertation. .. 48

Table 4 - Safe point in the simple C code implemented. ... 64

Table 5 - Watchdog detection using pieces of vulnerable codes obtained from
vulnerabilities published in CVE. ... 68

Table 6 – Safe points found in the test code done with Edbrowse sniped code. 69

Table 7 – Recovery result when evaluating the Recovery Mechanism under the
benchmarks implementations. .. 70

Table 8 - Area overhead yielded by the Watchdog implementation. 73

Table 9 – Number of LUTS used as memory, mapped by ISE Design framework as
DRAMS. .. 73

Table 10 - Logic blocks utilization and the area overhead incurred by the Recovery
Mechanism blocks. ... 74

Table 11 – Accumulated overhead incurred by the two main approaches proposed by
this dissertation. .. 75

ABBREVIATIONS AND ACRONYMS LIST

CERT Computer Emergency Readiness Team

OS Operational System

PC Program Counter

SP Stack Pointer

SSP ShadowMem Stack Pointer

CVE Commom Vulneabilities and Exposures

NIST National Institute of Standards and Technology

NVD National Vulnerability Database

VHDL Very High Speed Integrated Circuit Hardware Description

Language

SPARV-V8 Scalable Processor ARChitecture Version 8

SOC System-on-a-chip

GPL General Public License

IU Integer Unit

FPU Floating-Point Unit

CP Coprocessor

MMU Memory Management Unit

ALU Aritmetical Logical Unit

CWP Current Window Pointer

PSR Processor State Register

FE Instruction Fetch

DE Decode

RA Register Access

EX Execute

ME Memory

XC Exception

WR Write

WIM Window Invalid Mask

CTIs Control transfer

DCTIs Delayed Control-Transfer Instructions

AMBA Advanced Microcontroller Bus Architecture

FPGA Field Programmable Gate Array

CPLD Complex Programmable Logic Device

HDL Hardware Description Language

JTAG Joint Test Action Group

ISIM ISE Simulator

ROB Re-Order Buffer

SB Store Buffer

SRAS Secure Return Address Stack

ReDTPM Reconfigurable Dynamic Trusted Platform Module

DTPM Dynamic Trusted Platform Module

TPM Trusted Platform Module

CFC Control Flow Checker

TAB Target Address Buffer

CFI Control Flow Instruction

FFRR Function Frame Runtime Randomization

LFSR Linear feedback shift register

COTS Commercial Off-The-Shelf

DDoS Distributed Denial of Service

CPU Central Processing Unit

SUMMARY

1. INTRODUCTION ... 17

1.1. OBJECTIVES AND MOTIVATION .. 17

2. PRELIMINARIES ... 21

2.1. A COMMON PROCESSOR MEMORY DIVISION ... 21

2.2. THE PROBLEM: STACK SMASHING ATTACK ... 22

2.3. TARGET ARCHITECTURE: LEON3 PROCESSOR 24

2.3.1. Leon3 CPU ... 25

2.3.1.1. Integer Unit Register Windows ... 26

2.3.2. Leon3 Instructions .. 26

2.3.3. Leon3 configuration ... 30

2.3.4. Environment ... 31

2.4. RELATED WORKS ... 31

2.4.1. StackGuard .. 32

2.4.2. Dynamic integrity checking ... 34

2.4.3. Secure Return Address Stack (SRAS) .. 36

2.4.4. Light-Weight Architecture Design ... 37

2.4.5. Separates the stack in two parts ... 37

2.4.6. Reconfigurable Dynamic Trusted Platform Module - ReDTPM 39

2.4.7. Function Frame Runtime Randomization (FFRR) 40

2.4.8. SafeStack - Memory access virtualization .. 43

2.5. COMPARISON AMONG RELATED WORKS .. 46

3. THE PROPOSED APPROACH ... 49

3.1. WATCHDOG GENERAL ARCHITECTURE .. 51

3.2. THE RECOVERY MECHANISM .. 52

3.2.1. Normal execution .. 54

3.2.2. In a return address overwritten detection .. 56

3.3. DETECTION, CHECK-POINTING, AND RECOVERY 57

4. VALIDATION ... 63

4.1. A SIMPLE C PROGRAM ... 63

5. EVALUATION .. 67

5.1. TEST CASES EVALUATION .. 67

5.1.1. Test cases evaluation – Watchdog detection .. 67

5.1.2. Test cases evaluation – Recovery mechanism ... 69

5.2. DETECTION AND RECOVERY LATENCY .. 70

5.3. AREA OVERHEAD ... 72

5.3.1. Watchdog Area Overhead .. 72

5.3.2. Recovery mechanism area overhead ... 74

5.4. OVERALL OVERHEAD RESULT .. 74

6. CONCLUSIONS .. 77

6.1. FUTURE WORK ... 77

6.1.1. Recovery mechanism – improvement possibility....................................... 77

6.2. DISCUSSIONS ... 81

6.2.1. Proposed approach applicability to different processor architectures 81

6.2.2. Discussing about the Watchdog detection coverage 81

6.2.3. The Recovery Mechanism applicability ... 82

REFERENCES .. 85

ANNEX A ... 89

ANNEX B ... 95

17

1. INTRODUCTION

The need to include security mechanisms in electronic devices has

dramatically grown with the widespread use of such devices in our daily life. With the

increasing interconnectivity among devices, attackers can now launch attacks

remotely. Such attacks arrive as data over a regular communication channel and,

once resident in the program memory, they trigger a pre-existing software flaw and

transfer control to the attacker’s malicious code. Software vulnerabilities have been

the main cause of computer security incidents. Among these, buffer overflows are

perhaps the most widely exploited type of vulnerability, accounting for approximately

half the CERT advisories in recent years (CERT, Vulnerability Database).

1.1. OBJECTIVES AND MOTIVATION

According to GARTNER, most attacks are focused on the application layer

(Gartner Newsroom, Announcements, Gartner Says 25 Percent of Distributed Denial

of Services Attacks in 2013 Will Be Application-Based , 2013). Because of this,

software security defects become the main concerns that security professionals deal

with nowadays. This trend has motivated considerable research in the improvement

of software development processes. As a consequence, security engineering

becomes an important part of the business processes that protects corporate assets

and information (NUNES, BELCHIOR e ALBUGUERQUE, 2010).

A common misunderstanding occurs, for example, when software engineers

think that an identity and authentication control implemented in software to protect

data confidentiality and integrity makes this software secure. Actually, this supposed

secure software just implements a security function and cannot be considered

secure. So, security function does not insure that software is safe (MCGRAW, 2004).

Safety-critical systems could be, potentially, cause of accidents. Software is

hazardous if it can cause a hazard, for example, if it cause other components to

become hazardous or if it is used to control a hazard. Software is deemed safe if it is

impossible or at least highly unlikely that the software could ever produce an output

that would cause a catastrophic event for the system that the software controls

(SWARUP e RAMAIAH, 2008). Examples of catastrophic events include loss of

18

physical property, physical harm, and loss-of-life. Software engineering of a safety-

critical system requires a clear understanding of the software’s role in, and

interactions with the system (LUTZ, 2000)(KNIGHT, 2002). Application areas for

safety-critical systems include the following:

 Military: weapon delivery systems and space programs.

 Industry: manufacturing control where toxic substances are involved and

robots.

 Transportation: fly-by-wire systems on board aircraft, air traffic control,

interlocking systems for trains, automatic train control and computer

systems in cars.

 Communication: ambulance dispatch systems and the emergency call part

of a telephone system.

 Medicine: radiation therapy machines, medical monitoring and medical

robots.

 Nuclear power plant control.

 As is apparent from the above example areas, safety-critical systems are

often real-time control systems. These systems require the utmost care in their

specification, design, implementation, operation and maintenance, as they could lead

to injuries or loss of lives and in-turn result in financial loss (HERRMANN, 2000)

(SCHMID, 2002).

So, software security is an important issue, and as quoted above, a security

breach could bring serious damages. In addition, software vulnerabilities can be the

gateway to a security breach.

Nevertheless, second the National Institute of Standards and Technology

(NIST) in the National Vulnerability Database (NVD), the software vulnerabilities

reported in the last 4 years are more then 20.000. The evolution of the reported

vulnerabilities in the last years is show in the Figure 1 (NATIONAL INSTITUTE OF

STANDARDS AND TECHNOLOGY - NIST, 2016).

19

Figure 1 – Graf to illustrate the evolution of reported software vulnerabilities by the
years in the National Vulnerabilities Database.

Reference: (National Vulnerability Database - Vulnerability search)

Also, according with NVD, the number of vulnerabilities caused by buffer

errors represents more than 15% of the vulnerabilities reported in the year of 2015

(National Vulnerability Database - Vulnerability search). So, this issue represents a

real and current problem that the work proposed by this dissertation intends to

reduce.

In this scenario, the work proposed by this dissertation presents a new

hardware-based approach to detect stack smashing buffer overflow attack.

Compared to existing approaches, the proposed technique does not need application

code recompilation or use of any kind of software (e.g., an Operational System - OS)

to manage memory usage. According to preliminary implementations, this approach

guarantees 100% attack detection, while resulting in negligible area overhead and

zero performance degradation (since the Watchdog is fully independent from the

processor and performs in parallel to the code execution).

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
R

e
p

o
rt

e
d

V
u

ln
e

ra
b

ili
ti

e
s

Year

20

21

2. PRELIMINARIES

In this section a background knowledge will be introduced, this knowledge will

be necessary to understand this work: the problem, the methodology and the

proposed solution.

2.1. A COMMON PROCESSOR MEMORY DIVISION

According to Patterson (PATTERSON e HENNESSY, 2012), a common

processor typically divide memory into three parts (see Figure 2). The first part, near

the bottom of the address space (starting at address 0x400000), is the text segment,

which holds the program’s instructions.

The second part, above the text segment, is the data segment, which is further

divided into two parts. Static data (starting at address 0x10000000) contains objects

whose size is known to the compiler and whose lifetime – the interval during which a

program can access them – is the program’s entire execution. For example, in C

language programming, global variables are statically allocated, since they can be

referenced anytime during a program’s execution. The linker both assigns static

objects to locations in the data segment and resolves references to these objects.

Immediately above static data is dynamic data area. This area, as its name

implies, is allocated by the program as it executes. In C programs, the ―malloc‖ library

routine finds and returns a new block of memory. Since a compiler cannot predict

how much memory a program will allocate, the operating system expands the

dynamic data area to meet demand. As the upward arrow in the Figure 2 indicates,

―malloc‖ expands the dynamic area with a system call, which causes the operating

system to add more pages to the program’s virtual address space immediately above

the dynamic data segment.

The third part, the program stack segment, resides at the top of the virtual

address space (starting at address 0x7fffffff). Like dynamic data, the maximum size

of a program’s stack is not known in advance. As the program pushes values on to

the stack, the operating system expands the stack segment down toward the data

segment.

22

This three-part division of memory is not the only possible one. However, it

has two important characteristics: the two dynamically expandable segments are as

far apart as possible, and they can grow to use a program’s entire address space.

Figure 2 - Common processor layout of memory.

Reference: (PATTERSON e HENNESSY, 2012)

2.2. THE PROBLEM: STACK SMASHING ATTACK

Buffer overflow attacks exploit a lack of bounds checking on the size of an

input being stored in a buffer array in memory. By writing data past the end of an

allocated array, the attacker can make arbitrary changes to program data stored

adjacent to the array. By far, the most common data structure to corrupt is the stack,

so this is called ―stack smashing‖ or ―buffer overflow‖ attack (PARK, ZHANG e LEE,

2006).

Many C programs have buffer overflow vulnerabilities, both because the C

language lacks array bounds checking, and because the culture of C programmers

encourages a performance-oriented style that avoids error checking where possible

(MILLER, KOSKI, et al., 1995) (MILLER, FREDRIKSEN e SO, 1990).

23

The common form of buffer overflow exploitation is to attack buffers allocated

on the stack. Stack smashing attacks try to achieve two mutually dependent goals:

a) Inject Attack Code: The attacker provides an input string that is actually

executable, binary code native to the machine being attacked. Typically this code is

simple, and does something similar to exec("sh") to produce a root shell.

b) Change the Return Address: There is a stack frame for a currently active

function above the buffer being attacked on the stack. The buffer overflow changes

the return address to point to the attack code. When the function returns, instead of

jumping back to where it was called from, it jumps to the attack code.

Figure 3 a) shows a stack with local variables and return address and Figure 3

b) shows the stack in a Stack Smashing situation, the local variables overwritten the

return address data and introduced a malicious code. This code could be addressed

by the new malicious return address, and finally, executed when the system returns

from the current function.

Figure 3 - a) Stack during a normal execution. b) Stack with malicious code injected.

Top of Stack

Return Address

Local Variables

Buffer…

(a)

Top of Stack

Attack Code

…

Return Address

Local Variables
Buffer…

0xFFFF

0x0000

Stack
Growth

Overflow
Growth

0xFFFF

0x0000

Stack
Growth

Overflow
Growth

24

(b)

Reference: Segabinazzi (2016)

2.3. TARGET ARCHITECTURE: LEON3 PROCESSOR

This work was implemented on a LEON3 soft-core processor. LEON3 is a

synthesizable Very High Speed Integrated Circuit Hardware Description Language

(VHDL) model of a 32-bit 7-stage pipeline processor compliant with the IEEE-1754

(Scalable Processor Architecture Version 8 - SPARC-V8 - processor architecture)

(SPARC INTERNATIONAL INC., 1992). The model is highly configurable, and

particularly suitable for system-on-a-chip (SOC) designs. The full source code is

available under the GNU General Public License (GPL) license, allowing free and

unlimited use for research and education. LEON3 is also available under a low-cost

commercial license, allowing it to be used in any commercial application to a fraction

of the cost of comparable IP cores (COBHAM GAISLER AB, 2015).

A SPARC processor logically comprises an integer unit (IU), a Floating-Point

Unit (FPU), and an optional coprocessor (CP), each with its own registers. This

organization allows for implementations with maximum concurrency between integer,

floating-point, and coprocessor instruction execution. All of the registers — with the

possible exception of the coprocessor’s — are 32 bits wide. Instruction operands are

generally single registers, register pairs, or register quadruples (SPARC

INTERNATIONAL INC., 1992).

Figure 4 describes the block diagram of the LEON3 processor core; the FPU,

Cache, the Co-processor and the Memory Management Unit (MMU) are optional.

25

Figure 4 - LEON3 processor core block diagram.

LEON3 CPU – Integer
Unit (IU)

FPU

MMU

Cache

AMBA AHB Master IF

Peripherals

CO-Processor (CP)

Reference: modified from (COBHAM GAISLER AB, 2015)

2.3.1. Leon3 CPU

The Integer Unit contains the general-purpose registers and controls the

overall operation of the processor. The IU executes the integer arithmetic instructions

and computes memory addresses for loads and stores. It also maintains the program

counters and controls instruction execution for the FPU and the CP (SPARC

INTERNATIONAL INC., 1992).

The LEON3 integer unit is composed by 7 stages; it uses a single instruction

issue pipeline. These seven stages are explained below (COBHAM GAISLER AB,

2015):

(1) Instruction Fetch (FE): The instruction is fetched from the instruction cache

if the cache enable. Otherwise, the fetch is performed in the AHB bus.

(2) Decode (DE): The instructions are decoded and the target addresses of

the CALL and Branch instructions are generated.

(3) Register Access (RA): Operands are read from the registers file or from

internal data bypasses.

26

(4) Execute (EX): ALU, logical, and shift operations are performed. The

addresses are generated for memory operations (e.g. LD) and for

JMPL/RET instructions.

(5) Memory (ME): Data cache is read or written at this stage.

(6) Exception (XC): Traps and interrupts are resolved. The data is aligned as

appropriate for cache reads.

(7) Write (WR): The result of Arithmetical Logical Unit (ALU), logical, shift or

cache operations are written back to the register file.

2.3.1.1. Integer Unit Register Windows

An implementation of the IU may contain from 40 to 520 general-purpose 32-

bit r registers. This corresponds to a grouping of the registers into 8 global r

registers, plus a circular stack of from 2 to 32 sets of 16 registers each, known as

register windows. Since the number of register windows present (NWINDOWS) is

implementation-dependent, the total number of registers is implementation-

dependent.

At a given time, an instruction can access the 8 global and a register window

into the r registers. A 24-register window comprises a 16-register set — divided into 8

in and 8 local registers — together with the 8 in registers of an adjacent register set,

addressable from the current window as its out registers.

The current window is specified by the current window pointer (CWP) field in

the processor state register (PSR). Window overflow and underflow are detected via

the window invalid mask (WIM) register, which is controlled by supervisor software.

The actual number of windows in a SPARC implementation is invisible to a user-

application program (SPARC INTERNATIONAL INC., 1992).

2.3.2. Leon3 Instructions

The Leon3 instructions fall into six categories:

(1) Load/store: are the only instructions that access memory. They use two r

registers or an r register and a signed 13-bit immediate value to calculate a

32-bit, byte-aligned memory address.

27

(2) Arithmetic/logical/shift: perform arithmetic, tagged arithmetic, logical,

and shift operations. With one exception, these instructions compute a

result that is a function of two source operands; the result is either written

into a destination register, or discarded.

(3) Control transfer (CTIs): include PC-relative branches and calls, register-

indirect jumps, and conditional traps. Most of the control-transfer

instructions are delayed control-transfer instructions (DCTIs), where the

instruction immediately following the DCTI is executed before the control

transfer to the target address is completed.

(4) Read/write control register: read and write the contents of software

visible state/status registers

(5) Floating-point operate: perform all floating point calculations. They are

register-to-register instructions which operate upon the floating point

registers

(6) Coprocessor operate: are defined by the implemented coprocessor, if

any

In this work the most important instruction category is the CTIs, this set of

instructions implements the function calls and returns with the instructions CALL and

JMPL. So, the branch and CALL instructions use PC-relative displacements. The

jump and link (JMPL) instruction uses a register-indirect target address. It computes

its target address as either the sum of two r registers, or the sum of an r register and

a 13-bit signed immediate value. The branch instruction provides a displacement of ±

8 Mbytes, while the CALL instruction’s 30-bit word displacement allows a control

transfer to an arbitrary 32-bit instruction address (SPARC INTERNATIONAL INC.,

1992).

The instruction CALL definitions done by (SPARC INTERNATIONAL INC.,

1992) are showed in the Figure 5 and listed below:

28

Figure 5 – Instruction CALL format.

Reference: (SPARC INTERNATIONAL INC., 1992).

Description:

 The CALL instruction causes an unconditional, delayed, PC-relative control

transfer to address ―PC + (4 × disp30)‖. Since the word displacement

(disp30) field is 30 bits wide, the target address can be arbitrarily distant.

The PC-relative displacement is formed by appending two low-order zeros

to the instruction’s 30-bit word displacement field.

 The CALL instruction also writes the value of PC, which contains the

address of the CALL, into r[15] (out register 7).

Also, the description of instruction JMPL done by SPARC too is showed in the

Figure 6 and explained below:

29

Figure 6 – Instruction JMPL format.

Reference: (SPARC INTERNATIONAL INC., 1992).

Description:

 The JMPL instruction causes a register-indirect delayed control transfer to

the address given by ―r[rs1] + r[rs2]‖ if the i field is zero, or ―r[rs1]+

sign_ext(simm13)‖ if the i field is one.

 The JMPL instruction copies the PC, which contains the address of the

JMPL instruction, into register r[rd].

 If either of the low-order two bits of the jump address is nonzero, a

mem_address_not_aligned trap occurs.

Programming Note:

 A JMPL instruction with rd = 15 functions as a register-indirect call using

the standard link register. JMPL with rd = 0 can be used to return from a

subroutine. The typical return address is ―r[31]+8‖, if a non-leaf (uses

SAVE instruction) subroutine is entered by a CALL instruction, or ―r[15]+8‖

if a leaf (doesn’t use SAVE instruction) subroutine is entered by a CALL

instruction.

Implementation Note:

 When a RETT instruction appears in the delay slot of a JMPL, the target of

the JMPL must be fetched from the address space implied by the new (i.e.

30

post-RETT) value of the PSR’s S bit. In particular, this applies to a return

from trap to a user address space.

Concluding, the instructions that will trigger a function call will be:

 The normal CALL instruction.

 The JMPL instruction with register rd = 15.

And the instructions that will trigger a function return will be:

 The JMPL instruction with rd non equal to 15.

2.3.3. Leon3 configuration

 The registers windows, explained in the section 2.3.1.1, makes the processor

more secure by creating new registers for every function call. As a consequence,

overflows occurred in the stack program will not reach the current return address.

However the overflow will reach other variables and return addresses saved in the

stack when a window overflow situation occurs. So, the Watchdog proposed by this

work will be useful in these situations too.

However, to helps the development of this work, by making easier to

reproduce a stack smashing attack situation, these registers windows are

deactivated in Leon3 configuration. This configuration makes the stack program more

reachable and, as a consequence, more vulnerable.

These register windows are disabled by using the compiler flag -mflat, this flag

makes the compiler to not call a new register window or restore to the old one when

a new function is called or returned (not use SAVE and RESTORE instructions), So,

the data will be saved and recovered normally from stack program.

The others Leon3 configurations are listed below:

 Cache disabled;

 FPU disabled;

 MMU disabled;

 CP disabled;

 One Leon3 core (one IU) enabled;

31

 The serial Debug Link is enabled;

 On chip ROM enable;

 On chip RAM – 64 kbyte - enabled;

 An Advanced Microcontroller Bus Architecture (AMBA) Master interface -

enabled;

2.3.4. Environment

The Xilinx environment was used to implement this work. To evaluate area

overhead the ISE Design Suite in the WebPACK version was used. This version is

free and it is a fully featured front-to-back Field Programmable Gate Array (FPGA)

design solution for Linux, Windows XP, and Windows 7. ISE WebPACK is the ideal

downloadable solution for FPGA and Complex Programmable Logic Device (CPLD)

design offering Hardware Description Language (HDL) synthesis and simulation,

implementation, device fitting, and Joint Test Action Group (JTAG) programming

(Xilinx - ISE WebPACK Design Software, 2016).

The ISE Simulator (ISIM), a complete, full-featured HDL simulator integrated

within ISE (Xilinx - ISIM Simulator, 2016), was used to simulate and test the

processor and our approach implementations.

2.4. RELATED WORKS

This section present the related works found in the literature. Approaches

based on hardware and software which main objectives are to detect kinds of

intrusions. The Table 1 shows the approaches presented as related works in this

dissertation and classify then in hardware or software techniques.

Table 1 – Techniques based on hardware or software and his publication year.

Approach
Based

on

Publication

year

StackGuard (COWAN, PU, et al., 1998) (COWAN,
BEATTIE, et al., 1999)

SW 1998

32

Dynamic Integrity Checking (KANUPARTHI, KARRI, et al.,
2012) (KANUPARTHI, ZAHRAN e KARRI, 2012)

HW 2012

SRAS (LEE, KARIG, et al., 2004) HW/SW 2003

Light-weight hardware return address and stack Frame
Tracking (KAO e WU, 2009)

HW 2009

Separates the stack to two parts (DU e MAI, 2011) SW 2011

ReDTPM (DAS, WEI e LIU, 2014) HW 2014

FFRR (KUMAR e KISORE, 2014) SW 2014

SafeStack – Memory Access Virtualization (CHEN, JIN, et
al., 2013)

SW 2013

 Reference: Segabinazzi (2016)

 Several efficient software-based as well as hardware-based dynamic integrity

checking techniques (CORLISS, LEWIS e ROTH, 2004)(OZDOGANOLU,

VIJAYKUMAS, et al., 2006)(PARK, ZHANG e LEE, 2006) have been proposed in the

literature. However, software-based techniques suffer from performance overheads

as high as 60%, while hardware-based approaches result in average overheads of

about 18% (KANUPARTHI, KARRI, et al., 2012). Additionally, some of these

approaches (KANUPARTHI, KARRI, et al., 2012) (SHUETTE e SHEN, 1987) need

application code recompilation to compute specific information (hashes of application

program’s instruction addresses and opcodes) that are later used at runtime to detect

attacks.

2.4.1. StackGuard

The StackGuard is proposed by (COWAN, PU, et al., 1998)(COWAN,

BEATTIE, et al., 1999). This is a compiler extension that enhances the executable

code produced by the compiler so that it detects and thwarts buffer-overflow attacks

against the stack.

The detection is done by placing a ―canary‖ word next to the return address on

the stack, as show in the Figure 7. When the function returns, it first checks to see if

the canary word is intact before jumping to the address pointed to by the return

address word and assumes that the return address is unaltered if, and only if, the

canary word is unaltered. The buffer overflow attack method exploits the fact that the

33

return address word is located very close to a byte array with weak bounds checking,

so the only tool the attacker has is a linear, sequential write of bytes to memory,

usually in ascending order. Under these restricted circumstances, it is very difficult to

over-write the return address word without disturbing the canary word.

The StackGuard implementation is a patch to gcc compiler. The gcc

function_prologue and function_epilogue functions have been altered to

emit code to place and check canary words. The changes are architecture-specific

(i386) and the additional instructions added to the function prologue are shown in

pseudo-assembly form in Figure 8, and the additional instructions added to the

instruction epilogue are shown in Figure 9.

Figure 7 - Canary word next to return address.

Reference: (COWAN, PU, et al., 1998)

Figure 8 - Function Prologue Code: Laying Down a Canary.

move canary-index-constant into register[5]

 push canary-vector[register[5]]

34

Reference: (COWAN, PU, et al., 1998)

Figure 9 - Function Epilogue Code: Checking a Canary.

move canary-index-constant into register[4]

 move canary-vector[register[4]] into register[4]

 exclusive-or register[4] with top-of-stack

 jump-if-not-zero to constant address .canary-death-handler

 add 4 to stack-pointer

 < normal return instructions here>

.canary-death-handler:

...

Reference: (COWAN, PU, et al., 1998)

2.4.2. Dynamic integrity checking

Dynamic integrity checking involves calculation of hashes of the instructions in

the code being executed and comparing these hashes against corresponding

precomputed hashes at runtime. The approach proposed by (KANUPARTHI, KARRI,

et al., 2012) presents a hardware-based dynamic integrity checking that does not

stall the processor pipeline. The approach permit the instructions to commit before

the integrity check is complete, and allow them to make changes to the register file,

but not the data cache. Then the system is rolled back to a known state if the checker

deems the instructions as modified.

Modern out-of-order processors have recovery mechanisms to recover from

incorrect branch speculations. Thus, it is possible to recover the architecture state to

a previously check pointed state. We leverage this feature and allow all instructions

to modify the architecture state. The results of the instructions that do not update the

memory (and are currently being checked by the integrity checker) are written to a

shadow register file, instead of the original register file. These values are held there

until the integrity check is complete. Instructions that update the memory are held in

the store buffer until the integrity check is complete.

35

Figure 10 shows the architecture of the proposed scheme. The shadow

register file, integrity checker, and hash cache are the new components that are

integrated with a processor pipeline. The instruction at the head of the re-order buffer

(ROB) is non speculative and is ready to commit in program order. The instruction is

allowed to commit and the result is written to the shadow register file or the store

buffer (SB). Simultaneously, this instruction is also sent to the integrity checker,

which collects instructions until all the instructions in the basic block 1 are available.

The integrity checker then computes the hash of the instructions. While the hash

computation is in progress, the checker accesses the hash cache to fetch the

corresponding precomputed hash. The calculated hash is compared against the

corresponding precomputed hash to detect any malicious modifications. Once the

instructions are deemed safe, the original register file is updated with corresponding

values from the shadow register file for instructions that do not update the memory.

For instructions that update the memory, the pending data in the store buffer are

allowed to update the data cache. The instruction decode and execute stages of the

pipeline use the latest values from the shadow register file and the store buffer to

resolve dependences and prevent hazards. In case of a mismatch in the calculated

and precomputed hash, the system is rolled back to the last known correct state. This

is accomplished by clearing the contents of the shadow register file and the store

buffer.

Figure 10 – Architecture of the scheme. Shaded blocks indicate the added
components. The dashed lines indicate the new interconnections.

 Reference: (KANUPARTHI, KARRI, et al., 2012)

36

Figure 11 shows the internal structure of the integrity checker. The main

components are a buffer, a hash engine, a crypto engine, and a comparator. The

instructions are received by the integrity checker in program order from the reorder

buffer and are held in the buffer until all the instructions that belong to a basic block

or trace are available. The hash engine computes the hash of the instructions. The

hash cache is accessed using the address of the first instruction in the basic block to

fetch the corresponding precomputed hash. In case of a hash cache hit, the

precomputed hash from the hash cache is used in the comparison. Otherwise, the

encrypted precomputed hash is fetched from main memory, decrypted using the

crypto engine, and is then used for comparison.

Figure 11 – Architectural details of the integrity checker.

Reference: (KANUPARTHI, KARRI, et al., 2012)

2.4.3. Secure Return Address Stack (SRAS)

The work presented by (LEE, KARIG, et al., 2004) describes a hardware-

based secure return address stack (SRAS), which prevents malicious code injection

involving procedure return address corruption. Only call and return instructions can

37

modify the contents of the SRAS. If the return address given by the SRAS hardware

differs from that stored in the memory stack, then it is highly likely that the return

address in the memory stack has been corrupted. A hardware SRAS structure

contains a finite number of entries, which may be exceeded by the number of

dynamically nested return addresses in the program. When this happens, the

processor must securely spill SRAS contents to memory. The processor issues an

OS interrupt to write or read SRAS contents to or from protected memory pages

when SRAS overflow or underflow occurs. This SRAS overflow space in memory is

protected from corruption by external sources by only allowing the OS kernel to

access spilled SRAS contents.

2.4.4. Light-Weight Architecture Design

The paper enumerated by (KAO e WU, 2009) propose a light-weight

architecture design change under the constraint to prevent from function return

address attack by tracking the active return address and stack frame pointer. Memory

write operations other than regular PUSH to the monitored location will be tagged

and it will trigger the warning when the target address is actually used as return

address. The advantage of tagging the location instead of saving the value of the

return address is we do not need to track the consistency of the CALL/RET pair and

the stack frame such as setjmp and longjmp. The approach is completely transparent

to the software. The checking occurs within the micro-operation. The attackers

cannot inject instructions to bypass the protection. The drawback is that since we do

not keep every instance of the return address, and the use of the stack frame pointer

register is optional, we cannot provide 100% coverage

2.4.5. Separates the stack in two parts

The method proposed by (DU e MAI, 2011) separates the standard stack to

two parts, original stack saves the return address and the address of buffer with read

permissions only, and the true values of buffer are saved in other space. A block of

memory can be read, written and executed. In this approach, the space of stack will

be set to read only, the features of it equal to a const pointer in C\C++ language.

38

That is means except initializing it we can’t change the space this pointer links to.

Meanwhile, the stack frames store the addresses of local variables and buffer, and

the value of them will be stored in heap or other memory space beyond the stack. In

a sense, a stack attack would be not available with this approach, because the buffer

overrun would not rewrite the return address and the saved frame pointer any more.

Taking an example to explain how this approach works. As the Figure 12

shows, the stored content of the stack of a program is not the real data of variables

and buffers, but their memory addresses as a pointer. However, the structure is same

as the original totally. Firstly, the return address is put into the stack, and then the

saved frame pointer is put too. Meanwhile, some space would be improved for the

local variables’ address and arrays’ address.

The distinctive is, there are two buffers, and a const pointer is put into the

stack respectively. Once the const pointer has been initialized, it can be read only

(STEVENS e RAGO, 2012). The value of buffers would be put into a space where

the above pointer points to. Of course, the room must be in process space.

39

Figure 12 - Approach presented by (DU e MAI, 2011) to protect against stack
overflow.

Reference: (DU e MAI, 2011)

2.4.6. Reconfigurable Dynamic Trusted Platform Module - ReDTPM

The method proposed by (DAS, WEI e LIU, 2014), implements a new DTPM.

DTPM is an active security module as compared to the passive nature of TPM. Their

DTPM design aims to perform the control flow checking for the software execution.

This method contains two steps: offline profiling of the program and runtime control

flow checking. By profiling the program, we generate the reference data which is

used to verify the control flow at runtime. Control flow checking technique consists of

Control Flow Checker (CFC) to perform the runtime checking and the Target Address

Buffer (TAB) to buffer the addresses which need to be validated by CFC. The module

40

is implemented on FPGA to achieve the benefits of low cost, post-fabrication

reconfigurability and sufficient performance.

 Program execution flows from one instruction to the other in a sequential

manner until a control flow instruction (CFI) is executed. After executing the CFI, the

program counter (PC) takes the value of target address of the CFI, which may

transfer the control to a different location. Thus, CFIs are responsible for changing

the sequential flow of execution. An unexpected or deviated control flow is

considered as an attack. Such attack tends to change the target address at runtime.

Our method involves verification of these TAs in order to detect the deviation of the

control flow from the normal execution. An alarm signal (e.g., a hardware interrupt to

the OS) is generated to abort the program upon attack detection. Depending on ISA,

there could be instructions apart from CALL, RET and JMP responsible for changing

the control flow. Such instructions also need to taken into account for checking the

control flow. As a proof of concept, this work limits to CALL, JMP and RET as CFI at

present. However, new CFI instructions can be incorporated similarly.

2.4.7. Function Frame Runtime Randomization (FFRR)

The approach proposed by (KUMAR e KISORE, 2014) makes the memory

location of the program objects on the stack (such as data objects and pointers of

functions on the stack) a pretty more unpredictable. This is achieved by randomizing

the relative distance (and in the process absolute address of the objects) between

any two objects on the stack at run time (done at the beginning of the function

execution). The basic idea is quite simple. In each function, we introduce as many

random variables as the number of local variables declared in a function. These

random values are used to add random number of words (padding) before the local

variables are pushed on to the stack function frame at run time. The random

numbers can be generated using a computationally inexpensive technique like linear

feedback shift register (LFSR) during the function frame set up phase.

Consider a vulnerable function in a program whose stack memory layout is as

shown in Figure 13. Assume that this function contains three local variables, in which

the first two are non-buffer-type variables and third variable is a buffer type variable.

The program vulnerability makes it possible to overflow the buffer-type variable and

41

overwrite the return address with address of malicious code to change the control of

the program. Alternatively, in case the state of the adjacent non-buffer type variables

is responsible for security validation, their corruption could result in bypassing certain

security checks and thus resulting in gain of master/root privileges.

FFRR technique transforms the stack shown in Figure 13 to as shown in

Figure 14(a). A random number of words are added before allocating the memory for

local variables in stack function frame. The random numbers are represented as a

function of time (t) because the random numbers vary from one function to another

function (randomization in space domain) and also for each execution of the same

function (randomization in time domain). These numbers are chosen first by the

function prologue using LFSR. In Figure 14(a), δr1, δr2, δr3 are 2, 5 and 3 words

respectively and the most recent random number is retained and serves as a seed

for subsequent random sequence generation.

However, the above approach will introduce high overheads for each function

call. Therefore we recommend applying this approach only for buffer-type local

variables. Specifically, for each function we introduce the number of random

variables (equal to number of local buffers in a function) and just as in the previous

case, the random values are used to add the random number of words (padding)

before the buffer-type local variables. The resulting function frame is as shown in

Figure 14(b). FFRR does not impact the existing process for pushing software

updates or patches as the proposed technique randomizes only the run time copy of

the program binary.

42

Figure 13 - Layout of function frame on the stack.

Reference: (KUMAR e KISORE, 2014)

43

Figure 14 - Function Frame Runtime Randomization – (a) FFRR technique for all
local variables; (b) FFRR technique for only buffer-type variable.

(a) (b)

Reference: (KUMAR e KISORE, 2014).

2.4.8. SafeStack - Memory access virtualization

The work proposed by (CHEN, JIN, et al., 2013), presents a technique called

Memory Access Virtualization. This technique allows the relocation of memory

objects to other locations to maintain a program’s functionality at runtime. With the

ability of memory object relocation, for attack diagnosis the approach can move stack

buffers to a monitored memory region to detect whether some of them have out-of-

bound access, while for attack prevention the approach can move vulnerable buffers

into protected memory areas, and then write values into (or take values out of) the

corresponding protected memory areas instead of the original stack address space.

Therefore, the approach can safely mask buffer overflow attacks such as an out-of-

bound write or an out-of-bound read and make the program continue to execute

normally, instead of throwing up an exception and terminating the program - an

undesirable situation for an important business server program.

44

Based on this technique, the approach builds SafeStack to automatically

diagnose and patch stack-based buffer overflow attacks. Specifically, it use memory

access virtualization mechanism to relocate the bug-triggering buffer into protected

memory areas, as shown in Figure 15b. In this way, the two vulnerable buffers are

protected from being used to overrun the control data.

Memory access virtualization adopts an object-relocation table to map the

original memory address of an object to a new address. The mapping is relatively

simple if the access to a buffer is within that buffer. Otherwise, the mapping has to be

done carefully as the system needs to consider whether it is an out-of-bound access

or a legitimate access to a different variable.

This approach focuses the discussion on the memory access virtualization

mechanism for simple arrays. The mechanism works in a similar way for other types

of local buffers, such as structures, structure arrays, unions, and union arrays.

There are two main types of array element access: direct access and indirect

access. For example, defining a character array of size 20 as a[20], a[5] is a

direct array element access using the constant index 5, and a[i] is an indirect array

element access using the index variable i.

For the direct access, the array index is a constant. The offset from the frame

pointer or the stack pointer is determined at the compilation time. In this case, the

effective memory address is inside the object-relocation table, and the addressing

mode is ―Base plus Offset.” The base is the base register (EBP or ESP) and the

offset is the value between the variable (e.g., a[20]) and the base register.

SafeStack simply replaces this original address with its corresponding new address

before executing the instruction. There is a case that the stack buffer subscript is a

constant and out of range, such as a[24]. Fortunately, this explicit out of bound

access can be detected in the testing phase before the application is released, and it

is reasonable that we assume the program does not have this explicit out of bound

access.

For the indirect access, the array index is an expression. The effective

memory address is the sum of the starting address of the array and the size of the

array element multiplied by the array index, and the addressing mode is “Base plus

Index plus Offset.‖ The base is the base register, the offset is the value between the

starting address of the array and the base register, and the index is the index register

45

(storing value i, which is scaled by the size of the array element). SafeStack first

calculates the starting address of the array, finds the corresponding new address

according to the object-relocation table, calculates the final new address, and

replaces the original address with it before executing the instruction.

In addition to these two types of array element access, arrays can also be

accessed by pointers to arrays. For example, a program can define a pointer variable

pointing to an array, and access array elements using the pointer variable. To handle

this type of access, SafeStack first replaces the original address with the

corresponding new address, and subsequently all the offset calculation based on this

pointer can be directed onto the corresponding new address without the needs to

map new address for each instruction subsequently. Similarly, most of the time the

address of an array is passed as an argument to a function, for example, the address

of an array is passed to the function strcpy to copy data into the array. In this case,

the value of the argument has been replaced with the corresponding new address.

This solution avoids searching the stack frame and checking every instruction for

address mapping, and thus has better performance. For Single Instruction, Multiple

Data (SIMD) instructions, they also specify the addresses of arrays to process.

Therefore, SafeStack can replace them with corresponding new address before

processing.

46

Figure 15 - (a) Stack without memory access virtualization and (b) stack with memory
access Virtualization.

Reference: (CHEN, JIN, et al., 2013).

2.5. COMPARISON AMONG RELATED WORKS

Table 2 compares the related works commented above. It shows advantages

and disadvantages related to each methodology quoted in this work.

Table 2 – Comparison among the most common approaches.

Index Approach Advantages Drawbacks

1 StackGuard (COWAN,
PU, et al., 1998)
(COWAN, BEATTIE, et
al., 1999)

 Independent of
HW (processor
architecture) or
SW
(application
code
description
language and
OS) platforms.

 Need application
code recompilation.

 Based on SW, thus
implying considerably
performance
degradation.

2 Dynamic Integrity
Checking (KANUPARTHI,
KARRI, et al., 2012)

 High detection
coverage

 Added stack in

 Need a pre-execution
time for hash
generation.

47

(KANUPARTHI, ZAHRAN
e KARRI, 2012)

HW with low
area overhead

 Need hash’s
generation of every
application to work
well.

3 SRAS (LEE, KARIG, et
al., 2004)

 Added stack in
HW with low
area overhead

 Need an OS to
manage memory.

4 Light-weight hardware
return address and stack
Frame Tracking (KAO e
WU, 2009)

 Added stack in
hardware

 Need an OS to
manage the memory.

 Require more area
than SRAS due to the
additional need to
save stack frame
pointer.

5 Separates the stack to
two parts (DU e MAI,
2011)

 Independent of
the HW/SW
platform

 Need application
code recompilation.

6 ReDTPM (DAS, WEI e
LIU, 2014)

 Independent of
the HW/SW
platform

 Need binary
application profiling.

 Need memory space
to keep extra data.

7 FFRR (KUMAR e
KISORE, 2014)

 Independent of
HW.

 High memory
overhead.

 Not so safe, due to
attackers could set
values on the stack as
they want, and
discover the right
return address
location by brute
force.

8 SafeStack – Memory
Access Virtualization
(CHEN, JIN, et al., 2013)

 Independent of
HW.

 Add execution
overhead when
reading and write data
from memory.

Reference: Segabinazzi (2016)

Additionally to Table 2 the Table 3 makes a comparison between the main

related works and the proposed approach in this dissertation. The first two lines are

related to the Watchdog and the Recovery Mechanism proposed by this dissertation,

the lines that follow are related to approaches enumerated in Table 2. To better

illustrate this table the advantages and drawbacks are summarized below:

 Advantages:

48

 1: Independent of software (OS or extra software to support the

approach);

 2: Transparent to the hardware point of view (processor

architecture);

 3: High Detection coverage (more than 3 kings of vulnerabilities);

 4: Low area overhead;

 Drawbacks:

 1: Dependent of software;

 2: Not transparent to the hardware;

 3: Low detection coverage (less than 2 kinds of vulnerabilities);

 4: High area overhead;

 5: Need application code recompilation;

 6: Imply considerable performance degradation;

 7: Need a static timing analysis (a pre-execution time analysis);

Table 3 – Comparison among main related works and the approach proposed by this
dissertation.

Approach
Advantages Drawbacks

1 2 3 4 1 2 3 4 5 6 7

Watchdog X X X X

Recovery Mechanism X X X X X

1 - Stack Guard X X X X X X

2 - Dynamic Integrity

Checking

X X X X X

3 – SRAS X X X X

4 - Light-weight hardware

return address and stack

Frame Tracking

 X X X X

Reference: Segabinazzi (2016)

49

3. THE PROPOSED APPROACH

The work proposed by this dissertation implements two main approaches

(Figure 16): a Watchdog to detect malicious overwritten in the return addresses

saved in the program stack, and a preliminary of a method to try to recover the

system starting from the return address overwritten detection. This overwritten

happens in buffer overflow situations, and could be a first step to a stack smashing

attack. So, this work is capable to detect a tentative of attack by stacking smashing

and could be able to recover the system to a safe point generated during normal

execution.

Figure 16 – General architecture proposed by this work.

Processor Core

Watchdog
Recovery

Mechanism

Pipeline
Internal
Signals

Recovery
Signals

Recovery
Signals

Reference: Segabinazzi (2016)

The proposed Watchdog is based on two specific structures (a) the logic

implemented in hardware to detect the return address overwritten and (b) the

memory block added in the Watchdog structure used to store functions return

addresses. The paragraphs that follow explain in more details how this approach

works:

50

 Every time a call instruction is executed by the processor, the return

address is stored in the original stack (typically a memory address or a

dedicated register inside the processor) and in added Watchdog memory

block;

 Every time a return instruction is executed, the Watchdog performs a

comparison between the return address stored in the original stack and in

the Watchdog memory block. In this case, one of these two situations may

occur:

o In case of a positive comparison, the regular execution of code

takes place;

o In case of a negative comparison, the Watchdog raises a signal to

the second part of this work: the recovery mechanism.

Therefore, in case of occurring an overflow on the original stack that corrupts

the return address, such address remains unchanged in the Watchdog memory

block. This condition guarantees the detection of the return address overwritten by

comparison between copies of the stored return addresses. Finally, this approach do

not allow the system to branch to some malicious code possible pointed by this

corrupted return address and, in addition, raise a signal to start the recovery process.

Starting from the signal generated by the Watchdog, the recovery algorithm

rollback the system to the last safe-point generated previously in run-time. This safe

point is the last function call coming from main function. Then, when the system

finishes the rollback, it starts to run again normally.

Given the above exposed, the proposed approach presents the following

features and advantages compared to the existing techniques:

 Does not need application code recompilation;

 It is not based on any software component;

 The Watchdog detection mechanism requires a low area overhead;

 Negligible performance degradation to recognize the return address

overwritten;

 Extremely low attack detection latency;

 Gives to the system the opportunity to recovery from a kind of attack by

yourself.

51

3.1. WATCHDOG GENERAL ARCHITECTURE

Figure 17 depicts the general block diagram of the proposed Watchdog, where

it is instantiated besides the processor core.

Figure 17 – Watchdog instantiated besides the processor core.

Processor CoreWatchdog

Pipeline Internal

Signals

Reference: Segabinazzi (2016)

As observed in Figure 17 and Figure 18, the Watchdog monitors some internal

signals from the execution stage of the processor pipeline. Such signals are

described below:

 The ―OpCode‖ of the instruction that is leaving the Execution Stage of the

pipeline;

 The bit ―annul‖, whose function is to indicate if the instruction that is leaving

the Execution Stage of the pipeline will be actually executed by the

processor or it will be discarded due to speculative execution.

 The ―Program Counter‖ (PC), which is saved into the Watchdog memory in

case a function ―CALL‖ is performed. After the function execution, the PC is

defined as the return address that will be used to return processor control

to the point where the application was interrupted.

 The ―jmp_addr‖ signal, which points to the function return address that will

be executed.

Figure 18 shows the internal blocks of the proposed Watchdog. As detailed

above, it grabs a set of four specific pipeline internal signals. The Instruction Decoder

Block uses the instruction ―OpCode‖ and the ―annul‖ signal to decode and check if

52

the current instruction will be executed. If the Instruction Decoder Block decodes a

function ―CALL‖, it will send the icall signal to the ShadowMem Control Block. In this

case, the ShadowMem Control Block will save the current PC retrieved from the

pipeline (―Curr_PC‖ signal) into the ShadowMem Block. Instead, if the Instruction

Decoder Block decodes a function return instruction (IJMPL), it will send the ―ijmpl‖

signal to the ShadowMem Control Block that will recover from the ShadowMem Block

the last PC saved therein and send it (together with compare signal) to Decision

Block.

When the Decision Block receives the compare signal and the ―last PC‖ it

performs a comparison between this value and the jmp_addr retrieved from the

pipeline. If this comparison returns true, no action is required. Nevertheless, if the

comparison returns false the exception signal will be send to a Watchdog external

block, the Recovery Mechanism that will be explained in the section 3.2.

Figure 18 - Internal blocks of the Watchdog.

Instruction

Decoder
ShadowMem

Control

ShadowMem

Decision

PC

OpCode

annul

jmp_addr

curr_PC

last_PC

compare

exception_signal

last_PC

Icall/ijmpl

Pipeline

Internal

Signals

Reference: Segabinazzi (2016)

3.2. THE RECOVERY MECHANISM

53

The recovery process proposed by this work includes in the processor

architecture three main blocks: (1) the Recovery_ctlr; (2) the Reg_recovery_ctlr; and

(3) the Reg_recovery_mem. Also, two extra memory blocks are proposed: (1) the

Secondary_mem; and (2) the Recovery_mem. The general architecture is illustrated

by Figure 19 and these five blocks are explained below:

(1) The Recovery_ctlr should gets the signals from Watchdog, generate safe

points and saves data coming from address and data bus as necessary in

the Secondary_mem or in the Recovery_mem;

(2) The Reg_recovery_ctlr is a controller block added in the core of

processor. This block receives the same signals from Watchdog, but it

generate safe points by saving in the Reg_recovery_mem the data

containing in the core registers;

(3) The Secondary_mem is a memory block that saves data received from

Recovery_ctrl when the execution is in the main function;

(4) The Recovery_mem receives data from Recovery_ctrl too, but it saves all

modifications occurred in the memory when the program goes out of main

function. In the other words, when it is in function call situations every data

and the respective data address are saved in the Recovery_mem in a

queue order.

(5) The Reg_recovery_mem receives the data from Reg_recovery_ctrl, it

saves the data coming from core registers.

54

Figure 19 – Recovery mechanism included in the processor.

Ahb slaveCore

Recovery_ctrl

Watchdog

Mem
ctrl

Ahb
bus

Memory

Reg_recovery_
ctrl

Secondary_mem

Recovery_mem

Reg_recovery_
mem

in_main_sig

excep_sig

data

data

addr

addr

Proposed
architecture

r/w

r/w

Pipeline
Internal
Signals

Reference: Segabinazzi (2016)

As could be seen in the Figure 19 the Recovery_ctlr and the

Reg_recovery_ctlr receive two signals from Watchdog:

 The exception_signal: this signal is generated by Watchdog, and it is

raised when the Watchdog detect a return address overwritten;

 The in_main_signal: this signal is generated by Watchdog too. But it is

raised or put down when the program execution is in or out of main

function respectively.

So, to do the recovery, these blocks will work in the follow situations as

described below.

3.2.1. Normal execution

This section describes the flow of the recovery process during normal

execution. When the program is on main function, the execution data is saved in the

55

main memory (as a normal way) and in the Secondary_mem memory by the

Recovery_ctrl. So when the execution goes out of main function by a function call:

 The program continues to save data in a normal way in the primary

memory.

 The Watchdog put down the signal in_main_sig;

 The Recovery_crtl stops to save data in the Secondary_mem, but;

It starts to save on Recovery_mem the data itself and the respective address

where any data was saved in the principal memory, these data are saved in this

memory in a queue order as showed in the

 Figure 20;

 The Reg_recovery_ctrl generate the safe point by getting all internal

register states and saving these data in the Reg_recovery_mem block.

When the execution returns to main function the signal in_main_sig is raised

and:

 The data saved in the Recovery_mem will be committed to

Secondary_mem in a FIFO (first in – first out) order;

 The data saved in this step is just the data owned by the piece of stack that

was not released yet by the program execution and the data in other

memory spaces with write permission (e.g heap and data).

 However if any data are required to save in memory space with non-write

permissions this data will be discarded, in other words, if one ―Address

Data‖ corresponds to a memory address with non-write permissions, the

―Data‖ owned by this ―Address Data‖ will be discarded.

 Finally, the internal register states saved in the Reg_recovery_mem are

discarded;

56

Figure 20 – The Recovery_mem memory block receiving data and the respective
data address in a queue order.

Address data 6

Address data 5

Address data 4

Address data 3

Address data 2

Address data 1

Data 6

Data 5

Data 4

Data 3

Data 2

Data 1

Memory

Word 1 | Word 2

Data In

Data Out

Reference: Segabinazzi (2016)

3.2.2. In a return address overwritten detection

This section describes the Recovery Mechanism actions when the Watchdog

detects a return address overwritten. So, in this situation, the Watchdog raises the

exception_sig signal, and the Recovery Mechanism does the steps below:

 The program execution is stopped;

 The system is rolled back to the last generated safe point (the point where

the first function was called in the main function), the Reg_recovery_ctrl will

be responsible to save the register states saved in the Reg_recovery_mem

in the official registers;

 All data saved in the Recovery_mem will be discarded;

 The data in the Secondary_mem memory will overwrite all data in the main

memory data;

 Finally, the program starts to run again from the safe point.

57

3.3. DETECTION, CHECK-POINTING, AND RECOVERY

The flow chart in the Figure 21 describes the basic actions performed by

detection process. Also, the recovery process is described as follows. The Figure 22

describes the operations while the system is on main function, the Figure 23

describes the operations while the system is out of main function and finally the

Figure 24 describes the operations performed by the Recovery Mechanism when a

return address overwritten was detected.

58

Figure 21 – Flow chart describing the basic operations performed by the Watchdog.

Running...

Inst = CALL?Inst = JMPL?

ShadowMem[SSP] = PC

SSP = SSP+4

Mem[SP] =

ShadowMem[SSP]?

Yes

No

Yes

No

Yes

Recovery Process

Start...

No

Legend:
SSP: ShadowMem Stack Pointer
SP: Stack Pointer
PC: Program Counter
Inst: Instruction

Function

Call comes from

main?

No

Generating Safe-Point

Yes

Reference: Segabinazzi (2016)

59

Figure 22 – Recovery mechanism operations when the execution is on main function.

Running on main function

Mirroring main data in

Secondary_mem

First function

 call detected?

Data in secondary_mem

are freezed.

Dump on:

- Pipeline state registers;

- General core registers;

Safe Point

 successfully

generated!

Yes No

Reference: Segabinazzi (2016)

Figure 23 – Operation performed by Recovery Mechanism when the execution is out
of main function.

Running out of main

function.

Returning

 to main function?

Execution data saved in

the Recovery_mem

Commit data from

Recovery_mem to

Secondary_mem

Discards state registers

saved in

Reg_recovery_mem

Yes No

Reference: Segabinazzi (2016)

60

Figure 24 – Recovery mechanism operations when an overwritten was detected in
the recovery mechanism.

Return address

overwritten Detection

Recovery_ctrl discards

data in Recovery_mem

Watchdog rise up

exception signal

Main program memory are

totally overwritten by data

in Secondary_mem

Commit to original regiters

the register states saved in

Reg_recovery_mem

System are

 successfully rolled

back to Safe Point!

Reference: Segabinazzi (2016)

The Watchdog monitors the pipeline internal signals since the beginning of the

program. And while program execution is on main function, the Recovery Mechanism

uses the Secondary_mem memory block to save data as a mirror of main memory.

By monitoring processor pipeline internal signals, it is possible to detect the

moment when a CALL instruction is executed. At this moment, the current PC is

61

simultaneously saved in the regular Stack and in the ShadowMem. In more detail,

the following operations are performed:

Stack[SP+4]=PC (1)

ShadowMem[SSP+4]=PC (2)

After saving PC context in the Stack and in the ShadowMem, the Stack

Pointer (SP) and the ShadowMem Stack Pointer (SSP) are incremented as follows:

SP=SP+4 (3)

SSP=SSP+4 (4)

At this moment, the Recovery Mechanism checks if this function call is coming

from main function (the first function call). If yes, the Recovery Mechanism starts to

save data in the Recovery_mem memory and generate the first safe-point by saving

all internal pipeline state register and general state register in the

Reg_recovery_mem block.

By continuing the execution, when an instruction to return from function is

executed by the processor, both stacks are read out by the Watchdog and their

contents are compared:

Stack[SP]==ShadowMem[SSP] (5)

When system returns to main function and no errors are detected, the

Recovery Mechanism commits the data contained in the Recovery_Mem to

Secondary_mem memory block. Also, at this point, the register states saved in the

Reg_recovery_mem are discarded.

If the comparison made in the step (5) returns true, the PC register receives

the PC stored in the original stack and the SP and the SSP are updated as follows:

PC=Stack[SP] (6)

SP=SP-4 (7)

SSP=SSP-4 (8)

If the comparison done in the step (5) returns false the Watchdog raises the

exception_sig signal to start the recovery process. The Recovery Mechanism rollback

the system to the safe point saved previously by attributing the registers states saved

in the Reg_recovery_mem in the officials’ core internal registers. All data saved after

62

this point will be discarded, and the main memory will be totally overwritten by data in

the Secondary_mem. Finally, the execution is now reinitiated from this point.

63

4. VALIDATION

The validation of this work was made by implementing a simple C program

(Figure 25), two points were verified with this code: (1) the Watchdog capacity to

recognize the return address overwritten and (2) the Recovery Mechanism capacity

to rollback the system to the last safe-point.

4.1. A SIMPLE C PROGRAM

The first step to validate this work was to implement a simple C program. This

program performs a buffer overflow that overwrites a return address located in the

stack. The C source code of this program is shown in the Figure 25:

Figure 25 – C source code used to check the Watchdog return address overwritten
detection.

void sploit(void)

{

char buff[8];

memset(buff, 0xff, 1024);

return;

}

void sploit1(void)

{

sploit();

return;

}

int main(void){

sploit1();

return 0;

}

Reference: Segabinazzi (2016)

64

This program uses the memset function to set a value in the char array called

―buff‖. The memset function fills the first 1024 bytes of the memory area pointed by

―buff‖ with the constant value ―0xff‖. However the parameter size (1024 bytes) is

much larger than the char array ―buff” size (only 8 bytes). So, as explained in

section 2.2, we have a buffer overflow situation. In this case, the sploit1 function

return address (which was saved in the stack) is overwritten by the value in memset

function. Also, in this implemented program the safe point, accordingly to recovery

mechanism, is the sploit1 function call. Table 4 shows the safe point instruction

address.

Finally, as expected result, the Watchdog should generate the exception

signal and, additionally, the Recovery Mechanism should rollback the program to

sploit1() function call.

Table 4 - Safe point in the simple C code implemented.

Main function call Main function call
instruction address

[hex]

Instruction Safe Point [hex]

sploit1() 40001e1c CALL 40001c78 40001c78

Reference: Segabinazzi (2016)

So, when processor executes the implemented program and tries to execute

the return address, the Watchdog generates the exception signal due to return

address overwritten detection, and also, the Recovery Mechanism rollback the

system to the safe point. The Figure 26 shows the right moment when the Watchdog

raises the wdg_exception_signal and attributes to the execution PC (r.e.ctrl.pc) the

address 0x1000071e, which after left shift (2 << 0x1000071e) it is equal to

0x40001c78, the safe point listed in the Table 4.

65

Figure 26 - Moment when the Watchdog recognize the return address overwritten
and the Recovery Mechanism rollback the system to the safe point.

Reference: Segabinazzi (2016)

66

67

5. EVALUATION

The evaluation of this approach was done in three steps: pieces of vulnerable

source codes get from open source programs were used to evaluate this work in

general situations, so the (1) Watchdog and (2) the Recovery Mechanism were

tested using these codes, and finally, (3) the area and execution time overheads

were calculated.

5.1. TEST CASES EVALUATION

To make an analysis under more realistic situations, test programs were

implemented with pieces of known vulnerable C codes. These vulnerable pieces of C

code were get from vulnerabilities published in the Common Vulnerabilities and

Exposures (CVE). CVE is a dictionary of common names (i.e., CVE Identifiers) for

publicly known cybersecurity vulnerabilities. CVE's common identifiers make it easier

to share data across separate network security databases and tools, and provide a

baseline for evaluating the coverage of an organization’s security tools (Common

Vulnerabilities and Exposures - The Standard for Information Security Vulnerability

Names, 2015) (National Vulnerability Database - Vulnerability search).

These test programs were implemented by including the snippet vulnerable

code into the template C source code. This template code is quite simple, just

initializes the program and calls the vulnerable code in such a way to force the buffer

overflow situation. Finally, these programs were compiled and simulated on Leon3

environment constructed under this dissertation. So, while each one of these

programs is running, the Watchdog and the Recovery Mechanism were evaluated.

5.1.1. Test cases evaluation – Watchdog detection

The overall results of the Watchdog detection were show in the Table 5. To

better illustrate this result the Figure 27 were get when the test case Edbrowse is

under the test, and it shows the right moment when the Watchdog generates the

exception signal. In this figure the intermediary Watchdog signals could be observed,

the raised signal ijmpl_sig shows that a function return instruction are been called.

The exception signal named as wdg_exception_signal are raised when the

68

compare_sig signal are raised too. These signals configuration illustrates the

situation where the Watchdog detects a return address overwritten successfully.

Figure 27 – Simulation moment when the exception signal is generated for the test
case Edbrowse.

Reference: Segabinazzi (2016)

Table 5 - Watchdog detection using pieces of vulnerable codes obtained from
vulnerabilities published in CVE.

Vulnerable

Programs

CVE Number Severity

(National

Vulnerability

Database -

Vulnerability

search)

Result

Edbrowse CVE-2006-6909 10.0 high Watchdog generates

the exception signal

MADWiFi CVE-2006-6332 7.5 high Watchdog generates

the exception signal

Samba CVE-2007-0453 4.6 medium Watchdog generates

the exception signal

Sendmail CVE-2003-0681 7.5 high Watchdog generates

the exception signal

69

Wu-ftpd CVE-1999-0368 10.0 high Watchdog generates

the exception signal

Wu-ftpd CVE-2003-0466 10.0 high Watchdog generates

the exception signal

Reference: Segabinazzi (2016)

5.1.2. Test cases evaluation – Recovery mechanism

In this section the Recovery Mechanism is evaluated by using the same

sniped codes from the section above. Starting from the exception signal generated

by the Watchdog the capacity of the Recovery Mechanism to rollback the system to

the last safe point and continue executing the program normally from this point were

evaluated.

To make this evaluation the existing safe points in the compiled code needs to

be checked. For the Edbrowse test case the safe points found in the compiled code

are listed in the Table 6.

Table 6 – Safe points found in the test code done with Edbrowse sniped code.

Main call instruction
address(hex)

Instruction Safe Point

40001eb4 call 40002018 40002018

40001ebc call 40001b50 40001b50

Reference: Segabinazzi (2016)

The Figure 28 shows when this benchmark is running and when the exception

signal is raised. As could be see, when the wdg_exception_signal is raised the

execution PC (r.e.ctrl.pc) gets the 0x100006d4 address, adjusting this address to

have 32 bits by making a double left shift (2<<0x100006d4) the result get is

0x40001b50. This is one of the safe point addresses listed above. After that, the

70

system continues to run normally. So, as a conclusion, the Recovery Mechanism

could rollback the system to the safe point successfully.

Figure 28 –Benchmark Edbrowse successfully recovered.

Reference: Segabinazzi (2016)

The Table 7 shows the results get from all benchmarks evaluation. As could

be see, the Recovery Mechanism successful recovers the most part of benchmarks.

Table 7 – Recovery result when evaluating the Recovery Mechanism under the
benchmarks implementations.

Vulnerable Programs CVE Number Recovery Result

Edbrowse CVE-2006-6909 Successfully recovered

MADWiFi CVE-2006-6332 Successfully recovered

Samba CVE-2007-0453 Successfully recovered

Sendmail CVE-2003-0681 Successfully recovered

Wu-ftpd CVE-1999-0368 Successfully recovered

Wu-ftpd CVE-2003-0466 Successfully recovered

Reference: Segabinazzi (2016)

5.2. DETECTION AND RECOVERY LATENCY

71

Additionally, the attack detection latency of the Watchdog was checked too.

More precisely, the time between the Watchdog detects a return instruction (JMPL)

by raising the signal ijmpl and the instant at which the Watchdog generate the

exception signal by raising the wdg_exception_signal was measured. As could be

seen in the Figure 29 the measured latency was four clock cycles.

Figure 29 – Watchdog return address overwrite detection latency to generate the
exception signal from a function return instruction decoded.

Reference: Segabinazzi (2016)

Finally, as can be observed in the figures above, when this approach are

under simulation the Recovery Mechanism does not take any extra time to execute

and recover the system. However, this behavior is not real, and when the system is

under real situations, others than simulation, the Recovery Mechanism will take extra

clock cycles to work. So, this implementation will introduce execution time overhead

in the situations at follows:

Return
instruction
decoded.

Latency: four
clock cycles.

72

 When the system returns to main function after a function call: the

Recovery Mechanism will commit all data contained in the Recovery_mem

memory block to Secondary_mem memory block. So, for every committed

data, an execution overhead will be introduced by a number of clock

cycles to write the data in the memory block. Therefore, the total amount

of execution time overhead incurred by this action will depends on the total

amount of data to commit.

 When a return address overwritten was detected: by recognizing this

situation the Recovery Mechanism should overwrite all data in the main

memory by the data contained in the Secondary_mem memory. Again,

extra clock cycles will be necessary to commit these data. And, the

execution time overhead will depends on the amount of data do commit

too.

Finally, as can be noted in the Annex B, the pipeline internal registers and

general registers data structures are duplicated, so, the state of these register are

saved in these duplicated structures right at the local entity where the original

registers are declared too. Therefore, to save the states of these original core

registers and to commit data back to these registers the Recovery Mechanism does

not take extra clock cycles, and this action will be performed in just one clock cycle.

5.3. AREA OVERHEAD

To calculate the area overhead, the vhdl code implemented in this work was

synthesize and mapped to a Virtex-4 (XC4VFX12-10SF363) FPGA. In a general way,

the number of Flip Flops and LUTs are illustrated, but additionally, the number of

LUTRAMs used in the implementations is illustrated too. The LUTRAMs item shows

the number of LUTS used as memory mapped by the ISE Design Framework as

DRAMs. So, the total amount of LUTs used in implementation (DRAM + Others) is

illustrated by LUTs, and, as additional information, the number of LUTs used as

DRAMs are illustrated in the item LUTRAMs.

5.3.1. Watchdog Area Overhead

73

 The Table 8 and Table 9 show the area overhead added by the Watchdog

implementation. This table depicts results for two different implementations of the

Watchdog according to its ability to monitor and capacity to store return addresses

from nested function calls: in the first implementation, the Watchdog is able to handle

256 nested function calls, in other words, 256 return addresses, while in the second

implementation it supports the monitoring and storage of 64 return addresses.

Table 8 - Area overhead yielded by the Watchdog implementation.

Return

Address

Capacity

Prymitive Type Leon +

Watchdog

Watchdog

entity

Area Overhead

256

Flip Flops 2063 118 6%

LUTs 6817 895 13%

Total 8882 1013 11%

64

Flip Flops 2048 110 5%

LUTs 6349 394 6%

Total 8399 504 6%

Reference: Segabinazzi (2016)

Table 9 – Number of LUTS used as memory, mapped by ISE Design framework as
DRAMS.

Return

Address

Capacity

Prymitive Type Leon +

Watchdog

Watchdog

entity

Area Overhead

256
LUTRAMs

502 480 96%

64 142 120 85%

Reference: Segabinazzi (2016)

74

The methodology proposed by (KANUPARTHI, KARRI, et al., 2012) shows an

area overhead of 4,25%. However, the memory area used to save some hashes was

not been considered when this overhead was calculated.

So, been in mind these overheads above, the Watchdog proposed by this

approach has a similar area overhead in comparison with other techniques.

5.3.2. Recovery mechanism area overhead

The area overhead incurred by the Recovery Mechanism was related to

memory. As it is explained in the sections above, the standard Recovery Mechanism

generates safe points from function calls originated in main function. In this situation

the memory overhead is:

<total amount of memory> = <system memory capacity> x 3

Also, the quantity of logic blocks used and the area overhead incurred by the

other recovery blocks such as Recovery_ctrl, Reg_recovery_ctrl and the

Reg_recovery_mem blocks, are showed in the Table 10.

Table 10 - Logic blocks utilization and the area overhead incurred by the Recovery
Mechanism blocks.

Prymitive Type Leon3 Leon3 +

recovery blocks

Area Overhead

Flip Flops 1938 2890 49%

LUTs
Total 5955 7183 20%

LUTRAMs 22 10 -54%

Total 7895 10075 27%

Reference: Segabinazzi (2016)

5.4. OVERALL OVERHEAD RESULT

Finally, the accumulated overhead incurred by the Watchdog and the

Recovery Mechanism together are shown in the Table 11.

75

Table 11 – Accumulated overhead incurred by the two main approaches proposed by
this dissertation.

Approaches Area Overhead

Watchdog (capacity: 64) 6%

Recovery mechanism 27%

Total 33%

Reference: Segabinazzi (2016)

The number of equivalent gates was not mentioned in this evaluation because

the equivalent gates estimation was removed from ISE Xilinx mapper report, since

the estimation done in earlier versions was only an oversimplification (XILINX INC.,

2016).

76

77

6. CONCLUSIONS

This paper presents a new Dynamic Integrity Checking technique based on a

Watchdog and a Recovery Mechanism implemented in hardware. The Watchdog

observes specific instructions in the code being executed through the processor

pipeline, compares them against reference values generated at runtime and in the

event of detecting a tentative of intrusion, the pipeline is stalled and the instructions

are not allowed to commit by flushing them from the pipe, finally the Watchdog rises

an exception signal that trigger the recovery process that should initiated by the

Recovery Mechanism. The attack type treated in this work is Stack Smashing Buffer

Overflow. Compared to the existing approaches found in the literature the

advantages of this work are listed as follows: (a) Does not need application code

recompilation; (b) It is not based on any software component; to recognize the return

address corruption the Watchdog has (c) no performance degradation, (d) an

acceptable area overhead; and (d) a low attack detection latency.

Experimental results obtained throughout simulations of test programs that

were implemented with pieces of known vulnerable C codes obtained from

vulnerable test benchmarks published in the CVE demonstrate that the technique is

very efficient: so far, the totality of the simulated intrusions were detected and

recovered by the Watchdog en the Recovery Mechanism. Furthermore, area

overhead was measured against the implementation of a system based on the

LEON3 softcore processor plus this approach, both described in VHDL and mapped

into a Xilinx Virtex-4 FPGA. In this scenario, the observed area overhead was around

of 6% of the LEON3 processor. Finally, the attack detection latency of the Watchdog

was measured to be very low: 4 clock cycles.

6.1. FUTURE WORK

In this section some possibilities to improve the work proposed by this

dissertation are exposed.

6.1.1. Recovery mechanism – improvement possibility

78

As explained in the section 3.2 the Recovery Mechanism uses two levels of

extra memory and a register recovery memory to rollback the program execution to a

function call in the main function.

Also, an improvement to this mechanism could be done to support the rollback

to other nested functions. This improvement could be done my marking points on the

Recovery_mem memory block as new safe points when a new function call

instruction is decoded (Figure 30(a) illustrate this behavior). So, when system returns

from a function call the recovery memory continues to be used, and the last safe

point created should be cleaned. The recovery memory will be committed in the

secondary memory just when the execution returns to main function.

However, to support this improvement, new levels of register recovery

memories should be included as more levels of nested function the mechanism

support, additionally, a new memory block should be included to save the safe-points

(Figure 30(b)).

Register_recovery_mem_levels = 1 + <nº of nested functions to support>

When an attack situation is detected the secondary memory should be

committed to main memory, and after, the recovery memory should be committed

direct to main memory too, but only the data saved before the last safe point should

be committed and the remaining modifications after safe point should be discarded.

Finally, data in the Reg_recovery_mem should be committed to original registers and

after that, the system will run again normally, starting from the last safe point.

79

Figure 30 - The safe pointing system (a) the recovery memory when new safe points
were detected and (b) the safe point memory block with these new safe points.

Address data 2

Address data 1

Data 2

Data 1

Memory

Word 1 | Word 2

Data In

Data Out

Address data 5

Address data 4

Address data 3

Address data 2

Address data 1

Data 5

Data 4

Data 3

Data 2

Data 1

Memory

Word 1 | Word 2

Data In

Data Out

New function
call detected

New safe point:
safe_point 1

New function
call detected

New safe point:
safe_point 2

(a)

Safe_point 2

Safe_point 1

Safe point
memory

(b)

Reference: Segabinazzi (2016)

Finally, the Figure 31 shows the new architecture required for this

improvement implementation.

80

Figure 31 – The new Recovery Mechanism architecture proposed by this
improvement.

Ahb slaveCore

Recovery_ctrl

Watchdog

Mem
ctrl

Ahb
bus

Memory

Reg_recovery_
ctrl

Secondary_mem

Recovery_mem

in_main_sig

excep_sig

data

data

addr

addr

Proposed
architecture

r/w

r/w

Pipeline
Internal
Signals

Reg_recovery_
mem

Safe point
memory

data
addr
r/w

Reference: Segabinazzi (2016)

81

6.2. DISCUSSIONS

It is also worth discussing three important points: (1) the applicability of the

proposed approach to different processor architectures, (2) the detection coverage of

the Watchdog and, finally, (3) the Recovery Mechanism applicability.

6.2.1. Proposed approach applicability to different processor architectures

Concerning this first issue, the approach is easily adapted to any kind of open-

source soft-core processor, considered that the four signals described in Section III

can be retrieved (―OpCode‖, ―annul‖, ―PC‖ and ―jmp_addr‖). Concerning Commercial

off-the-shelf (COTS) processors (for instance x86, PowerPC and ARM), it is more

difficult to monitor pipeline internal signals. So, our solution can be extended to

processors that use any instruction to return from functions, for example ret, jmpl or

any others instructions in a situation that the Watchdog could use to trigger as a

function call. So, the Watchdog just needs a way to differ these instructions from any

others in the processor instruction set.

Moreover, assume, for instance, that a processor use a link register to save

the current PC as a return address in function call situations. In this situation the PC

is not stacked but the current data contained in the linker register is. However, the

Watchdog get the return address direct from the PC (as explained in section 3.2) in

the right moment when the instruction that calls the function is being executed. So,

from the Watchdog point of view, it does not matter if this data will be saved first in

the link register and then moved to the stack or saved directly from the PC to the

stack.

6.2.2. Discussing about the Watchdog detection coverage

Considering the detection coverage, the Watchdog is not capable to analyze

the code contained in a function that is being called. Also, there are programs that

use indirect function calls, this is an specific situation where a pointer is used to call a

function. However this pointer could be saved in the stack and be modified in run

time by a buffer overflow in the stack. Therefore, the Watchdog will not detect if the

82

pointer used to call some function was modified in a malicious way, and the

execution could be branched to an injected code without any action from Watchdog.

Nevertheless, note that the proposed Watchdog is assumed to be used in critical

applications, which by nature do not use function pointers in order to satisfy safe

software design practices (O'CONNOR, 2004).

6.2.3. The Recovery Mechanism applicability

Making some analysis over the methodology proposed by this work, the

Recovery Mechanism together with Watchdog could open a possibility to attackers

drive a Distributed Denial of Service (DDoS) attack by forcing some buffer overflow

situation in the system.

During DDoS, attackers send out targeted commands to applications to tax

the central processing unit (CPU) and memory and make the application unavailable

(Gartner Newsroom, Announcements, Gartner Says 25 Percent of Distributed Denial

of Services Attacks in 2013 Will Be Application-Based , 2013).

The Figure 32 shows a flowchart of a tentative of DDoS attack in the system

where the Watchdog and the Recovery Mechanism are running. In this situation the

Watchdog will detect the buffer overflow and the recovery will rollback the system to

the point where some malicious code could be inserted again and so on.

83

Figure 32 – Flowchart to describe a DDoS attack in the system where the Watchdog
and the Recovery Mechanism are running.

Normal

Running

Malicious

data

Introduced

Induced

Buffer

Overflow

Buffer

overflow

detected by

Watchdog

System

rollback by

recovery

mechanism

Reference: Segabinazzi (2016)

Having this issue in mind, and an infinity of vulnerability situation found in

programs source codes, there will be situations where the best action to take, after a

buffer overflow detection, will be the overall system reset. So, in these situations, an

extra verification should be included in the approach proposed by this dissertation.

An especial logic to verify how many times the Recovery Mechanism rollback to the

same safe point, and if it happens more than 2 or 3 times, the system should be

overall restarted.

84

85

REFERENCES

AEROFLEX GAISLER AB. GRLIB IP Core User’s Manual. 1.3.7. ed. [S.l.]:

[s.n.], 2014.

CERT, Vulnerability Database. CERT, Vulnerability Database. Disponivel

em: <http://>. Acesso em: March 2015.

CHEN, G. et al. SafeStack: Automatically Patching StackBased Buffer

Overflow Vulnerabilitie. IEEE TRANSACTIONS ON DEPENDABLE AND SECURE

COMPUTING. [S.l.]: IEEE Computer Society. 2013. p. 368-379.

COBHAM GAISLER AB. Gaisler: Leon3 Processor. Gaisler, 2015. Disponivel

em: <http://gaisler.com/index.php/products/processors/leon3>. Acesso em: 23 Jan

2016.

COMMON Vulnerabilities and Exposures - The Standard for Information

Security Vulnerability Names. Common Vulnerabilities and Exposures, 2015.

Disponivel em: <https://cve.mitre.org/>. Acesso em: May 2015.

CORLISS, M. L.; LEWIS, E. C.; ROTH, A. Using DISE to Protect Return

Addresses from Attack. Workshop on Architectural Support for Security and Anti-

Virus (WASSA). Philadelphia: [s.n.]. 2004.

COWAN, C. et al. StackGuard: Automatic Adaptive Detection and Prevention

of Buffer-Overflow Attacks. Proceedings of the 7th USENIX Security Symposium.

San Antonio, Texas: [s.n.]. 1998.

COWAN, C. et al. Protecting Systems from Stack Smashing Attacks with

StackGuard. 5th Linux Expo. Raleigh: [s.n.]. 1999.

DAS, S.; WEI, Z.; LIU, Y. Reconfigurable Dynamic Trusted Platform

Module for Control Flow Checking. IEEE Computer Society Annual Symposium on

VLSI. Tampa, FL: IEEE Computer Society. 2014. p. 166-171.

DU, J.; MAI, J. A New Approach against Stack Overrun: Separates the

stack to two parts. Int. Conf. on Instrumentation, Measurement, Computer,

Communication and Control. [S.l.]: [s.n.]. 2011. p. 441-444.

86

GARTNER Newsroom, Announcements, Gartner Says 25 Percent of

Distributed Denial of Services Attacks in 2013 Will Be Application-Based. Gartner,

2013. Disponivel em: <http://www.gartner.com/newsroom/id/2344217>. Acesso em:

20 jan. 2016.

HERRMANN, D. S. Software Safety and Reliability: Techniques, Approaches,

and Standards of Key Industrial Sectors. In: HERRMANN, D. S. Software Safety

and Reliability. [S.l.]: Wiley-IEEE Computer Society, 2000. Cap. 02, p. 13-31.

KANUPARTHI, A. K. et al. A High-Performance, Low-Overhead

Microarchitecture for Secure Program Executio. IEEE International Conference

on Computer Design (ICCD). [S.l.]: [s.n.]. 2012. p. 102-107.

KANUPARTHI, A. K.; ZAHRAN, M.; KARRI, R. Architecture Support for

Dynamic Integrity Checking. IEEE Transactions on Information Forensics and

Security (TIFS), v. 7, n. 1, p. 321-332, Feb. 2012.

KAO, W.-F.; WU, S. F. Light-weight Hardware Return Address and Stack

Frame Tracking to Prevent Function Return Address Attack. International

Conference on Computer Science and Engineering. [S.l.]: [s.n.]. 2009. p. 859-866.

KC, G. S.; KEROMYTIS, A. D.; PREVELAKIS, V. Countering Code-Injection

Attacks With Instruction-Set Randomization. 10th ACM Conference on Computer

and Comunications. Washington: [s.n.]. 2003.

KNIGHT, J. C. Safety Critical Systems: Challenges and Directions.

Proceedings of the 24th International Conference on software Engineering (ICSE).

Orlando: [s.n.]. 2002. p. 547-550.

KU, K. et al. A buffer overflow benchmark for software model checkers.

Proceedings of the twenty-second IEEE/ACM international conference on

Automated software engineering , New York, 2007. 389-392.

KUMAR, K. S.; KISORE, N. R. Protection against buffer overflow attacks

through runtime memory layout randomization. 2014 13th International

Conference on Information Technology. Bhubaneswar, India: IEEE Computer

Society. 2014. p. 184-189.

87

LEE, R. B. et al. Enlisting Hardware Architecture to Thwart Malicious Code

Injection, 2004.

LUTZ, R. R. Software Engineering for Safety: A Roadmap. Proceedings of

the Conference on The Future of Software Engineering. Limerick: [s.n.]. 2000. p.

213-226.

MCGRAW, G. Software Security. IEEE Security & Privacy, v. 2, n. 2, p. 80-

83, 2004.

MILLER, B. P. et al. Fuzz Revisited: A Reexamination of the Reliability of

UNIX Utilities and Services. University of Wisconsin. Madison, p. 23. 1995.

MILLER, B. P.; FREDRIKSEN, L.; SO, B. An Empirical Study of the Reliability

of UNIX Utilities. Comunications of the ACM, v. 33, n. 12, p. 33-44, Dec 1990.

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY - NIST.

National Vulnerability Database - Home. National Vulnerability Database - NVD,

2016. Disponivel em: <https://nvd.nist.gov/home.cfm>. Acesso em: 30 July 2016.

NATIONAL Vulnerability Database - Vulnerability search. National

Vulnerability Database. Disponivel em: <https://web.nvd.nist.gov/view/vuln/search>.

NUNES, F. J. B.; BELCHIOR, A. D.; ALBUGUERQUE, A. B. Security

Engineering Approach to Support Software Security. IEEE 6th World Congress

on Services. Miami: [s.n.]. 2010. p. 48-55.

O'CONNOR, B. NASA Software Safety Guidebook. National Aeronautics

and Space Administration. [S.l.], p. 389. 2004.

OZDOGANOLU, H. et al. SmashGuard - A hardware solution to prevent

security Attacks on the Functions Return Address. IEEE Trans. on Computers, v.

55, n. 10, p. 1271-1285, Oct. 2006.

PARK, Y.-J.; ZHANG, Z.; LEE, G. Microarchitectural Protection Against Stack-

Based Buffer Overflow Attacks. IEEE Micro, v. 26, n. 4, July-Aug 2006.

88

PATTERSON, D. A.; HENNESSY, J. L. Computer Organization and Design:

Tthe Hardware/Software Interface. 4ª edition. ed. [S.l.]: Elsevier, 2012.

RAGO, W. R. S. A. S. A. Advanced Programing. Second. ed. [S.l.]: [s.n.],

2010.

SCHMID, D. C. Adaptive Middleware: Middleware for Real-time and

Embedded Systems. Comunications of the ACM, v. 45, n. 6, p. 43-48, June 2002.

SHUETTE, M. A.; SHEN, J. P. Processor Control Flow Monitoring Using

Signatured Instruction Streams. IEEE Transactions on Computers, v. C-36, n. 3, p.

264-276, March 1987.

SPARC INTERNATIONAL INC. The SPARC Architecture Manual: Version

8. Upper Saddle River, NJ, USA: Prentice-Hal, 1992.

STEVENS, W. R.; RAGO, S. A. Advanced Programming in the UNIX

Environment. 2nd Edition. ed. [S.l.]: Pearson, 2012.

SWARUP, M. B.; RAMAIAH, P. S. An Approach To Modeling Software

Safety. Ninth ACIS International Conference on Software Engineering, Artificial

Intelligence, Networking, and Parallel/Distributed Computing, SNPD '08. [S.l.]: [s.n.].

2008. p. 800-806.

XILINX - ISE WebPACK Design Software. Xilinx, 2016. Disponivel em:

<http://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.html>.

Acesso em: 23 Jan. 2016.

XILINX - ISIM Simulator. Xilinx, 2016. Disponivel em:

<http://www.xilinx.com/products/design-tools/isim.html>. Acesso em: 23 Jan 2016.

XILINX INC. XILINX Archived ISE issues. XILINX Community Forums, 2016.

Disponivel em: <https://forums.xilinx.com/t5/Archived-ISE-issues-Archived/How-to-

display-quot-Total-Equivalent-Gate-Count-for-Design-quot/td-p/21395>. Acesso em:

15 out. 2016.

89

ANNEX A

The VHDL code below shown illustrates the Watchdog internal blocks

implementation.

--

-- Watchdog Entity

--

entity watchdog is

 generic (

 pclow : integer range 0 to 2 := 2

);

 port (

 clk : in std_ulogic;

 rstn : in std_ulogic;

 g_inst : in std_logic_vector(31 downto 0);

 g_pc : in std_logic_vector(31 downto PCLOW);

 g_annul : in std_logic;

 global_jmp_addr : in std_logic_vector(31 downto PCLOW);

 exception_signal : out std_logic;

 in_the_main_signal : out std_logic := '1'

);

end;

...

--

-- ShadowMem declaration

--

 type data_vector is array (0 to (64 - 1)) of

std_logic_vector (31 downto PCLOW);

 signal shadow_mem : data_vector;

 signal ssp : integer range 0 to (64 - 1) := 128;

90

...

--

-- Decision Block Recovery Mechanism

-- In this block we generate the signals to recovery mechnism

--

 if(pc & "00" > main_low and pc & "00" < main_high)

then

 in_the_main_signal <= '1';

 main_first := '1';

 -- just put down in_the_main_signal if the

 -- execution just reach the main function

 -- for the first time.

 elsif (main_first = '1') then

 in_the_main_signal <= '0';

 else

 end if;

...

--

-- Decision Block

-- This block receive the compare signal from ShadowMem

-- Control and check if jmp_addr and the shadow_mem data

-- are iquals.

--

 if (compare = '1') then

 -- comparing jmp_addr and shadow_mem data

 if(shadow_mem(ssp)+2 /= local_jmp_addr)then

 -- rising up exception signal

 exception_signal <= '1';

 end if;

 -- cleanup compare signal

 compare := '0';

91

 else

 end if;

...

--

-- ShadowMem Control

-- This block receive signal icall or ijmpl from Instruction

-- decoder and generate the compare signal as necessary

--

 -- FSM to actualize the SSP and generate the compare

signal

 case (commit) is

 when 1 => --Call

 ssp <= ssp+1;

 commit := 0;

 when 2 => -- return

 ssp <= ssp -1;

 commit := 0;

 compare := '1';

 when others => dummy := '0';

 end case;

 -- checking icall signal

 if (icall = '1' and pc /= old_pc) then

 icall := '0';

 shadow_mem(ssp) <= old_pc;

 commit := 1;

 old_pc := pc;

 else

 end if;

 -- checking the ijmpl signal

 if (ijmpl = '1' and pc /= old_pc) then

92

 ijmpl := '0';

 commit := 2;

 else

 end if;

...

--

-- Instruction decoder

-- This block decode the instruction get from pc, decode

-- this instruction and generate icall or ijmpl to

-- ShadowMem controller.

--

 case op is

 -- decoding call instruction

 when CALL =>

 if(g_annul = '0') then

 icall := '1';

 old_pc := pc;

 end if;

 when FMT3 =>

 case op3 is

 -- decoding jmpl instruction (return)

 when JMPL => --pg 124 sparcV8 manual

 if(g_inst(29 downto 25) = "00000" and

 g_inst(13) = '1' and

 g_annul = '0') then -- .rd = 0

 ijmpl := '1';

 local_inst := g_inst;

 local_jmp_addr := global_jmp_addr;

 old_pc := pc;

 end if;

93

 -- another situation to decode call

instruction

 if(g_inst(29 downto 25) = "01111" and --rd

= 15 indirect call

 g_annul = '0') then

 icall := '1';

 old_pc := pc;

 end if;

 when others => dummy := '1';

 end case;

 when others => dummy := '0';

 end case;

94

95

ANNEX B

Below are shown pieces of commented VHDL code describing the

reg_recovery_ctrl logic to generate and recovery from the safe-point.

--

-- Internal pipeline registers declaration

--

 type registers is record

 f : fetch_reg_type;

 d : decode_reg_type;

 a : regacc_reg_type;

 e : execute_reg_type;

 m : memory_reg_type;

 x : exception_reg_type;

 w : write_reg_type;

 end record;

 signal r, rin : registers;

 signal my_rin : registers; -- duplicate pipeline registers

...

--

-- Register recovery controller (Reg_recovery_ctrl)

-- Process to generate safe point when function goes

-- out of main function.

--

my_proc : process (clk, wdg_in_the_main_signal, r)

 variable local_ctrl : std_logic := '0';

 begin

 if rising_edge(clk) then

 if(wdg_in_the_main_signal = '0' and local_ctrl = '0') then

96

 my_rin <= r;

 local_ctrl := '1';

 elsif (wdg_in_the_main_signal = '1') then

 local_ctrl := '0';

 else

 end if;

 end if;

end process;

...

--

-- Original process from Leon3 pipeline, this process

-- actualize the pipeline registers

--

 reg : process (clk, wdg_exception_signal, my_rin)

 begin

 if rising_edge(clk) then

 -- logic introduced to recovery to the safe-point saved

 -- in the my_rin register structure.

 if(wdg_exception_signal = '1') then

 r <= my_rin;

 else

 if (holdn = '1') then

 r <= rin;

 else

 r.x.ipend <= rin.x.ipend;

 r.m.werr <= rin.m.werr;

 if (holdn or ico.mds) = '0' then

 r.d.inst <= rin.d.inst; r.d.mexc <= rin.d.mexc;

 r.d.set <= rin.d.set;

 end if;

 if (holdn or dco.mds) = '0' then

97

 r.x.data <= rin.x.data; r.x.mexc <= rin.x.mexc;

 r.x.set <= rin.x.set;

 end if;

 end if;

 if rstn = '0' then

 if RESET_ALL then

 r <= RRES;

 if DYNRST then

 r.f.pc(31 downto 12) <= irqi.rstvec;

 r.w.s.tba <= irqi.rstvec;

 end if;

 if DBGUNIT then

 if (dbgi.dsuen and dbgi.dbreak) = '1' then

 r.x.rstate <= dsu1; r.x.debug <= '1';

 end if;

 end if;

 if (index /= 0) and irqi.run = '0' then

 r.x.rstate <= dsu1;

 end if;

 else

 r.w.s.s <= '1'; r.w.s.ps <= '1';

 if need_extra_sync_reset(fabtech) /= 0 then

 r.d.inst <= (others => (others => '0'));

 r.x.mexc <= '0';

 end if;

 end if;

 end if;

-- end if; --exception signal

 end if;

 end process;

--

-- The general registers declaration and the duplicated

98

-- structure.

--

 type mem is array(0 to numregs-1)

 of std_logic_vector((dbits -1) downto 0);

 signal memarr : mem;

 signal my_memarr: mem; -- duplicated general registers

...

--

-- Process to save general registers when system goes

-- out of main

--

 my_proc : process(wclk, wdg_in_the_main_signal, memarr)

 variable local_ctrl : std_logic := '0';

 begin

 if rising_edge(wclk) then

 if(wdg_in_the_main_signal = '0' and local_ctrl = '0')

then

 my_memarr <= memarr;

 local_ctrl := '1';

 elsif (wdg_in_the_main_signal = '1') then

 local_ctrl := '0';

 else

 end if;

 end if;

 end process;

--

-- Original process from Leon3, this process

-- actualize the general registers

--

99

 main : process(wclk, wdg_exception_signal, my_memarr)

 begin

 if rising_edge(wclk) then

 -- commit saved state registers to original core registers

 -- when exception_signal is raised

 if (wdg_exception_signal = '1') then

 memarr <= my_memarr;

 else

 din <= wdata; wr <= we;

 if (we = '1')

-- pragma translate_off

 and (conv_integer(waddr) < numregs)

-- pragma translate_on

 then wa <= waddr; end if;

 if (re1 = '1')

-- pragma translate_off

 and (conv_integer(raddr1) < numregs)

-- pragma translate_on

 then ra1 <= raddr1; end if;

 if (re2 = '1')

-- pragma translate_off

 and (conv_integer(raddr2) < numregs)

-- pragma translate_on

 then ra2 <= raddr2; end if;

 if wr = '1' then

 memarr(conv_integer(wa)) <= din;

 end if;

 end if; --exception_signal

 end if; --wclk

 end process;

