Please use this identifier to cite or link to this item: http://hdl.handle.net/10923/13125
Type: masterThesis
Title: Uma análise comparativa entre as abordagens linguística e estatística para extração automática de termos relevantes de corpora
Author(s): Santos, Carlos Alberto dos
Advisor: Vieira, Renata
Publisher: Pontifícia Universidade Católica do Rio Grande do Sul
Graduate Program: Programa de Pós-Graduação em Ciência da Computação
Issue Date: 2018
Keywords: MINERAÇÃO DE DADOS (INFORMÁTICA)
PROCESSAMENTO DA LINGUAGEM NATURAL
ESTATÍSTICA
INFORMÁTICA
Abstract: Sabe-se que o processamento linguístico de corpora demanda grande esforço computacional devido à complexidade dos seus algoritmos, mas que, apesar disso, os resultados alcançados são melhores que aqueles gerados pelo processamento estatístico, onde a demanda computacional é menor. Esta dissertação descreve uma análise comparativa entre os processos linguístico e estatístico de extração de termos. Foram realizados experimentos através de quatro corpora em língua inglesa, construídos a partir de artigos científicos, sobre os quais foram executadas extrações de termos utilizando essas abordagens. As listas de termos resultantes foram refinadas com o uso de métricas de relevância e stop list, e em seguida comparadas com as listas de referência dos corpora através da técnica do recall. Essas listas, por sua vez, foram construídas a partir do contexto desses corpora e com ajuda de pesquisas na Internet. Os resultados mostraram que a extração estatística combinada com as técnicas da stop list e as métricas de relevância pode produzir resultados superiores ao processo de extração linguístico refinado pelas mesmas métricas. Concluiu se que a abordagem estatística composta por essas técnicas pode ser a opção ideal para extração de termos relevantes, por exigir poucos recursos computacionais e por apresentar resultados superiores àqueles encontrados no processamento linguístico.
It is known that linguistic processing of corpora demands high computational effort because of the complexity of its algorithms, but despite this, the results reached are better than that generated by the statistical processing, where the computational demand is lower. This dissertation describes a comparative analysis between the process linguistic and statistical of term extraction. Experiments were carried out through four corpora in English idiom, built from scientific papers, on which terms extractions were carried out using the approaches. The resulting terms lists were refined with use of relevance metrics and stop list, and then compared with the reference lists of the corpora across the recall technical. These lists, in its turn, were built from the context these corpora, whith help of Internet searches. The results shown that the statistical extraction combined with the stop list and relevance metrics can produce superior results to linguistic process extraction using the same metrics. It’s concluded that statistical approach composed by these metrics can be ideal option to relevance terms extraction, by requiring few computational resources and by to show superior results that found in the linguistic processing.
URI: http://hdl.handle.net/10923/13125
Appears in Collections:Dissertação e Tese

Files in This Item:
File Description SizeFormat 
000490051-Texto+Completo-0.pdfTexto Completo1,24 MBAdobe PDFOpen
View


All Items in PUCRS Repository are protected by copyright, with all rights reserved, and are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Read more.