Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10923/13291
Tipo: masterThesis
Título: Crowd estimation model for emergency scenarios
Autor(es): Testa, Estevão Smania
Orientador: Musse, Soraia Raupp
Editor: Pontifícia Universidade Católica do Rio Grande do Sul
Programa: Programa de Pós-Graduação em Ciência da Computação
Fecha de Publicación: 2018
Palabras clave: INTELIGÊNCIA ARTIFICIAL
REDES NEURAIS (COMPUTAÇÃO)
SIMULAÇÃO E MODELAGEM EM COMPUTADORES
INFORMÁTICA
Resumen: Planos de evacuação têm sido historicamente usados como uma medida de segurança para a construção de edifícios. Os simuladores existentes requerem ambientes 3D totalmente modelados e tempo suficiente para preparar e simular cenários. Uma vez que a quantidade de pessoas pode mudar ao longo do tempo, várias simulações são frequentemente necessárias para gerar um plano de evacuação otimizado. Neste documento é apresentado uma nova abordagem para estimar os dados resultantes de um dado cenário de evacuação sem simula-lo de fato. Para tal o ambiente é dividido o ambiente em salas modulares com configurações diferentes, em um estilo divisão e conquista. Em seguida, uma rede neural artificial é treinada para estimar os dados desejados de uma sala sozinha. Após coletar os dados estimados de cada sala, uma heurística capaz de agregar informações por sala é desenvolvida para que o ambiente completo possa ser devidamente estimado. Esse método apresenta erros dentro da margem de 30% quando comparado o tempo de evacuação em um ambiente real e complexo. Além disso, não é necessário modelar o ambiente 3D, aprender como configurar um simulador de multidões e o tempo computacional para estimar é instantâneo quando comparado ao melhor caso de um simulador de multidões.
Evacuation plans have been historically used as a safety measure for the construction of buildings. The existing simulators require fully-modeled 3D environments and enough time to prepare and simulate scenarios. Since the amount of people in a given simulated scenario can change over time, several simulations are often required in order to generate an optimal evacuation plan. With that in mind, we present in this paper a novel approach to estimate the resulting data of a given evacuation scenario without actually simulating it. For such, we divide the environment into modular rooms with different configurations, in a divide-and-conquer fashion. Next, we train an artificial neural network to estimate all required data regarding the evacuation of a single room. After collecting the estimated data from each room, we developed a heuristic capable of aggregating per room information so the full environment can be properly evaluated. Our method presents errors within the 30% margin when compared to evacuation time in a real and complex environment. In addition, it is not necessary to model the 3D environment, learn how to use and configure a crowd simulator, and the computational time to estimate is instantaneous when compared to a best case real-time crowd simulator.
URI: http://hdl.handle.net/10923/13291
Aparece en las colecciones:Dissertação e Tese

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
000490931-Texto+Completo-0.pdfTexto Completo3,16 MBAdobe PDFAbrir
Ver


Todos los ítems en el Repositorio de la PUCRS están protegidos por derechos de autor, con todos los derechos reservados, y están bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional. Sepa más.