Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10923/27112
Registro completo de metadatos
Campo DCValorIdioma
dc.contributor.authorTrein, Tobias-
dc.date.accessioned2025-04-30T11:37:20Z-
dc.date.available2025-04-30T11:37:20Z-
dc.date.issued2024-
dc.identifier.urihttps://hdl.handle.net/10923/27112-
dc.description.abstractStreet cats in urban areas often rely on human intervention for survival, leading to challenges in population control and welfare management. In April 2023, Hello Inc., a Chinese urban mobility company, launched the Hello Street Cat initiative to address these issues. The project deployed over 21,000 smart feeding stations across 14 cities in China, integrating livestreaming cameras and treat dispensers activated through user donations. It also promotes the Trap-Neuter-Return (TNR) method, supported by a community-driven platform, HelloStreetCatWiki, where volunteers catalog and identify cats. However, manual identification is inefficient and unsustainable, creating a need for automated solutions. This study explores Deep Learning-based models for re-identifying street cats in the Hello Street Cat initiative. A dataset of 2,796 images of 69 cats was used to train Siamese Networks with EfficientNetB0, MobileNet and VGG16 as base models, evaluated under contrastive and triplet loss functions. VGG16 paired with contrastive loss emerged as the most effective configuration, achieving up to 97% accuracy and an F1 score of 0.9344 during testing. The approach leverages image augmentation and dataset refinement to overcome challenges posed by limited data and diverse visual variations. These findings underscore the potential of automated cat re-identification to streamline population monitoring and welfare efforts. By reducing reliance on manual processes, the method offers a scalable and reliable solution for communitydriven initiatives. Future research will focus on expanding datasets and developing real-time implementations to enhance practicality in large-scale deployments.pt_BR
dc.language.isoen_USpt_BR
dc.rightsopenAccess
dc.subjectANIMAL RE-IDENTIFICATIONpt_BR
dc.subjectSIAMESE NEURAL NETWORKSpt_BR
dc.subjectDEEP LEARNING APPLICATIONSpt_BR
dc.subjectCONVOLUTIONAL NEURAL NETWORKSpt_BR
dc.subjectCOMPUTER VISIONpt_BR
dc.titleSiamese networks for cat re-identification: exploring neural models for cat instance recognitionpt_BR
dc.degree.grantorPontifícia Universidade Católica do Rio Grande do Sul
dc.degree.departmentEscola Politécnica
dc.degree.localPorto Alegre
dc.degree.levelGraduação
dc.degree.graduationCiência da Computação
Aparece en las colecciones:TCC Ciência da Computação

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
2024_2_TOBIAS_TREIN_TCC.pdfTexto completo977 kBAdobe PDFAbrir
Ver


Todos los ítems en el Repositorio de la PUCRS están protegidos por derechos de autor, con todos los derechos reservados, y están bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional. Sepa más.