Please use this identifier to cite or link to this item: https://hdl.handle.net/10923/18606
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLeonardo Rosa Amado-
dc.contributor.authorPereira, Ramon Fraga-
dc.contributor.authorFelipe Rech Meneguzzi-
dc.date.accessioned2021-09-29T14:16:23Z-
dc.date.available2021-09-29T14:16:23Z-
dc.date.issued2021-
dc.identifier.urihttps://hdl.handle.net/10923/18606-
dc.language.isoen-
dc.relation.ispartofProceedings of the 20th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2021, Grã-Bretanha.-
dc.rightsopenAccess-
dc.subjectAutomated Planning-
dc.subjectDeep learning-
dc.subjectGoal Recognition-
dc.titleCombining LSTMs and Symbolic Approaches for Robust Plan Recognition-
dc.typeconferenceObject-
dc.date.updated2021-09-29T14:16:21Z-
Appears in Collections:Apresentação em Evento

Files in This Item:
File Description SizeFormat 
Combining_LSTMs_and_Symbolic_Approaches_for_Robust_Plan_Recognition.pdf480,97 kBAdobe PDFOpen
View


All Items in PUCRS Repository are protected by copyright, with all rights reserved, and are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Read more.